mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Hotfix to make second order schedulers work with mask (#4378)
## What type of PR is this? (check all applicable) - [ ] Refactor - [ ] Feature - [x] Bug Fix - [ ] Optimization - [ ] Documentation Update - [ ] Community Node Submission ## Have you discussed this change with the InvokeAI team? - [x] Yes - [ ] No, because: ## Have you updated all relevant documentation? - [ ] Yes - [ ] No ## Description ## Related Tickets & Documents ## QA Instructions, Screenshots, Recordings ## Added/updated tests? - [ ] Yes - [ ] No : _please replace this line with details on why tests have not been included_
This commit is contained in:
commit
600e9ecf8d
@ -367,36 +367,31 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
# original idea by https://github.com/AmericanPresidentJimmyCarter
|
# original idea by https://github.com/AmericanPresidentJimmyCarter
|
||||||
# TODO: research more for second order schedulers timesteps
|
# TODO: research more for second order schedulers timesteps
|
||||||
def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end):
|
def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end):
|
||||||
num_inference_steps = steps
|
|
||||||
if scheduler.config.get("cpu_only", False):
|
if scheduler.config.get("cpu_only", False):
|
||||||
scheduler.set_timesteps(num_inference_steps, device="cpu")
|
scheduler.set_timesteps(steps, device="cpu")
|
||||||
timesteps = scheduler.timesteps.to(device=device)
|
timesteps = scheduler.timesteps.to(device=device)
|
||||||
else:
|
else:
|
||||||
scheduler.set_timesteps(num_inference_steps, device=device)
|
scheduler.set_timesteps(steps, device=device)
|
||||||
timesteps = scheduler.timesteps
|
timesteps = scheduler.timesteps
|
||||||
|
|
||||||
# apply denoising_start
|
# skip greater order timesteps
|
||||||
|
_timesteps = timesteps[:: scheduler.order]
|
||||||
|
|
||||||
|
# get start timestep index
|
||||||
t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start)))
|
t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start)))
|
||||||
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, timesteps)))
|
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
|
||||||
timesteps = timesteps[t_start_idx:]
|
|
||||||
if scheduler.order == 2 and t_start_idx > 0:
|
|
||||||
timesteps = timesteps[1:]
|
|
||||||
|
|
||||||
# save start timestep to apply noise
|
# get end timestep index
|
||||||
init_timestep = timesteps[:1]
|
|
||||||
|
|
||||||
# apply denoising_end
|
|
||||||
t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end)))
|
t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end)))
|
||||||
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, timesteps)))
|
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
|
||||||
if scheduler.order == 2 and t_end_idx > 0:
|
|
||||||
t_end_idx += 1
|
|
||||||
timesteps = timesteps[:t_end_idx]
|
|
||||||
|
|
||||||
# calculate step count based on scheduler order
|
# apply order to indexes
|
||||||
num_inference_steps = len(timesteps)
|
t_start_idx *= scheduler.order
|
||||||
if scheduler.order == 2:
|
t_end_idx *= scheduler.order
|
||||||
num_inference_steps += num_inference_steps % 2
|
|
||||||
num_inference_steps = num_inference_steps // 2
|
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
|
||||||
|
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
|
||||||
|
num_inference_steps = len(timesteps) // scheduler.order
|
||||||
|
|
||||||
return num_inference_steps, timesteps, init_timestep
|
return num_inference_steps, timesteps, init_timestep
|
||||||
|
|
||||||
|
@ -558,12 +558,22 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
# compute the previous noisy sample x_t -> x_t-1
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
|
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
|
||||||
|
|
||||||
|
# TODO: issue to diffusers?
|
||||||
|
# undo internal counter increment done by scheduler.step, so timestep can be resolved as before call
|
||||||
|
# this needed to be able call scheduler.add_noise with current timestep
|
||||||
|
if self.scheduler.order == 2:
|
||||||
|
self.scheduler._index_counter[timestep.item()] -= 1
|
||||||
|
|
||||||
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
|
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
|
||||||
# But the way things are now, scheduler runs _after_ that, so there was
|
# But the way things are now, scheduler runs _after_ that, so there was
|
||||||
# no way to use it to apply an operation that happens after the last scheduler.step.
|
# no way to use it to apply an operation that happens after the last scheduler.step.
|
||||||
for guidance in additional_guidance:
|
for guidance in additional_guidance:
|
||||||
step_output = guidance(step_output, timestep, conditioning_data)
|
step_output = guidance(step_output, timestep, conditioning_data)
|
||||||
|
|
||||||
|
# restore internal counter
|
||||||
|
if self.scheduler.order == 2:
|
||||||
|
self.scheduler._index_counter[timestep.item()] += 1
|
||||||
|
|
||||||
return step_output
|
return step_output
|
||||||
|
|
||||||
def _unet_forward(
|
def _unet_forward(
|
||||||
|
Loading…
Reference in New Issue
Block a user