Remove unused code for attention map saving.

This commit is contained in:
Ryan Dick 2024-02-15 17:28:55 -05:00
parent a5c94fba43
commit 5b3adf0740
7 changed files with 18 additions and 614 deletions

View File

@ -775,10 +775,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end, denoising_end=self.denoising_end,
) )
( result_latents = pipeline.latents_from_embeddings(
result_latents,
result_attention_map_saver,
) = pipeline.latents_from_embeddings(
latents=latents, latents=latents,
timesteps=timesteps, timesteps=timesteps,
init_timestep=init_timestep, init_timestep=init_timestep,

View File

@ -4,13 +4,11 @@ Initialization file for the invokeai.backend.stable_diffusion package
from .diffusers_pipeline import PipelineIntermediateState, StableDiffusionGeneratorPipeline # noqa: F401 from .diffusers_pipeline import PipelineIntermediateState, StableDiffusionGeneratorPipeline # noqa: F401
from .diffusion import InvokeAIDiffuserComponent # noqa: F401 from .diffusion import InvokeAIDiffuserComponent # noqa: F401
from .diffusion.cross_attention_map_saving import AttentionMapSaver # noqa: F401
from .seamless import set_seamless # noqa: F401 from .seamless import set_seamless # noqa: F401
__all__ = [ __all__ = [
"PipelineIntermediateState", "PipelineIntermediateState",
"StableDiffusionGeneratorPipeline", "StableDiffusionGeneratorPipeline",
"InvokeAIDiffuserComponent", "InvokeAIDiffuserComponent",
"AttentionMapSaver",
"set_seamless", "set_seamless",
] ]

View File

@ -12,7 +12,6 @@ import torch
import torchvision.transforms as T import torchvision.transforms as T
from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.controlnet import ControlNetModel from diffusers.models.controlnet import ControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.schedulers import KarrasDiffusionSchedulers
@ -26,9 +25,9 @@ from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ..util import auto_detect_slice_size, normalize_device from ..util import auto_detect_slice_size, normalize_device
from .diffusion import AttentionMapSaver, InvokeAIDiffuserComponent
@dataclass @dataclass
@ -39,7 +38,6 @@ class PipelineIntermediateState:
timestep: int timestep: int
latents: torch.Tensor latents: torch.Tensor
predicted_original: Optional[torch.Tensor] = None predicted_original: Optional[torch.Tensor] = None
attention_map_saver: Optional[AttentionMapSaver] = None
@dataclass @dataclass
@ -190,19 +188,6 @@ class T2IAdapterData:
end_step_percent: float = Field(default=1.0) end_step_percent: float = Field(default=1.0)
@dataclass
class InvokeAIStableDiffusionPipelineOutput(StableDiffusionPipelineOutput):
r"""
Output class for InvokeAI's Stable Diffusion pipeline.
Args:
attention_map_saver (`AttentionMapSaver`): Object containing attention maps that can be displayed to the user
after generation completes. Optional.
"""
attention_map_saver: Optional[AttentionMapSaver]
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
r""" r"""
Pipeline for text-to-image generation using Stable Diffusion. Pipeline for text-to-image generation using Stable Diffusion.
@ -343,9 +328,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
masked_latents: Optional[torch.Tensor] = None, masked_latents: Optional[torch.Tensor] = None,
gradient_mask: Optional[bool] = False, gradient_mask: Optional[bool] = False,
seed: Optional[int] = None, seed: Optional[int] = None,
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]: ) -> torch.Tensor:
if init_timestep.shape[0] == 0: if init_timestep.shape[0] == 0:
