Hotfix to make second order schedulers work with mask (#4378)

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents


## QA Instructions, Screenshots, Recordings


## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_
This commit is contained in:
blessedcoolant 2023-08-30 12:49:04 +12:00 committed by GitHub
commit 600e9ecf8d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 26 additions and 21 deletions

View File

@ -367,36 +367,31 @@ class DenoiseLatentsInvocation(BaseInvocation):
# original idea by https://github.com/AmericanPresidentJimmyCarter # original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps # TODO: research more for second order schedulers timesteps
def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end): def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end):
num_inference_steps = steps
if scheduler.config.get("cpu_only", False): if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(num_inference_steps, device="cpu") scheduler.set_timesteps(steps, device="cpu")
timesteps = scheduler.timesteps.to(device=device) timesteps = scheduler.timesteps.to(device=device)
else: else:
scheduler.set_timesteps(num_inference_steps, device=device) scheduler.set_timesteps(steps, device=device)
timesteps = scheduler.timesteps timesteps = scheduler.timesteps
# apply denoising_start # skip greater order timesteps
_timesteps = timesteps[:: scheduler.order]
# get start timestep index
t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start))) t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start)))
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, timesteps))) t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
timesteps = timesteps[t_start_idx:]
if scheduler.order == 2 and t_start_idx > 0:
timesteps = timesteps[1:]
# save start timestep to apply noise # get end timestep index
init_timestep = timesteps[:1]
# apply denoising_end
t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end))) t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end)))
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, timesteps))) t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
if scheduler.order == 2 and t_end_idx > 0:
t_end_idx += 1
timesteps = timesteps[:t_end_idx]
# calculate step count based on scheduler order # apply order to indexes
num_inference_steps = len(timesteps) t_start_idx *= scheduler.order
if scheduler.order == 2: t_end_idx *= scheduler.order
num_inference_steps += num_inference_steps % 2
num_inference_steps = num_inference_steps // 2 init_timestep = timesteps[t_start_idx : t_start_idx + 1]
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order
return num_inference_steps, timesteps, init_timestep return num_inference_steps, timesteps, init_timestep

View File

@ -558,12 +558,22 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# compute the previous noisy sample x_t -> x_t-1 # compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args) step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
# TODO: issue to diffusers?
# undo internal counter increment done by scheduler.step, so timestep can be resolved as before call
# this needed to be able call scheduler.add_noise with current timestep
if self.scheduler.order == 2:
self.scheduler._index_counter[timestep.item()] -= 1
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent. # TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
# But the way things are now, scheduler runs _after_ that, so there was # But the way things are now, scheduler runs _after_ that, so there was
# no way to use it to apply an operation that happens after the last scheduler.step. # no way to use it to apply an operation that happens after the last scheduler.step.
for guidance in additional_guidance: for guidance in additional_guidance:
step_output = guidance(step_output, timestep, conditioning_data) step_output = guidance(step_output, timestep, conditioning_data)
# restore internal counter
if self.scheduler.order == 2:
self.scheduler._index_counter[timestep.item()] += 1
return step_output return step_output
def _unet_forward( def _unet_forward(