mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Core implementation of ControlNet and MultiControlNet.
This commit is contained in:
parent
5569f205ee
commit
5ff98a4179
@ -9,16 +9,20 @@ from typing import Any, Callable, Generic, List, Optional, Type, TypeVar, Union
|
||||
|
||||
import einops
|
||||
import PIL.Image
|
||||
import numpy as np
|
||||
from accelerate.utils import set_seed
|
||||
import psutil
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from compel import EmbeddingsProvider
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.models.controlnet import ControlNetModel, ControlNetOutput
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
|
||||
StableDiffusionPipeline,
|
||||
)
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
|
||||
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import (
|
||||
StableDiffusionImg2ImgPipeline,
|
||||
)
|
||||
@ -27,6 +31,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import (
|
||||
)
|
||||
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
from diffusers.utils import PIL_INTERPOLATION
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from diffusers.utils.outputs import BaseOutput
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
@ -302,6 +307,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
feature_extractor: Optional[CLIPFeatureExtractor],
|
||||
requires_safety_checker: bool = False,
|
||||
precision: str = "float32",
|
||||
control_model: ControlNetModel = None,
|
||||
):
|
||||
super().__init__(
|
||||
vae,
|
||||
@ -322,6 +328,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
# FIXME: can't currently register control module
|
||||
# control_model=control_model,
|
||||
)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(
|
||||
self.unet, self._unet_forward, is_running_diffusers=True
|
||||
@ -341,6 +349,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
self._model_group = FullyLoadedModelGroup(self.unet.device)
|
||||
self._model_group.install(*self._submodels)
|
||||
self.control_model = control_model
|
||||
|
||||
def _adjust_memory_efficient_attention(self, latents: torch.Tensor):
|
||||
"""
|
||||
@ -463,6 +472,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
noise: torch.Tensor,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
run_id=None,
|
||||
**kwargs,
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
@ -483,6 +493,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
noise=noise,
|
||||
run_id=run_id,
|
||||
callback=callback,
|
||||
**kwargs,
|
||||
)
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
torch.cuda.empty_cache()
|
||||
@ -507,6 +518,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
additional_guidance: List[Callable] = None,
|
||||
run_id=None,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
**kwargs,
|
||||
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
|
||||
if self.scheduler.config.get("cpu_only", False):
|
||||
scheduler_device = torch.device('cpu')
|
||||
@ -527,6 +539,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
additional_guidance=additional_guidance,
|
||||
run_id=run_id,
|
||||
callback=callback,
|
||||
**kwargs,
|
||||
)
|
||||
return result.latents, result.attention_map_saver
|
||||
|
||||
@ -539,6 +552,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
noise: torch.Tensor,
|
||||
run_id: str = None,
|
||||
additional_guidance: List[Callable] = None,
|
||||
**kwargs,
|
||||
):
|
||||
self._adjust_memory_efficient_attention(latents)
|
||||
if run_id is None:
|
||||
@ -578,6 +592,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
additional_guidance=additional_guidance,
|
||||
**kwargs,
|
||||
)
|
||||
latents = step_output.prev_sample
|
||||
|
||||
@ -618,6 +633,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
step_index: int,
|
||||
total_step_count: int,
|
||||
additional_guidance: List[Callable] = None,
|
||||
**kwargs,
|
||||
):
|
||||
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
|
||||
timestep = t[0]
|
||||
@ -629,6 +645,33 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# i.e. before or after passing it to InvokeAIDiffuserComponent
|
||||
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
||||
|
||||
if (self.control_model is not None) and (kwargs.get("control_image") is not None):
|
||||
control_image = kwargs.get("control_image") # should be a processed tensor derived from the control image(s)
|
||||
control_scale = kwargs.get("control_scale", 1.0) # control_scale default is 1.0
|
||||
# handling case where using multiple control models but only specifying single control_scale
|
||||
# so reshape control_scale to match number of control models
|
||||
if isinstance(self.control_model, MultiControlNetModel) and isinstance(control_scale, float):
|
||||
control_scale = [control_scale] * len(self.control_model.nets)
|
||||
if conditioning_data.guidance_scale > 1.0:
|
||||
# expand the latents input to control model if doing classifier free guidance
|
||||
# (which I think for now is always true, there is conditional elsewhere that stops execution if
|
||||
# classifier_free_guidance is <= 1.0 ?)
|
||||
latent_control_input = torch.cat([latent_model_input] * 2)
|
||||
else:
|
||||
latent_control_input = latent_model_input
|
||||
# controlnet inference
|
||||
down_block_res_samples, mid_block_res_sample = self.control_model(
|
||||
latent_control_input,
|
||||
timestep,
|
||||
encoder_hidden_states=torch.cat([conditioning_data.unconditioned_embeddings,
|
||||
conditioning_data.text_embeddings]),
|
||||
controlnet_cond=control_image,
|
||||
conditioning_scale=control_scale,
|
||||
return_dict=False,
|
||||
)
|
||||
else:
|
||||
down_block_res_samples, mid_block_res_sample = None, None
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.invokeai_diffuser.do_diffusion_step(
|
||||
latent_model_input,
|
||||
@ -638,6 +681,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
conditioning_data.guidance_scale,
|
||||
step_index=step_index,
|
||||
total_step_count=total_step_count,
|
||||
down_block_additional_residuals=down_block_res_samples,
|
||||
mid_block_additional_residual=mid_block_res_sample,
|
||||
)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
@ -659,6 +704,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
t,
|
||||
text_embeddings,
|
||||
cross_attention_kwargs: Optional[dict[str, Any]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""predict the noise residual"""
|
||||
if is_inpainting_model(self.unet) and latents.size(1) == 4:
|
||||
@ -678,7 +724,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
# First three args should be positional, not keywords, so torch hooks can see them.
|
||||
return self.unet(
|
||||
latents, t, text_embeddings, cross_attention_kwargs=cross_attention_kwargs
|
||||
latents, t, text_embeddings, cross_attention_kwargs=cross_attention_kwargs,
|
||||
**kwargs,
|
||||
).sample
|
||||
|
||||
def img2img_from_embeddings(
|
||||
@ -940,3 +987,48 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
debug_image(
|
||||
img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True
|
||||
)
|
||||
|
||||
# Copied from diffusers pipeline_stable_diffusion_controlnet.py
|
||||
# Returns torch.Tensor of shape (batch_size, 3, height, width)
|
||||
def prepare_control_image(
|
||||
self,
|
||||
image,
|
||||
width=512,
|
||||
height=512,
|
||||
batch_size=1,
|
||||
num_images_per_prompt=1,
|
||||
device="cuda",
|
||||
dtype=torch.float16,
|
||||
do_classifier_free_guidance=True,
|
||||
):
|
||||
if not isinstance(image, torch.Tensor):
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
image = [image]
|
||||
|
||||
if isinstance(image[0], PIL.Image.Image):
|
||||
images = []
|
||||
for image_ in image:
|
||||
image_ = image_.convert("RGB")
|
||||
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
||||
image_ = np.array(image_)
|
||||
image_ = image_[None, :]
|
||||
images.append(image_)
|
||||
image = images
|
||||
image = np.concatenate(image, axis=0)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image.transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
elif isinstance(image[0], torch.Tensor):
|
||||
image = torch.cat(image, dim=0)
|
||||
|
||||
image_batch_size = image.shape[0]
|
||||
if image_batch_size == 1:
|
||||
repeat_by = batch_size
|
||||
else:
|
||||
# image batch size is the same as prompt batch size
|
||||
repeat_by = num_images_per_prompt
|
||||
image = image.repeat_interleave(repeat_by, dim=0)
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
if do_classifier_free_guidance:
|
||||
image = torch.cat([image] * 2)
|
||||
return image
|
||||
|
@ -181,6 +181,7 @@ class InvokeAIDiffuserComponent:
|
||||
unconditional_guidance_scale: float,
|
||||
step_index: Optional[int] = None,
|
||||
total_step_count: Optional[int] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
:param x: current latents
|
||||
@ -209,7 +210,7 @@ class InvokeAIDiffuserComponent:
|
||||
|
||||
if wants_hybrid_conditioning:
|
||||
unconditioned_next_x, conditioned_next_x = self._apply_hybrid_conditioning(
|
||||
x, sigma, unconditioning, conditioning
|
||||
x, sigma, unconditioning, conditioning, **kwargs,
|
||||
)
|
||||
elif wants_cross_attention_control:
|
||||
(
|
||||
@ -221,13 +222,14 @@ class InvokeAIDiffuserComponent:
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do,
|
||||
**kwargs,
|
||||
)
|
||||
elif self.sequential_guidance:
|
||||
(
|
||||
unconditioned_next_x,
|
||||
conditioned_next_x,
|
||||
) = self._apply_standard_conditioning_sequentially(
|
||||
x, sigma, unconditioning, conditioning
|
||||
x, sigma, unconditioning, conditioning, **kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
@ -235,7 +237,7 @@ class InvokeAIDiffuserComponent:
|
||||
unconditioned_next_x,
|
||||
conditioned_next_x,
|
||||
) = self._apply_standard_conditioning(
|
||||
x, sigma, unconditioning, conditioning
|
||||
x, sigma, unconditioning, conditioning, **kwargs,
|
||||
)
|
||||
|
||||
combined_next_x = self._combine(
|
||||
@ -282,13 +284,13 @@ class InvokeAIDiffuserComponent:
|
||||
|
||||
# methods below are called from do_diffusion_step and should be considered private to this class.
|
||||
|
||||
def _apply_standard_conditioning(self, x, sigma, unconditioning, conditioning):
|
||||
def _apply_standard_conditioning(self, x, sigma, unconditioning, conditioning, **kwargs):
|
||||
# fast batched path
|
||||
x_twice = torch.cat([x] * 2)
|
||||
sigma_twice = torch.cat([sigma] * 2)
|
||||
both_conditionings = torch.cat([unconditioning, conditioning])
|
||||
both_results = self.model_forward_callback(
|
||||
x_twice, sigma_twice, both_conditionings
|
||||
x_twice, sigma_twice, both_conditionings, **kwargs,
|
||||
)
|
||||
unconditioned_next_x, conditioned_next_x = both_results.chunk(2)
|
||||
if conditioned_next_x.device.type == "mps":
|
||||
@ -302,16 +304,17 @@ class InvokeAIDiffuserComponent:
|
||||
sigma,
|
||||
unconditioning: torch.Tensor,
|
||||
conditioning: torch.Tensor,
|
||||
**kwargs,
|
||||
):
|
||||
# low-memory sequential path
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, conditioning)
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning, **kwargs)
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, conditioning, **kwargs)
|
||||
if conditioned_next_x.device.type == "mps":
|
||||
# prevent a result filled with zeros. seems to be a torch bug.
|
||||
conditioned_next_x = conditioned_next_x.clone()
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
def _apply_hybrid_conditioning(self, x, sigma, unconditioning, conditioning):
|
||||
def _apply_hybrid_conditioning(self, x, sigma, unconditioning, conditioning, **kwargs):
|
||||
assert isinstance(conditioning, dict)
|
||||
assert isinstance(unconditioning, dict)
|
||||
x_twice = torch.cat([x] * 2)
|
||||
@ -326,7 +329,7 @@ class InvokeAIDiffuserComponent:
|
||||
else:
|
||||
both_conditionings[k] = torch.cat([unconditioning[k], conditioning[k]])
|
||||
unconditioned_next_x, conditioned_next_x = self.model_forward_callback(
|
||||
x_twice, sigma_twice, both_conditionings
|
||||
x_twice, sigma_twice, both_conditionings, **kwargs,
|
||||
).chunk(2)
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
@ -337,6 +340,7 @@ class InvokeAIDiffuserComponent:
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do,
|
||||
**kwargs,
|
||||
):
|
||||
if self.is_running_diffusers:
|
||||
return self._apply_cross_attention_controlled_conditioning__diffusers(
|
||||
@ -345,6 +349,7 @@ class InvokeAIDiffuserComponent:
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
return self._apply_cross_attention_controlled_conditioning__compvis(
|
||||
@ -353,6 +358,7 @@ class InvokeAIDiffuserComponent:
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _apply_cross_attention_controlled_conditioning__diffusers(
|
||||
@ -362,6 +368,7 @@ class InvokeAIDiffuserComponent:
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do,
|
||||
**kwargs,
|
||||
):
|
||||
context: Context = self.cross_attention_control_context
|
||||
|
||||
@ -377,6 +384,7 @@ class InvokeAIDiffuserComponent:
|
||||
sigma,
|
||||
unconditioning,
|
||||
{"swap_cross_attn_context": cross_attn_processor_context},
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# do requested cross attention types for conditioning (positive prompt)
|
||||
@ -388,6 +396,7 @@ class InvokeAIDiffuserComponent:
|
||||
sigma,
|
||||
conditioning,
|
||||
{"swap_cross_attn_context": cross_attn_processor_context},
|
||||
**kwargs,
|
||||
)
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
@ -398,6 +407,7 @@ class InvokeAIDiffuserComponent:
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do,
|
||||
**kwargs,
|
||||
):
|
||||
# print('pct', percent_through, ': doing cross attention control on', cross_attention_control_types_to_do)
|
||||
# slower non-batched path (20% slower on mac MPS)
|
||||
@ -411,13 +421,13 @@ class InvokeAIDiffuserComponent:
|
||||
context: Context = self.cross_attention_control_context
|
||||
|
||||
try:
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning, **kwargs)
|
||||
|
||||
# process x using the original prompt, saving the attention maps
|
||||
# print("saving attention maps for", cross_attention_control_types_to_do)
|
||||
for ca_type in cross_attention_control_types_to_do:
|
||||
context.request_save_attention_maps(ca_type)
|
||||
_ = self.model_forward_callback(x, sigma, conditioning)
|
||||
_ = self.model_forward_callback(x, sigma, conditioning, **kwargs,)
|
||||
context.clear_requests(cleanup=False)
|
||||
|
||||
# process x again, using the saved attention maps to control where self.edited_conditioning will be applied
|
||||
@ -428,7 +438,7 @@ class InvokeAIDiffuserComponent:
|
||||
self.conditioning.cross_attention_control_args.edited_conditioning
|
||||
)
|
||||
conditioned_next_x = self.model_forward_callback(
|
||||
x, sigma, edited_conditioning
|
||||
x, sigma, edited_conditioning, **kwargs,
|
||||
)
|
||||
context.clear_requests(cleanup=True)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user