return latents, None return latents
if additional_guidance is None: if additional_guidance is None:
additional_guidance = [] additional_guidance = []
@ -385,7 +370,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask)) additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask))
try: try:
latents, attention_map_saver = self.generate_latents_from_embeddings( latents = self.generate_latents_from_embeddings(
latents, latents,
timesteps, timesteps,
conditioning_data, conditioning_data,
@ -402,7 +387,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if mask is not None and not gradient_mask: if mask is not None and not gradient_mask:
latents = torch.lerp(orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)) latents = torch.lerp(orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype))
return latents, attention_map_saver return latents
def generate_latents_from_embeddings( def generate_latents_from_embeddings(
self, self,
@ -415,16 +400,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
ip_adapter_data: Optional[list[IPAdapterData]] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
callback: Callable[[PipelineIntermediateState], None] = None, callback: Callable[[PipelineIntermediateState], None] = None,
): ) -> torch.Tensor:
self._adjust_memory_efficient_attention(latents) self._adjust_memory_efficient_attention(latents)
if additional_guidance is None: if additional_guidance is None:
additional_guidance = [] additional_guidance = []
batch_size = latents.shape[0] batch_size = latents.shape[0]
attention_map_saver: Optional[AttentionMapSaver] = None
if timesteps.shape[0] == 0: if timesteps.shape[0] == 0:
return latents, attention_map_saver return latents
ip_adapter_unet_patcher = None ip_adapter_unet_patcher = None
extra_conditioning_info = conditioning_data.text_embeddings.extra_conditioning extra_conditioning_info = conditioning_data.text_embeddings.extra_conditioning
@ -432,7 +416,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
attn_ctx = self.invokeai_diffuser.custom_attention_context( attn_ctx = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model, self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info, extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps),
) )
self.use_ip_adapter = False self.use_ip_adapter = False
elif ip_adapter_data is not None: elif ip_adapter_data is not None:
@ -483,13 +466,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
predicted_original = getattr(step_output, "pred_original_sample", None) predicted_original = getattr(step_output, "pred_original_sample", None)
# TODO resuscitate attention map saving
# if i == len(timesteps)-1 and extra_conditioning_info is not None:
# eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1
# attention_map_token_ids = range(1, eos_token_index)
# attention_map_saver = AttentionMapSaver(token_ids=attention_map_token_ids, latents_shape=latents.shape[-2:])
# self.invokeai_diffuser.setup_attention_map_saving(attention_map_saver)
if callback is not None: if callback is not None:
callback( callback(
PipelineIntermediateState( PipelineIntermediateState(
@ -499,11 +475,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
timestep=int(t), timestep=int(t),
latents=latents, latents=latents,
predicted_original=predicted_original, predicted_original=predicted_original,
attention_map_saver=attention_map_saver,
) )
) )
return latents, attention_map_saver return latents
@torch.inference_mode() @torch.inference_mode()
def step( def step(

