diff --git a/invokeai/app/invocations/controlnet_image_processors.py b/invokeai/app/invocations/controlnet_image_processors.py index c433e90648..5252ba72ba 100644 --- a/invokeai/app/invocations/controlnet_image_processors.py +++ b/invokeai/app/invocations/controlnet_image_processors.py @@ -94,7 +94,7 @@ CONTROLNET_DEFAULT_MODELS = [ ] CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)] -CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "even_more_control"])] +CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])] class ControlField(BaseModel): image: ImageField = Field(default=None, description="The control image") diff --git a/invokeai/backend/stable_diffusion/diffusers_pipeline.py b/invokeai/backend/stable_diffusion/diffusers_pipeline.py index 58ea30ef48..6edf336fba 100644 --- a/invokeai/backend/stable_diffusion/diffusers_pipeline.py +++ b/invokeai/backend/stable_diffusion/diffusers_pipeline.py @@ -676,7 +676,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): soft_injection = (control_mode == "more_prompt" or control_mode == "more_control") # cfg_injection = determines whether to apply ControlNet to only the conditional (if True) # or the default both conditional and unconditional (if False) - cfg_injection = (control_mode == "more_control" or control_mode == "even_more_control") + cfg_injection = (control_mode == "more_control" or control_mode == "unbalanced") first_control_step = math.floor(control_datum.begin_step_percent * total_step_count) last_control_step = math.ceil(control_datum.end_step_percent * total_step_count) @@ -1091,7 +1091,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) - cfg_injection = (control_mode == "more_control" or control_mode == "even_more_control") + cfg_injection = (control_mode == "more_control" or control_mode == "unbalanced") if do_classifier_free_guidance and not cfg_injection: image = torch.cat([image] * 2) return image