diff --git a/invokeai/app/invocations/tiled_stable_diffusion_refine.py b/invokeai/app/invocations/tiled_stable_diffusion_refine.py index f71c12700b..09a91b87be 100644 --- a/invokeai/app/invocations/tiled_stable_diffusion_refine.py +++ b/invokeai/app/invocations/tiled_stable_diffusion_refine.py @@ -29,7 +29,7 @@ from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNE from invokeai.backend.lora import LoRAModelRaw from invokeai.backend.model_patcher import ModelPatcher from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, image_resized_to_grid_as_tensor -from invokeai.backend.tiles.tiles import calc_tiles_min_overlap, merge_tiles_with_linear_blending +from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending from invokeai.backend.tiles.utils import Tile from invokeai.backend.util.devices import TorchDevice from invokeai.backend.util.hotfixes import ControlNetModel @@ -58,11 +58,15 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation): # TODO(ryand): Add multiple-of validation. tile_height: int = InputField(default=512, gt=0, description="Height of the tiles.") tile_width: int = InputField(default=512, gt=0, description="Width of the tiles.") - tile_min_overlap: int = InputField(default=16, gt=0, description="Minimum overlap between tiles.") - steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps) - cfg_scale: float | list[float] = InputField(default=7.5, description=FieldDescriptions.cfg_scale, title="CFG Scale") + tile_overlap: int = InputField( + default=16, + gt=0, + description="Target overlap between adjacent tiles (the last row/column may overlap more than this).", + ) + steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps) + cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale") denoising_start: float = InputField( - default=0.0, + default=0.65, ge=0, le=1, description=FieldDescriptions.denoising_start, @@ -174,13 +178,15 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation): input_image = context.images.get_pil(self.image.image_name) # Calculate the tile locations to cover the image. + # We have selected this tiling strategy to make it easy to achieve tile coords that are multiples of 8. This + # facilitates conversions between image space and latent space. # TODO(ryand): Expose these tiling parameters. (Keep in mind the multiple-of constraints on these params.) - tiles = calc_tiles_min_overlap( + tiles = calc_tiles_with_overlap( image_height=input_image.height, image_width=input_image.width, tile_height=self.tile_height, tile_width=self.tile_width, - min_overlap=self.tile_min_overlap, + overlap=self.tile_overlap, ) # Convert the input image to a torch.Tensor. @@ -366,9 +372,9 @@ class TiledStableDiffusionRefineInvocation(BaseInvocation): # Merge the refined image tiles back into a single image. refined_image_tiles_np = [np.array(t) for t in refined_image_tiles] merged_image_np = np.zeros(shape=(input_image.height, input_image.width, 3), dtype=np.uint8) - # TODO(ryand): Expose the blend_amount parameter, or set it based on the value of min_overlap used earlier. + # TODO(ryand): Tune the blend_amount. Should this be exposed as a parameter? merge_tiles_with_linear_blending( - dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=32 + dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=self.tile_overlap ) # Save the refined image and return its reference.