View File

@ -2,6 +2,4 @@
Initialization file for invokeai.models.diffusion Initialization file for invokeai.models.diffusion
""" """
from .cross_attention_control import InvokeAICrossAttentionMixin # noqa: F401
from .cross_attention_map_saving import AttentionMapSaver # noqa: F401
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent # noqa: F401 from .shared_invokeai_diffusion import InvokeAIDiffuserComponent # noqa: F401

View File

@ -3,19 +3,13 @@
import enum import enum
import math
from dataclasses import dataclass, field from dataclasses import dataclass, field
from typing import Callable, Optional from typing import Optional
import diffusers
import psutil
import torch import torch
from compel.cross_attention_control import Arguments from compel.cross_attention_control import Arguments
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, SlicedAttnProcessor from diffusers.models.attention_processor import Attention, SlicedAttnProcessor
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from torch import nn
import invokeai.backend.util.logging as logger
from ...util import torch_dtype from ...util import torch_dtype
@ -25,72 +19,14 @@ class CrossAttentionType(enum.Enum):
TOKENS = 2 TOKENS = 2
class Context: class CrossAttnControlContext:
cross_attention_mask: Optional[torch.Tensor] def __init__(self, arguments: Arguments):
cross_attention_index_map: Optional[torch.Tensor]
class Action(enum.Enum):
NONE = 0
SAVE = (1,)
APPLY = 2
def __init__(self, arguments: Arguments, step_count: int):
""" """
:param arguments: Arguments for the cross-attention control process :param arguments: Arguments for the cross-attention control process
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
""" """
self.cross_attention_mask = None self.cross_attention_mask: Optional[torch.Tensor] = None
self.cross_attention_index_map = None self.cross_attention_index_map: Optional[torch.Tensor] = None
self.self_cross_attention_action = Context.Action.NONE
self.tokens_cross_attention_action = Context.Action.NONE
self.arguments = arguments self.arguments = arguments
self.step_count = step_count
self.self_cross_attention_module_identifiers = []
self.tokens_cross_attention_module_identifiers = []
self.saved_cross_attention_maps = {}
self.clear_requests(cleanup=True)
def register_cross_attention_modules(self, model):
for name, _module in get_cross_attention_modules(model, CrossAttentionType.SELF):
if name in self.self_cross_attention_module_identifiers:
raise AssertionError(f"name {name} cannot appear more than once")
self.self_cross_attention_module_identifiers.append(name)
for name, _module in get_cross_attention_modules(model, CrossAttentionType.TOKENS):
if name in self.tokens_cross_attention_module_identifiers:
raise AssertionError(f"name {name} cannot appear more than once")
self.tokens_cross_attention_module_identifiers.append(name)
def request_save_attention_maps(self, cross_attention_type: CrossAttentionType):
if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = Context.Action.SAVE
else:
self.tokens_cross_attention_action = Context.Action.SAVE
def request_apply_saved_attention_maps(self, cross_attention_type: CrossAttentionType):
if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = Context.Action.APPLY
else:
self.tokens_cross_attention_action = Context.Action.APPLY
def is_tokens_cross_attention(self, module_identifier) -> bool:
return module_identifier in self.tokens_cross_attention_module_identifiers
def get_should_save_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == Context.Action.SAVE
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == Context.Action.SAVE
return False
def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == Context.Action.APPLY
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == Context.Action.APPLY
return False
def get_active_cross_attention_control_types_for_step( def get_active_cross_attention_control_types_for_step(
self, percent_through: float = None self, percent_through: float = None
@ -111,219 +47,8 @@ class Context:
to_control.append(CrossAttentionType.TOKENS) to_control.append(CrossAttentionType.TOKENS)
return to_control return to_control
def save_slice(
self,
identifier: str,
slice: torch.Tensor,
dim: Optional[int],
offset: int,
slice_size: Optional[int],
):
if identifier not in self.saved_cross_attention_maps:
self.saved_cross_attention_maps[identifier] = {
"dim": dim,
"slice_size": slice_size,
"slices": {offset or 0: slice},
}
else:
self.saved_cross_attention_maps[identifier]["slices"][offset or 0] = slice
def get_slice( def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: CrossAttnControlContext):
self,
identifier: str,
requested_dim: Optional[int],
requested_offset: int,
slice_size: int,
):
saved_attention_dict = self.saved_cross_attention_maps[identifier]
if requested_dim is None:
if saved_attention_dict["dim"] is not None:
raise RuntimeError(f"dim mismatch: expected dim=None, have {saved_attention_dict['dim']}")
return saved_attention_dict["slices"][0]
if saved_attention_dict["dim"] == requested_dim:
if slice_size != saved_attention_dict["slice_size"]:
raise RuntimeError(
f"slice_size mismatch: expected slice_size={slice_size}, have {saved_attention_dict['slice_size']}"
