fixup unit tests and remove debugging statements

This commit is contained in:
Lincoln Stein 2024-06-02 18:19:29 -04:00
parent e26360f85b
commit 589a7959c0
11 changed files with 61 additions and 186 deletions

View File

@ -4,7 +4,6 @@ from logging import Logger
import torch
import invokeai.backend.util.devices # horrible hack
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
from invokeai.app.services.shared.sqlite.sqlite_util import init_db

View File

@ -99,6 +99,7 @@ class CompelInvocation(BaseInvocation):
textual_inversion_manager=ti_manager,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(self.prompt)
@ -113,6 +114,7 @@ class CompelInvocation(BaseInvocation):
conditioning_data = ConditioningFieldData(conditionings=[BasicConditioningInfo(embeds=c)])
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,

View File

@ -74,9 +74,9 @@ class InvocationStatsService(InvocationStatsServiceBase):
)
self._stats[graph_execution_state_id].add_node_execution_stats(node_stats)
def reset_stats(self):
self._stats = {}
self._cache_stats = {}
def reset_stats(self, graph_execution_state_id: str):
self._stats.pop(graph_execution_state_id)
self._cache_stats.pop(graph_execution_state_id)
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
graph_stats_summary = self._get_graph_summary(graph_execution_state_id)

View File

@ -76,8 +76,6 @@ class ModelManagerService(ModelManagerServiceBase):
ram_cache = ModelCache(
max_cache_size=app_config.ram,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
)
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)

View File

@ -1,7 +1,7 @@
import traceback
from contextlib import suppress
from queue import Queue
from threading import BoundedSemaphore, Thread, Lock
from threading import BoundedSemaphore, Lock, Thread
from threading import Event as ThreadEvent
from typing import Optional, Set
@ -61,7 +61,9 @@ class DefaultSessionRunner(SessionRunnerBase):
self._on_after_run_session_callbacks = on_after_run_session_callbacks or []
self._process_lock = Lock()
def start(self, services: InvocationServices, cancel_event: ThreadEvent, profiler: Optional[Profiler] = None) -> None:
def start(
self, services: InvocationServices, cancel_event: ThreadEvent, profiler: Optional[Profiler] = None
) -> None:
self._services = services
self._cancel_event = cancel_event
self._profiler = profiler
@ -214,7 +216,7 @@ class DefaultSessionRunner(SessionRunnerBase):
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._services.performance_statistics.log_stats(queue_item.session.id)
self._services.performance_statistics.reset_stats()
self._services.performance_statistics.reset_stats(queue_item.session.id)
for callback in self._on_after_run_session_callbacks:
callback(queue_item=queue_item)
@ -384,7 +386,6 @@ class DefaultSessionProcessor(SessionProcessorBase):
)
worker.start()
def stop(self, *args, **kwargs) -> None:
self._stop_event.set()
@ -465,7 +466,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
# Run the graph
# self.session_runner.run(queue_item=self._queue_item)
except Exception as e:
except Exception:
# Wait for next polling interval or event to try again
poll_now_event.wait(self._polling_interval)
continue
@ -494,7 +495,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
with self._invoker.services.model_manager.load.ram_cache.reserve_execution_device():
# Run the session on the reserved GPU
self.session_runner.run(queue_item=queue_item)
except Exception as e:
except Exception:
continue
finally:
self._active_queue_items.remove(queue_item)

View File

@ -239,6 +239,7 @@ class SessionQueueItemWithoutGraph(BaseModel):
def __hash__(self) -> int:
return self.item_id
class SessionQueueItemDTO(SessionQueueItemWithoutGraph):
pass

View File

@ -325,7 +325,6 @@ class ConditioningInterface(InvocationContextInterface):
Returns:
The loaded conditioning data.
"""
return self._services.conditioning.load(name)

View File

@ -43,26 +43,9 @@ T = TypeVar("T")
@dataclass
class CacheRecord(Generic[T]):
"""
Elements of the cache:
key: Unique key for each model, same as used in the models database.
model: Model in memory.
state_dict: A read-only copy of the model's state dict in RAM. It will be
used as a template for creating a copy in the VRAM.
size: Size of the model
loaded: True if the model's state dict is currently in VRAM
Before a model is executed, the state_dict template is copied into VRAM,
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
"""
"""Elements of the cache."""
key: str
model: T
device: torch.device
state_dict: Optional[Dict[str, torch.Tensor]]
size: int
model: T
loaded: bool = False
@ -130,28 +113,12 @@ class ModelCacheBase(ABC, Generic[T]):
"""
pass
@property
@abstractmethod
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
pass
@property
@abstractmethod
def max_cache_size(self) -> float:
"""Return true if the cache is configured to lazily offload models in VRAM."""
pass
@abstractmethod
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload from VRAM any models not actively in use."""
pass
@abstractmethod
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device."""
pass
@property
@abstractmethod
def stats(self) -> Optional[CacheStats]:

View File

@ -19,10 +19,8 @@ context. Use like this:
"""
import gc
import math
import sys
import threading
import time
from contextlib import contextmanager, suppress
from logging import Logger
from threading import BoundedSemaphore
@ -31,7 +29,7 @@ from typing import Dict, Generator, List, Optional, Set
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@ -42,11 +40,6 @@ from .model_locker import ModelLocker
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
DEFAULT_MAX_CACHE_SIZE = 6.0
# amount of GPU memory to hold in reserve for use by generations (GB)
# Empirically this value seems to improve performance without starving other
# processes.
DEFAULT_MAX_VRAM_CACHE_SIZE = 0.25
# actual size of a gig
GIG = 1073741824
@ -60,12 +53,10 @@ class ModelCache(ModelCacheBase[AnyModel]):
def __init__(
self,
max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
storage_device: torch.device = torch.device("cpu"),
execution_devices: Optional[Set[torch.device]] = None,
precision: torch.dtype = torch.float16,
sequential_offload: bool = False,
lazy_offloading: bool = True,
sha_chunksize: int = 16777216,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
@ -76,18 +67,14 @@ class ModelCache(ModelCacheBase[AnyModel]):
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
"""
# allow lazy offloading only when vram cache enabled
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self._precision: torch.dtype = precision
self._max_cache_size: float = max_cache_size
self._max_vram_cache_size: float = max_vram_cache_size
self._storage_device: torch.device = storage_device
self._ram_lock = threading.Lock()
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
@ -111,11 +98,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
"""Return the logger used by the cache."""
return self._logger
@property
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
return self._lazy_offloading
@property
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
@ -233,8 +215,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
if key in self._cached_models:
return
self.make_room(size)
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
cache_record = CacheRecord(key, model=model, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
@ -296,107 +277,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
return model_key
def offload_unlocked_models(self, size_required: int) -> None:
"""Move any unused models from VRAM."""
reserved = self._max_vram_cache_size * GIG
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM needed for models; max allowed={(reserved/GIG):.2f}GB")
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
if not cache_entry.loaded:
continue
if not cache_entry.locked:
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
)
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device.
:param cache_entry: The CacheRecord for the model
:param target_device: The torch.device to move the model into
May raise a torch.cuda.OutOfMemoryError
"""
# These attributes are not in the base ModelMixin class but in various derived classes.
# Some models don't have these attributes, in which case they run in RAM/CPU.
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
if not (hasattr(cache_entry.model, "device") and hasattr(cache_entry.model, "to")):
return
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
# RAM to a new state dict in VRAM, and then inject it into the model.
# This operation is slightly faster than running `to()` on the whole model.
#
# When the model needs to be removed from VRAM we simply delete the copy
# of the state dict in VRAM, and reinject the state dict that is cached
# in RAM into the model. So this operation is very fast.
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
try:
if cache_entry.state_dict is not None:
assert hasattr(cache_entry.model, "load_state_dict")
if target_device == self.storage_device:
cache_entry.model.load_state_dict(cache_entry.state_dict, assign=True)
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(torch.device(target_device), copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
raise e
snapshot_after = self._capture_memory_snapshot()
end_model_to_time = time.time()
self.logger.debug(
f"Moved model '{cache_entry.key}' from {source_device} to"
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
f"Estimated model size: {(cache_entry.size/GIG):.3f} GB."
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
if (
snapshot_before is not None
and snapshot_after is not None
and snapshot_before.vram is not None
and snapshot_after.vram is not None
):
vram_change = abs(snapshot_before.vram - snapshot_after.vram)
# If the estimated model size does not match the change in VRAM, log a warning.
if not math.isclose(
vram_change,
cache_entry.size,
rel_tol=0.1,
abs_tol=10 * MB,
):
self.logger.debug(
f"Moving model '{cache_entry.key}' from {source_device} to"
f" {target_device} caused an unexpected change in VRAM usage. The model's"
" estimated size may be incorrect. Estimated model size:"
f" {(cache_entry.size/GIG):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
def print_cuda_stats(self) -> None:
"""Log CUDA diagnostics."""
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
@ -440,12 +320,43 @@ class ModelCache(ModelCacheBase[AnyModel]):
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
refs = sys.getrefcount(cache_entry.model)
# HACK: This is a workaround for a memory-management issue that we haven't tracked down yet. We are directly
# going against the advice in the Python docs by using `gc.get_referrers(...)` in this way:
# https://docs.python.org/3/library/gc.html#gc.get_referrers
# manualy clear local variable references of just finished function calls
# for some reason python don't want to collect it even by gc.collect() immidiately
if refs > 2:
while True:
cleared = False
for referrer in gc.get_referrers(cache_entry.model):
if type(referrer).__name__ == "frame":
# RuntimeError: cannot clear an executing frame
with suppress(RuntimeError):
referrer.clear()
cleared = True
# break
# repeat if referrers changes(due to frame clear), else exit loop
if cleared:
gc.collect()
else:
break
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}"
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded},"
f" refs: {refs}"
)
if not cache_entry.locked:
# Expected refs:
# 1 from cache_entry
# 1 from getrefcount function
# 1 from onnx runtime object
if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2):
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)

View File

@ -2,6 +2,7 @@
Base class and implementation of a class that moves models in and out of VRAM.
"""
import copy
from typing import Optional
import torch
@ -54,14 +55,13 @@ class ModelLocker(ModelLockerBase):
# NOTE that the model has to have the to() method in order for this code to move it into GPU!
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
execution_device = self._cache.get_execution_device()
self._cache.move_model_to_device(self._cache_entry, execution_device)
# We wait for a gpu to be free - may raise a ValueError
self._execution_device = self._cache.get_execution_device()
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._execution_device}")
model_in_gpu = copy.deepcopy(self._cache_entry.model)
if hasattr(model_in_gpu, "to"):
model_in_gpu.to(self._execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {execution_device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
@ -70,15 +70,11 @@ class ModelLocker(ModelLockerBase):
except Exception:
self._cache_entry.unlock()
raise
return self.model
return model_in_gpu
def unlock(self) -> None:
"""Call upon exit from context."""
if not hasattr(self.model, "to"):
return
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)
self._cache.print_cuda_stats()

View File

@ -54,6 +54,7 @@ def mock_services() -> InvocationServices:
workflow_records=None, # type: ignore
tensors=None, # type: ignore
conditioning=None, # type: ignore
performance_statistics=None, # type: ignore
)