mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
node-based txt2img working without generate
This commit is contained in:
parent
87789c1de8
commit
5d37fa6e36
@ -4,7 +4,7 @@ import os
|
||||
from argparse import Namespace
|
||||
|
||||
from ...backend import Globals
|
||||
from ..services.generate_initializer import get_generate
|
||||
from ..services.generate_initializer import get_generator_factory
|
||||
from ..services.graph import GraphExecutionState
|
||||
from ..services.image_storage import DiskImageStorage
|
||||
from ..services.invocation_queue import MemoryInvocationQueue
|
||||
@ -47,7 +47,7 @@ class ApiDependencies:
|
||||
# TODO: Use a logger
|
||||
print(f">> Internet connectivity is {Globals.internet_available}")
|
||||
|
||||
generate = get_generate(args, config)
|
||||
generator_factory = get_generator_factory(args, config)
|
||||
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
|
||||
@ -61,7 +61,7 @@ class ApiDependencies:
|
||||
db_location = os.path.join(output_folder, "invokeai.db")
|
||||
|
||||
services = InvocationServices(
|
||||
generate=generate,
|
||||
generator_factory=generator_factory,
|
||||
events=events,
|
||||
images=images,
|
||||
queue=MemoryInvocationQueue(),
|
||||
|
@ -17,7 +17,7 @@ from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_gra
|
||||
from .invocations import *
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
from .services.events import EventServiceBase
|
||||
from .services.generate_initializer import get_generate
|
||||
from .services.generate_initializer import get_generator_factory
|
||||
from .services.graph import EdgeConnection, GraphExecutionState
|
||||
from .services.image_storage import DiskImageStorage
|
||||
from .services.invocation_queue import MemoryInvocationQueue
|
||||
@ -106,11 +106,7 @@ def invoke_cli():
|
||||
args = Args()
|
||||
config = args.parse_args()
|
||||
|
||||
generate = get_generate(args, config)
|
||||
|
||||
# NOTE: load model on first use, uncomment to load at startup
|
||||
# TODO: Make this a config option?
|
||||
# generate.load_model()
|
||||
generator_factory = get_generator_factory(args, config)
|
||||
|
||||
events = EventServiceBase()
|
||||
|
||||
@ -122,7 +118,7 @@ def invoke_cli():
|
||||
db_location = os.path.join(output_folder, "invokeai.db")
|
||||
|
||||
services = InvocationServices(
|
||||
generate=generate,
|
||||
generator_factory=generator_factory,
|
||||
events=events,
|
||||
images=DiskImageStorage(output_folder),
|
||||
queue=MemoryInvocationQueue(),
|
||||
|
@ -12,9 +12,10 @@ from ..services.image_storage import ImageType
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from .image import ImageField, ImageOutput
|
||||
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[
|
||||
"ddim", "plms", "k_lms", "k_dpm_2", "k_dpm_2_a", "k_euler", "k_euler_a", "k_heun"
|
||||
tuple(InvokeAIGenerator.schedulers())
|
||||
]
|
||||
|
||||
|
||||
@ -57,19 +58,24 @@ class TextToImageInvocation(BaseInvocation):
|
||||
# Handle invalid model parameter
|
||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||
# TODO: How to get the default model name now?
|
||||
if self.model is None or self.model == "":
|
||||
self.model = context.services.generate.model_name
|
||||
factory = context.services.generator_factory
|
||||
if self.model:
|
||||
factory.model_name = self.model
|
||||
else:
|
||||
self.model = factory.model_name
|
||||
|
||||
# Set the model (if already cached, this does nothing)
|
||||
context.services.generate.set_model(self.model)
|
||||
txt2img = factory.make_generator(Txt2Img)
|
||||
|
||||
results = context.services.generate.prompt2image(
|
||||
outputs = txt2img.generate(
|
||||
prompt=self.prompt,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
)
|
||||
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
||||
# each time it is called. We only need the first one.
|
||||
generate_output = next(outputs)
|
||||
|
||||
# Results are image and seed, unwrap for now and ignore the seed
|
||||
# TODO: pre-seed?
|
||||
@ -78,7 +84,7 @@ class TextToImageInvocation(BaseInvocation):
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
context.services.images.save(image_type, image_name, results[0][0])
|
||||
context.services.images.save(image_type, image_name, generate_output.image)
|
||||
return ImageOutput(
|
||||
image=ImageField(image_type=image_type, image_name=image_name)
|
||||
)