)
return saved_attention_dict["slices"][requested_offset]
if saved_attention_dict["dim"] is None:
whole_saved_attention = saved_attention_dict["slices"][0]
if requested_dim == 0:
return whole_saved_attention[requested_offset : requested_offset + slice_size]
elif requested_dim == 1:
return whole_saved_attention[:, requested_offset : requested_offset + slice_size]
raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}")
def get_slicing_strategy(self, identifier: str) -> tuple[Optional[int], Optional[int]]:
saved_attention = self.saved_cross_attention_maps.get(identifier, None)
if saved_attention is None:
return None, None
return saved_attention["dim"], saved_attention["slice_size"]
def clear_requests(self, cleanup=True):
self.tokens_cross_attention_action = Context.Action.NONE
self.self_cross_attention_action = Context.Action.NONE
if cleanup:
self.saved_cross_attention_maps = {}
def offload_saved_attention_slices_to_cpu(self):
for _key, map_dict in self.saved_cross_attention_maps.items():
for offset, slice in map_dict["slices"].items():
map_dict[offset] = slice.to("cpu")
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
def __init__(self):
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
self.attention_slice_wrangler = None
self.slicing_strategy_getter = None
self.attention_slice_calculated_callback = None
def set_attention_slice_wrangler(
self,
wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]],
):
"""
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current Attention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
Pass None to use the default attention calculation.
:return:
"""
self.attention_slice_wrangler = wrangler
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int, int]]]):
self.slicing_strategy_getter = getter
def set_attention_slice_calculated_callback(self, callback: Optional[Callable[[torch.Tensor], None]]):
self.attention_slice_calculated_callback = callback
def einsum_lowest_level(self, query, key, value, dim, offset, slice_size):
# calculate attention scores
# attention_scores = torch.einsum('b i d, b j d -> b i j', q, k)
attention_scores = torch.baddbmm(
torch.empty(
query.shape[0],
query.shape[1],
key.shape[1],
dtype=query.dtype,
device=query.device,
),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
# calculate attention slice by taking the best scores for each latent pixel
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
attention_slice_wrangler = self.attention_slice_wrangler
if attention_slice_wrangler is not None:
attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
else:
attention_slice = default_attention_slice
if self.attention_slice_calculated_callback is not None:
self.attention_slice_calculated_callback(attention_slice, dim, offset, slice_size)
hidden_states = torch.bmm(attention_slice, value)
return hidden_states
def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
return r
def einsum_op_slice_dim1(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
return r
def einsum_op_mps_v1(self, q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return self.einsum_op_slice_dim1(q, k, v, slice_size)
def einsum_op_mps_v2(self, q, k, v):
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
return self.einsum_op_slice_dim0(q, k, v, 1)
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return self.einsum_lowest_level(q, k, v, None, None, None)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(self, q, k, v):
# check if we already have a slicing strategy (this should only happen during cross-attention controlled generation)
slicing_strategy_getter = self.slicing_strategy_getter
if slicing_strategy_getter is not None:
(dim, slice_size) = slicing_strategy_getter(self)
if dim is not None:
# print("using saved slicing strategy with dim", dim, "slice size", slice_size)
if dim == 0:
return self.einsum_op_slice_dim0(q, k, v, slice_size)
elif dim == 1:
return self.einsum_op_slice_dim1(q, k, v, slice_size)
# fallback for when there is no saved strategy, or saved strategy does not slice
mem_free_total = get_mem_free_total(q.device)
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def get_invokeai_attention_mem_efficient(self, q, k, v):
if q.device.type == "cuda":
# print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
return self.einsum_op_cuda(q, k, v)
if q.device.type == "mps" or q.device.type == "cpu":
if self.mem_total_gb >= 32:
return self.einsum_op_mps_v1(q, k, v)
return self.einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return self.einsum_op_tensor_mem(q, k, v, 32)
def restore_default_cross_attention(
model,
is_running_diffusers: bool,
restore_attention_processor: Optional[AttentionProcessor] = None,
):
if is_running_diffusers:
unet = model
unet.set_attn_processor(restore_attention_processor or AttnProcessor())
else:
remove_attention_function(model)
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: Context):
""" """
Inject attention parameters and functions into the passed in model to enable cross attention editing. Inject attention parameters and functions into the passed in model to enable cross attention editing.
@ -362,170 +87,6 @@ def setup_cross_attention_control_attention_processors(unet: UNet2DConditionMode