|
||||
@ -115,23 +121,24 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
# Handle invalid model parameter
|
||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||
# TODO: How to get the default model name now?
|
||||
if self.model is None or self.model == "":
|
||||
self.model = context.services.generate.model_name
|
||||
factory = context.services.generator_factory
|
||||
self.model = self.model or factory.model_name
|
||||
factory.model_name = self.model
|
||||
img2img = factory.make_generator(Img2Img)
|
||||
|
||||
# Set the model (if already cached, this does nothing)
|
||||
context.services.generate.set_model(self.model)
|
||||
|
||||
results = context.services.generate.prompt2image(
|
||||
prompt=self.prompt,
|
||||
init_img=image,
|
||||
init_mask=mask,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt", "image", "mask"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
generator_output = next(
|
||||
img2img.generate(
|
||||
prompt=self.prompt,
|
||||
init_img=image,
|
||||
init_mask=mask,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt", "image", "mask"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
)
|
||||
)
|
||||
|
||||
result_image = results[0][0]
|
||||
result_image = generator_output.image
|
||||
|
||||
# Results are image and seed, unwrap for now and ignore the seed
|
||||
# TODO: pre-seed?
|
||||
@ -145,7 +152,6 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
image=ImageField(image_type=image_type, image_name=image_name)
|
||||
)
|
||||
|
||||
|
||||
class InpaintInvocation(ImageToImageInvocation):
|
||||
"""Generates an image using inpaint."""
|
||||
|
||||
@ -180,23 +186,24 @@ class InpaintInvocation(ImageToImageInvocation):
|
||||
# Handle invalid model parameter
|
||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||
# TODO: How to get the default model name now?
|
||||
if self.model is None or self.model == "":
|
||||
self.model = context.services.generate.model_name
|
||||
factory = context.services.generator_factory
|
||||
self.model = self.model or factory.model_name
|
||||
factory.model_name = self.model
|
||||
inpaint = factory.make_generator(Inpaint)
|
||||
|
||||
# Set the model (if already cached, this does nothing)
|
||||
context.services.generate.set_model(self.model)
|
||||
|
||||
results = context.services.generate.prompt2image(
|
||||
prompt=self.prompt,
|
||||
init_img=image,
|
||||
init_mask=mask,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt", "image", "mask"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
generator_output = next(
|
||||
inpaint.generate(
|
||||
prompt=self.prompt,
|
||||
init_img=image,
|
||||
init_mask=mask,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt", "image", "mask"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
)
|
||||
)
|
||||
|
||||
result_image = results[0][0]
|
||||
result_image = generator_output.image
|
||||
|
||||
# Results are image and seed, unwrap for now and ignore the seed
|
||||
# TODO: pre-seed?
|
||||
|
@ -1,16 +1,17 @@
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import traceback
|
||||
from argparse import Namespace
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.version
|
||||
from invokeai.backend import Generate, ModelManager
|
||||
|
||||
from ...backend import ModelManager, InvokeAIGeneratorBasicParams, InvokeAIGeneratorFactory
|
||||
from ...backend.util import choose_precision, choose_torch_device
|
||||
from ...backend import Globals
|
||||
|
||||
|
||||
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
|
||||
def get_generate(args, config) -> Generate:
|
||||
def get_generator_factory(args, config) -> InvokeAIGeneratorFactory:
|
||||
if not args.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
if not os.path.exists(config_file):
|
||||
@ -63,49 +64,43 @@ def get_generate(args, config) -> Generate:
|
||||
print(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
# creating a Generate object:
|
||||
# creating an InvokeAIGeneratorFactory object:
|
||||
try:
|
||||
gen = Generate(
|
||||
conf=args.conf,
|
||||
model=args.model,
|
||||
sampler_name=args.sampler_name,
|
||||
embedding_path=embedding_path,
|
||||
full_precision=args.full_precision,
|
||||
precision=args.precision,
|
||||
gfpgan=gfpgan,
|
||||
codeformer=codeformer,
|
||||
esrgan=esrgan,
|
||||
free_gpu_mem=args.free_gpu_mem,
|
||||
safety_checker=args.safety_checker,
|
||||
device = torch.device(choose_torch_device())
|
||||
precision = 'float16' if args.precision=='float16' \
|
||||
else 'float32' if args.precision=='float32' \
|
||||
else choose_precision(device)
|
||||
|
||||
model_manager = ModelManager(
|
||||
OmegaConf.load(args.conf),
|
||||
precision=precision,
|
||||
device_type=device,
|
||||
max_loaded_models=args.max_loaded_models,
|
||||
)
|
||||
# TO DO: initialize and pass safety checker!!!
|
||||
params = InvokeAIGeneratorBasicParams(
|
||||
precision=precision,
|
||||
)
|
||||
factory = InvokeAIGeneratorFactory(model_manager, params)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
report_model_error(opt, e)
|
||||
report_model_error(args, e)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
if args.seamless:
|
||||
#TODO: do something here ?
|
||||
print(">> changed to seamless tiling mode")
|
||||
|
||||
# preload the model
|
||||
try:
|
||||
gen.load_model()
|
||||
except KeyError:
|
||||
pass
|
||||
except Exception as e:
|
||||
report_model_error(args, e)
|
||||
|
||||
# try to autoconvert new models
|
||||
# autoimport new .ckpt files
|
||||
if path := args.autoconvert:
|
||||
gen.model_manager.autoconvert_weights(
|
||||
model_manager.autoconvert_weights(
|
||||
conf_path=args.conf,
|
||||
weights_directory=path,
|
||||
)
|
||||
|
||||
return gen
|
||||
|
||||
return factory
|
||||
|
||||
def load_face_restoration(opt):
|
||||
try:
|
||||
@ -171,85 +166,3 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
# sys.argv = previous_args
|
||||
# main() # would rather do a os.exec(), but doesn't exist?
|
||||
# sys.exit(0)
|
||||
|
||||
|
||||
# Temporary initializer for Generate until we migrate off of it
|
||||
def old_get_generate(args, config) -> Generate:
|
||||
# TODO: Remove the need for globals
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
# alert - setting globals here
|
||||
Globals.root = os.path.expanduser(
|
||||
args.root_dir or os.environ.get("INVOKEAI_ROOT") or os.path.abspath(".")
|
||||
)
|
||||
Globals.try_patchmatch = args.patchmatch
|
||||
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
import transformers
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
# Loading Face Restoration and ESRGAN Modules
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
try:
|
||||
if config.restore or config.esrgan:
|
||||
from ldm.invoke.restoration import Restoration
|
||||
|
||||
restoration = Restoration()
|
||||
if config.restore:
|
||||
gfpgan, codeformer = restoration.load_face_restore_models(
|
||||
config.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
if config.esrgan:
|
||||
esrgan = restoration.load_esrgan(config.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
|
||||
# normalize the config directory relative to root
|
||||
if not os.path.isabs(config.conf):
|
||||
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
|
||||
|
||||
if config.embeddings:
|
||||
if not os.path.isabs(config.embedding_path):
|
||||
embedding_path = os.path.normpath(
|
||||
os.path.join(Globals.root, config.embedding_path)
|
||||
)
|
||||
else:
|
||||
embedding_path = None
|
||||
|
||||
# TODO: lazy-initialize this by wrapping it
|
||||
try:
|
||||
generate = Generate(
|
||||
conf=config.conf,
|
||||
model=config.model,
|
||||
sampler_name=config.sampler_name,
|
||||
embedding_path=embedding_path,
|
||||
full_precision=config.full_precision,
|
||||
precision=config.precision,
|
||||
gfpgan=gfpgan,
|
||||
codeformer=codeformer,
|
||||
esrgan=esrgan,
|
||||
free_gpu_mem=config.free_gpu_mem,
|
||||
safety_checker=config.safety_checker,
|
||||
max_loaded_models=config.max_loaded_models,
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError):
|
||||
# emergency_model_reconfigure() # TODO?
|
||||
sys.exit(-1)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
generate.free_gpu_mem = config.free_gpu_mem
|
||||
|
||||
return generate
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
from invokeai.backend import Generate
|
||||
from invokeai.backend import InvokeAIGeneratorFactory
|
||||
|
||||
from .events import EventServiceBase
|
||||
from .image_storage import ImageStorageBase
|
||||
@ -10,7 +10,7 @@ from .item_storage import ItemStorageABC
|
||||
class InvocationServices:
|
||||
"""Services that can be used by invocations"""
|
||||
|
||||
generate: Generate # TODO: wrap Generate, or split it up from model?