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size)) unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
cross_attention_class: type = InvokeAIDiffusersCrossAttention
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [
(name, module)
for name, module in model.named_modules()
if isinstance(module, cross_attention_class) and which_attn in name
]
cross_attention_modules_in_model_count = len(attention_module_tuples)
expected_count = 16
if cross_attention_modules_in_model_count != expected_count:
# non-fatal error but .swap() won't work.
logger.error(
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching "
"failed or some assumption has changed about the structure of the model itself. Please fix the "
f"monkey-patching, and/or update the {expected_count} above to an appropriate number, and/or find and "
"inform someone who knows what it means. This error is non-fatal, but it is likely that .swap() and "
"attention map display will not work properly until it is fixed."
)
return attention_module_tuples
def inject_attention_function(unet, context: Context):
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
def attention_slice_wrangler(module, suggested_attention_slice: torch.Tensor, dim, offset, slice_size):
# memory_usage = suggested_attention_slice.element_size() * suggested_attention_slice.nelement()
attention_slice = suggested_attention_slice
if context.get_should_save_maps(module.identifier):
# print(module.identifier, "saving suggested_attention_slice of shape",
# suggested_attention_slice.shape, "dim", dim, "offset", offset)
slice_to_save = attention_slice.to("cpu") if dim is not None else attention_slice
context.save_slice(
module.identifier,
slice_to_save,
dim=dim,
offset=offset,
slice_size=slice_size,
)
elif context.get_should_apply_saved_maps(module.identifier):
# print(module.identifier, "applying saved attention slice for dim", dim, "offset", offset)
saved_attention_slice = context.get_slice(module.identifier, dim, offset, slice_size)
# slice may have been offloaded to CPU
saved_attention_slice = saved_attention_slice.to(suggested_attention_slice.device)
if context.is_tokens_cross_attention(module.identifier):
index_map = context.cross_attention_index_map
remapped_saved_attention_slice = torch.index_select(saved_attention_slice, -1, index_map)
this_attention_slice = suggested_attention_slice
mask = context.cross_attention_mask.to(torch_dtype(suggested_attention_slice.device))
saved_mask = mask
this_mask = 1 - mask
attention_slice = remapped_saved_attention_slice * saved_mask + this_attention_slice * this_mask
else:
# just use everything
attention_slice = saved_attention_slice
return attention_slice
cross_attention_modules = get_cross_attention_modules(
unet, CrossAttentionType.TOKENS
) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
for identifier, module in cross_attention_modules:
module.identifier = identifier
try:
module.set_attention_slice_wrangler(attention_slice_wrangler)
module.set_slicing_strategy_getter(lambda module: context.get_slicing_strategy(identifier)) # noqa: B023
except AttributeError as e:
if is_attribute_error_about(e, "set_attention_slice_wrangler"):
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}") # TODO
else:
raise
def remove_attention_function(unet):
cross_attention_modules = get_cross_attention_modules(
unet, CrossAttentionType.TOKENS
) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
for _identifier, module in cross_attention_modules:
try:
# clear wrangler callback
module.set_attention_slice_wrangler(None)
module.set_slicing_strategy_getter(None)
except AttributeError as e:
if is_attribute_error_about(e, "set_attention_slice_wrangler"):
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}")
else:
raise
def is_attribute_error_about(error: AttributeError, attribute: str):
if hasattr(error, "name"): # Python 3.10
return error.name == attribute
else: # Python 3.9
return attribute in str(error)
def get_mem_free_total(device):
# only on cuda
if not torch.cuda.is_available():
return None
stats = torch.cuda.memory_stats(device)
mem_active = stats["active_bytes.all.current"]
mem_reserved = stats["reserved_bytes.all.current"]
mem_free_cuda, _ = torch.cuda.mem_get_info(device)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total
class InvokeAIDiffusersCrossAttention(diffusers.models.attention.Attention, InvokeAICrossAttentionMixin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
InvokeAICrossAttentionMixin.__init__(self)
def _attention(self, query, key, value, attention_mask=None):
# default_result = super()._attention(query, key, value)
if attention_mask is not None:
print(f"{type(self).__name__} ignoring passed-in attention_mask")
attention_result = self.get_invokeai_attention_mem_efficient(query, key, value)
hidden_states = self.reshape_batch_dim_to_heads(attention_result)
return hidden_states
## 🧨diffusers implementation follows
"""
# base implementation
class AttnProcessor:
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
"""
@dataclass @dataclass
class SwapCrossAttnContext: class SwapCrossAttnContext:
modified_text_embeddings: torch.Tensor modified_text_embeddings: torch.Tensor