|
||||
generator_factory: InvokeAIGeneratorFactory
|
||||
events: EventServiceBase
|
||||
images: ImageStorageBase
|
||||
queue: InvocationQueueABC
|
||||
@ -20,15 +20,15 @@ class InvocationServices:
|
||||
processor: "InvocationProcessorABC"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
generate: Generate,
|
||||
events: EventServiceBase,
|
||||
images: ImageStorageBase,
|
||||
queue: InvocationQueueABC,
|
||||
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
|
||||
processor: "InvocationProcessorABC",
|
||||
self,
|
||||
generator_factory: InvokeAIGeneratorFactory,
|
||||
events: EventServiceBase,
|
||||
images: ImageStorageBase,
|
||||
queue: InvocationQueueABC,
|
||||
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
|
||||
processor: "InvocationProcessorABC",
|
||||
):
|
||||
self.generate = generate
|
||||
self.generator_factory = generator_factory
|
||||
self.events = events
|
||||
self.images = images
|
||||
self.queue = queue
|
||||
|
@ -2,6 +2,12 @@
|
||||
Initialization file for invokeai.backend
|
||||
"""
|
||||
from .generate import Generate
|
||||
from .generator import (
|
||||
InvokeAIGeneratorBasicParams,
|
||||
InvokeAIGeneratorFactory,
|
||||
InvokeAIGenerator,
|
||||
InvokeAIGeneratorOutput
|
||||
)
|
||||
from .model_management import ModelManager
|
||||
from .args import Args
|
||||
from .globals import Globals
|
||||
|
@ -4,7 +4,6 @@ including img2img, txt2img, and inpaint
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import importlib
|
||||
import dataclasses
|
||||
import diffusers
|
||||
@ -13,7 +12,6 @@ import random
|
||||
import traceback
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from contextlib import nullcontext
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -22,19 +20,59 @@ from PIL import Image, ImageChops, ImageFilter
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers import DiffusionPipeline
|
||||
from tqdm import trange
|
||||
from typing import List, Type, Callable
|
||||
from typing import List, Type
|
||||
from dataclasses import dataclass, field
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
from ..util.util import rand_perlin_2d
|
||||
|
||||
from ..safety_checker import SafetyChecker
|
||||
from ..prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ..model_management.model_manager import ModelManager
|
||||
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
|
||||
downsampling = 8
|
||||
CAUTION_IMG = "caution.png"
|
||||
|
||||
@dataclass
|
||||
class InvokeAIGeneratorBasicParams:
|
||||
seed: int=None
|
||||
width: int=512
|
||||
height: int=512
|
||||
cfg_scale: int=7.5
|
||||
steps: int=20
|
||||
ddim_eta: float=0.0
|
||||
model_name: str='stable-diffusion-1.5'
|
||||
scheduler: int='ddim'
|
||||
precision: str='float16'
|
||||
perlin: float=0.0
|
||||
threshold: int=0.0
|
||||
h_symmetry_time_pct: float=None
|
||||
v_symmetry_time_pct: float=None
|
||||
variation_amount: float = 0.0
|
||||
with_variations: list=field(default_factory=list)
|
||||
safety_checker: SafetyChecker=None
|
||||
|
||||
@dataclass
|
||||
class InvokeAIGeneratorOutput:
|
||||
'''
|
||||
InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation
|
||||
operation, including the image, its seed, the model name used to generate the image
|
||||
and the model hash, as well as all the generate() parameters that went into
|
||||
generating the image (in .params, also available as attributes)
|
||||
'''
|
||||
image: Image
|
||||
seed: int
|
||||
model_name: str
|
||||
model_hash: str
|
||||
params: dict
|
||||
|
||||
def __getattribute__(self,name):
|
||||
try:
|
||||
return object.__getattribute__(self, name)
|
||||
except AttributeError:
|
||||
params = object.__getattribute__(self, 'params')
|
||||
if name in params:
|
||||
return params[name]
|
||||
raise AttributeError(f"'{self.__class__.__name__}' has no attribute '{name}'")
|
||||
|
||||
class InvokeAIGeneratorFactory(object):
|
||||
def __init__(self,
|
||||
@ -49,31 +87,15 @@ class InvokeAIGeneratorFactory(object):
|
||||
self.params,
|
||||
**keyword_args
|
||||
)
|
||||
@dataclass
|
||||
class InvokeAIGeneratorBasicParams:
|
||||
seed: int=None
|
||||
width: int=512
|
||||
height: int=512
|
||||
cfg_scale: int=7.5
|
||||
steps: int=20
|
||||
ddim_eta: float=0.0
|
||||
model: str='stable-diffusion-1.5'
|
||||
scheduler: int='ddim'
|
||||
precision: str='float16'
|
||||
perlin: float=0.0
|
||||
threshold: int=0.0
|
||||
h_symmetry_time_pct: float=None
|
||||
v_symmetry_time_pct: float=None
|
||||
variation_amount: float = 0.0
|
||||
with_variations: list = field(default_factory=list)
|
||||
|
||||
@dataclass
|
||||
class InvokeAIGeneratorOutput:
|
||||
image: Image
|
||||
seed: int
|
||||
model_name: str
|
||||
model_hash: str
|
||||
params: InvokeAIGeneratorBasicParams
|
||||
# getter and setter shortcuts for commonly used parameters
|
||||
@property
|
||||
def model_name(self)->str:
|
||||
return self.params.model_name
|
||||
|
||||
@model_name.setter
|
||||
def model_name(self, model_name: str):
|
||||
self.params.model_name=model_name
|
||||
|
||||
# we are interposing a wrapper around the original Generator classes so that
|
||||
# old code that calls Generate will continue to work.
|
||||
@ -93,7 +115,7 @@ class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
|
||||
def __init__(self,
|
||||
model_manager: ModelManager,
|
||||
params: InvokeAIGeneratorBasicParams
|
||||
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
|
||||
):
|
||||
self.model_manager=model_manager
|
||||
self.params=params
|
||||
@ -105,7 +127,7 @@ class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
**keyword_args,
|
||||
)->List[InvokeAIGeneratorOutput]:
|
||||
|
||||
model_name = self.params.model or self.model_manager.current_model
|
||||
model_name = self.params.model_name or self.model_manager.current_model
|
||||
model_info: dict = self.model_manager.get_model(model_name)
|
||||
model:StableDiffusionGeneratorPipeline = model_info['model']
|
||||
model_hash = model_info['hash']
|
||||
@ -125,24 +147,33 @@ class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
self.params.variation_amount,
|
||||
self.params.with_variations)
|
||||
|
||||
generator_args = dataclasses.asdict(self.params)
|
||||
generator_args.update(keyword_args)
|
||||
|
||||
while True:
|
||||
results = generator.generate(prompt,
|
||||
conditioning=(uc, c, extra_conditioning_info),
|
||||
sampler=scheduler,
|
||||
**dataclasses.asdict(self.params),
|
||||
**keyword_args
|
||||
**generator_args,
|
||||
)
|
||||
output = InvokeAIGeneratorOutput(
|
||||
image=results[0][0],
|
||||
seed=results[0][1],
|
||||
model_name = model_name,
|
||||
model_hash = model_hash,
|
||||
params=copy.copy(self.params)
|
||||
params=generator_args,
|
||||
)
|
||||
if callback:
|
||||
callback(output)
|
||||
yield output
|
||||
|
||||
@classmethod
|
||||
def schedulers(self)->List[str]:
|
||||
'''
|
||||
Return list of all the schedulers that we currently handle.
|
||||
'''
|
||||
return list(self.scheduler_map.keys())
|
||||
|
||||
def load_generator(self, model: StableDiffusionGeneratorPipeline, class_name: str):
|
||||
module_name = f'invokeai.backend.generator.{class_name.lower()}'
|
||||
module = importlib.import_module(module_name)
|
||||
@ -220,7 +251,6 @@ class Inpaint(Img2Img):
|
||||
def _generator_name(self)->str:
|
||||
return 'Inpaint'
|
||||
|
||||
|
||||
class Generator:
|
||||
downsampling_factor: int
|
||||
latent_channels: int
|
||||
@ -240,7 +270,6 @@ class Generator:
|
||||
self.with_variations = []
|
||||
self.use_mps_noise = False
|
||||
self.free_gpu_mem = None
|
||||
self.caution_img = None
|
||||
|
||||
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
|
||||
def get_make_image(self, prompt, **kwargs):
|
||||
@ -272,7 +301,7 @@ class Generator:
|
||||
perlin=0.0,
|
||||
h_symmetry_time_pct=None,
|
||||
v_symmetry_time_pct=None,
|
||||
safety_checker: dict = None,
|
||||
safety_checker: SafetyChecker=None,
|
||||
free_gpu_mem: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
@ -325,7 +354,7 @@ class Generator:
|
||||
image = make_image(x_T)
|
||||
|
||||
if self.safety_checker is not None:
|
||||
image = self.safety_check(image)
|
||||
image = self.safety_checker.check(image)
|
||||
|
||||
results.append([image, seed])
|
||||
|
||||
@ -548,53 +577,6 @@ class Generator:
|
||||
|
||||
return v2
|
||||
|
||||
def safety_check(self, image: Image.Image):
|
||||
"""
|
||||
If the CompViz safety checker flags an NSFW image, we
|
||||
blur it out.