View File

@ -1,100 +0,0 @@
import math
from typing import Optional
import torch
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from torchvision.transforms.functional import resize as tv_resize
class AttentionMapSaver:
def __init__(self, token_ids: range, latents_shape: torch.Size):
self.token_ids = token_ids
self.latents_shape = latents_shape
# self.collated_maps = #torch.zeros([len(token_ids), latents_shape[0], latents_shape[1]])
self.collated_maps: dict[str, torch.Tensor] = {}
def clear_maps(self):
self.collated_maps = {}
def add_attention_maps(self, maps: torch.Tensor, key: str):
"""
Accumulate the given attention maps and store by summing with existing maps at the passed-in key (if any).
:param maps: Attention maps to store. Expected shape [A, (H*W), N] where A is attention heads count, H and W are the map size (fixed per-key) and N is the number of tokens (typically 77).
:param key: Storage key. If a map already exists for this key it will be summed with the incoming data. In this case the maps sizes (H and W) should match.
:return: None
"""
key_and_size = f"{key}_{maps.shape[1]}"
# extract desired tokens
maps = maps[:, :, self.token_ids]
# merge attention heads to a single map per token
maps = torch.sum(maps, 0)
# store
if key_and_size not in self.collated_maps:
self.collated_maps[key_and_size] = torch.zeros_like(maps, device="cpu")
self.collated_maps[key_and_size] += maps.cpu()
def write_maps_to_disk(self, path: str):
pil_image = self.get_stacked_maps_image()
if pil_image is not None:
pil_image.save(path, "PNG")
def get_stacked_maps_image(self) -> Optional[Image.Image]:
"""
Scale all collected attention maps to the same size, blend them together and return as an image.
:return: An image containing a vertical stack of blended attention maps, one for each requested token.
"""
num_tokens = len(self.token_ids)
if num_tokens == 0:
return None
latents_height = self.latents_shape[0]
latents_width = self.latents_shape[1]
merged = None
for _key, maps in self.collated_maps.items():
# maps has shape [(H*W), N] for N tokens
# but we want [N, H, W]
this_scale_factor = math.sqrt(maps.shape[0] / (latents_width * latents_height))
this_maps_height = int(float(latents_height) * this_scale_factor)
this_maps_width = int(float(latents_width) * this_scale_factor)
# and we need to do some dimension juggling
maps = torch.reshape(
torch.swapdims(maps, 0, 1),
[num_tokens, this_maps_height, this_maps_width],
)
# scale to output size if necessary
if this_scale_factor != 1:
maps = tv_resize(maps, [latents_height, latents_width], InterpolationMode.BICUBIC)
# normalize
maps_min = torch.min(maps)
maps_range = torch.max(maps) - maps_min
# print(f"map {key} size {[this_maps_width, this_maps_height]} range {[maps_min, maps_min + maps_range]}")
maps_normalized = (maps - maps_min) / maps_range
# expand to (-0.1, 1.1) and clamp
maps_normalized_expanded = maps_normalized * 1.1 - 0.05
maps_normalized_expanded_clamped = torch.clamp(maps_normalized_expanded, 0, 1)
# merge together, producing a vertical stack
maps_stacked = torch.reshape(
maps_normalized_expanded_clamped,
[num_tokens * latents_height, latents_width],
)
if merged is None:
merged = maps_stacked
else:
# screen blend
merged = 1 - (1 - maps_stacked) * (1 - merged)
if merged is None:
return None
merged_bytes = merged.mul(0xFF).byte()
return Image.fromarray(merged_bytes.numpy(), mode="L")

View File

@ -17,13 +17,11 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
) )
from .cross_attention_control import ( from .cross_attention_control import (
Context,
CrossAttentionType, CrossAttentionType,
CrossAttnControlContext,
SwapCrossAttnContext, SwapCrossAttnContext,
get_cross_attention_modules,
setup_cross_attention_control_attention_processors, setup_cross_attention_control_attention_processors,
) )
from .cross_attention_map_saving import AttentionMapSaver
ModelForwardCallback: TypeAlias = Union[ ModelForwardCallback: TypeAlias = Union[
# x, t, conditioning, Optional[cross-attention kwargs] # x, t, conditioning, Optional[cross-attention kwargs]
@ -69,14 +67,12 @@ class InvokeAIDiffuserComponent:
self, self,
unet: UNet2DConditionModel, unet: UNet2DConditionModel,
extra_conditioning_info: Optional[ExtraConditioningInfo], extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int,
): ):
old_attn_processors = unet.attn_processors old_attn_processors = unet.attn_processors
try: try:
self.cross_attention_control_context = Context( self.cross_attention_control_context = CrossAttnControlContext(
arguments=extra_conditioning_info.cross_attention_control_args, arguments=extra_conditioning_info.cross_attention_control_args,
step_count=step_count,
) )
setup_cross_attention_control_attention_processors( setup_cross_attention_control_attention_processors(
unet, unet,
@ -87,27 +83,6 @@ class InvokeAIDiffuserComponent:
finally: finally:
self.cross_attention_control_context = None self.cross_attention_control_context = None
unet.set_attn_processor(old_attn_processors) unet.set_attn_processor(old_attn_processors)
# TODO resuscitate attention map saving
# self.remove_attention_map_saving()
def setup_attention_map_saving(self, saver: AttentionMapSaver):
def callback(slice, dim, offset, slice_size, key):
if dim is not None:
# sliced tokens attention map saving is not implemented
return
saver.add_attention_maps(slice, key)
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for identifier, module in tokens_cross_attention_modules:
key = "down" if identifier.startswith("down") else "up" if identifier.startswith("up") else "mid"
module.set_attention_slice_calculated_callback(
lambda slice, dim, offset, slice_size, key=key: callback(slice, dim, offset, slice_size, key)
)
def remove_attention_map_saving(self):
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for _, module in tokens_cross_attention_modules:
module.set_attention_slice_calculated_callback(None)
def do_controlnet_step( def do_controlnet_step(
self, self,