|
||||
"""
|
||||
import diffusers
|
||||
|
||||
checker = self.safety_checker["checker"]
|
||||
extractor = self.safety_checker["extractor"]
|
||||
features = extractor([image], return_tensors="pt")
|
||||
features.to(self.model.device)
|
||||
|
||||
# unfortunately checker requires the numpy version, so we have to convert back
|
||||
x_image = np.array(image).astype(np.float32) / 255.0
|
||||
x_image = x_image[None].transpose(0, 3, 1, 2)
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
checked_image, has_nsfw_concept = checker(
|
||||
images=x_image, clip_input=features.pixel_values
|
||||
)
|
||||
if has_nsfw_concept[0]:
|
||||
print(
|
||||
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
|
||||
)
|
||||
return self.blur(image)
|
||||
else:
|
||||
return image
|
||||
|
||||
def blur(self, input):
|
||||
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
||||
try:
|
||||
caution = self.get_caution_img()
|
||||
if caution:
|
||||
blurry.paste(caution, (0, 0), caution)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
return blurry
|
||||
|
||||
def get_caution_img(self):
|
||||
path = None
|
||||
if self.caution_img:
|
||||
return self.caution_img
|
||||
path = Path(web_assets.__path__[0]) / CAUTION_IMG
|
||||
caution = Image.open(path)
|
||||
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
|
||||
return self.caution_img
|
||||
|
||||
# this is a handy routine for debugging use. Given a generated sample,
|
||||
# convert it into a PNG image and store it at the indicated path
|
||||
def save_sample(self, sample, filepath):
|
||||
|
89
invokeai/backend/safety_checker.py
Normal file
89
invokeai/backend/safety_checker.py
Normal file
@ -0,0 +1,89 @@
|
||||
'''
|
||||
SafetyChecker class - checks images against the StabilityAI NSFW filter
|
||||
and blurs images that contain potential NSFW content.
|
||||
'''
|
||||
import diffusers
|
||||
import numpy as np
|
||||
import torch
|
||||
import traceback
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
||||
StableDiffusionSafetyChecker,
|
||||
)
|
||||
from pathlib import Path
|
||||
from PIL import Image, ImageFilter
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
from .globals import global_cache_dir
|
||||
|
||||
class SafetyChecker(object):
|
||||
CAUTION_IMG = "caution.png"
|
||||
|
||||
def __init__(self, device: torch.device):
|
||||
self.device = device
|
||||
try:
|
||||
print(">> Initializing NSFW checker")
|
||||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
||||
safety_model_path = global_cache_dir("hub")
|
||||
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
||||
safety_model_id,
|
||||
local_files_only=True,
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
safety_model_id,
|
||||
local_files_only=True,
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
self.safety_checker.to(device)
|
||||
self.safety_feature_extractor.to(device)
|
||||
except Exception:
|
||||
print(
|
||||
"** An error was encountered while installing the safety checker:"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
else:
|
||||
print(">> NSFW checker is disabled")
|
||||
|
||||
def check(self, image: Image.Image):
|
||||
"""
|
||||
Check provided image against the StabilityAI safety checker and return
|
||||
|
||||
"""
|
||||
|
||||
features = self.safety_feature_extractor([image], return_tensors="pt")
|
||||
# unfortunately checker requires the numpy version, so we have to convert back
|
||||
x_image = np.array(image).astype(np.float32) / 255.0
|
||||
x_image = x_image[None].transpose(0, 3, 1, 2)
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
checked_image, has_nsfw_concept = self.safety_checker(
|
||||
images=x_image, clip_input=features.pixel_values
|
||||
)
|
||||
if has_nsfw_concept[0]:
|
||||
print(
|
||||
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
|
||||
)
|
||||
return self.blur(image)
|
||||
else:
|
||||
return image
|
||||
|
||||
def blur(self, input):
|
||||
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
||||
try:
|
||||
caution = self.get_caution_img()
|
||||
if caution:
|
||||
blurry.paste(caution, (0, 0), caution)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
return blurry
|
||||
|
||||
def get_caution_img(self):
|
||||
path = None
|
||||
if self.caution_img:
|
||||
return self.caution_img
|
||||
path = Path(web_assets.__path__[0]) / self.CAUTION_IMG
|
||||
caution = Image.open(path)
|
||||
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
|
||||
return self.caution_img
|
||||
|
Loading…
Reference in New Issue
Block a user