mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat: add base model recognition for ip adapter safetensor files
This commit is contained in:
parent
b013d0e064
commit
60bf0caca3
@ -14,12 +14,10 @@ from diffusers import AutoencoderKL, AutoencoderTiny
|
|||||||
from diffusers.configuration_utils import ConfigMixin
|
from diffusers.configuration_utils import ConfigMixin
|
||||||
from diffusers.image_processor import VaeImageProcessor
|
from diffusers.image_processor import VaeImageProcessor
|
||||||
from diffusers.models.adapter import T2IAdapter
|
from diffusers.models.adapter import T2IAdapter
|
||||||
from diffusers.models.attention_processor import (
|
from diffusers.models.attention_processor import (AttnProcessor2_0,
|
||||||
AttnProcessor2_0,
|
|
||||||
LoRAAttnProcessor2_0,
|
LoRAAttnProcessor2_0,
|
||||||
LoRAXFormersAttnProcessor,
|
LoRAXFormersAttnProcessor,
|
||||||
XFormersAttnProcessor,
|
XFormersAttnProcessor)
|
||||||
)
|
|
||||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||||
from diffusers.schedulers import DPMSolverSDEScheduler
|
from diffusers.schedulers import DPMSolverSDEScheduler
|
||||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||||
@ -28,26 +26,17 @@ from pydantic import field_validator
|
|||||||
from torchvision.transforms.functional import resize as tv_resize
|
from torchvision.transforms.functional import resize as tv_resize
|
||||||
from transformers import CLIPVisionModelWithProjection
|
from transformers import CLIPVisionModelWithProjection
|
||||||
|
|
||||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
from invokeai.app.invocations.constants import (LATENT_SCALE_FACTOR,
|
||||||
from invokeai.app.invocations.fields import (
|
SCHEDULER_NAME_VALUES)
|
||||||
ConditioningField,
|
from invokeai.app.invocations.fields import (ConditioningField,
|
||||||
DenoiseMaskField,
|
DenoiseMaskField,
|
||||||
FieldDescriptions,
|
FieldDescriptions, ImageField,
|
||||||
ImageField,
|
Input, InputField, LatentsField,
|
||||||
Input,
|
OutputField, UIType, WithBoard,
|
||||||
InputField,
|
WithMetadata)
|
||||||
LatentsField,
|
|
||||||
OutputField,
|
|
||||||
UIType,
|
|
||||||
WithBoard,
|
|
||||||
WithMetadata,
|
|
||||||
)
|
|
||||||
from invokeai.app.invocations.ip_adapter import IPAdapterField
|
from invokeai.app.invocations.ip_adapter import IPAdapterField
|
||||||
from invokeai.app.invocations.primitives import (
|
from invokeai.app.invocations.primitives import (DenoiseMaskOutput,
|
||||||
DenoiseMaskOutput,
|
ImageOutput, LatentsOutput)
|
||||||
ImageOutput,
|
|
||||||
LatentsOutput,
|
|
||||||
)
|
|
||||||
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||||
@ -55,25 +44,19 @@ from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
|||||||
from invokeai.backend.lora import LoRAModelRaw
|
from invokeai.backend.lora import LoRAModelRaw
|
||||||
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
from invokeai.backend.stable_diffusion import (PipelineIntermediateState,
|
||||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
|
set_seamless)
|
||||||
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||||
|
ConditioningData, IPAdapterConditioningInfo)
|
||||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||||
|
|
||||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||||
ControlNetData,
|
ControlNetData, IPAdapterData, StableDiffusionGeneratorPipeline,
|
||||||
IPAdapterData,
|
T2IAdapterData, image_resized_to_grid_as_tensor)
|
||||||
StableDiffusionGeneratorPipeline,
|
|
||||||
T2IAdapterData,
|
|
||||||
image_resized_to_grid_as_tensor,
|
|
||||||
)
|
|
||||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||||
from ...backend.util.devices import choose_precision, choose_torch_device
|
from ...backend.util.devices import choose_precision, choose_torch_device
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, invocation,
|
||||||
BaseInvocation,
|
invocation_output)
|
||||||
BaseInvocationOutput,
|
|
||||||
invocation,
|
|
||||||
invocation_output,
|
|
||||||
)
|
|
||||||
from .controlnet_image_processors import ControlField
|
from .controlnet_image_processors import ControlField
|
||||||
from .model import ModelIdentifierField, UNetField, VAEField
|
from .model import ModelIdentifierField, UNetField, VAEField
|
||||||
|
|
||||||
|
@ -535,7 +535,18 @@ class IPAdapterCheckpointProbe(CheckpointProbeBase):
|
|||||||
for key in checkpoint.keys():
|
for key in checkpoint.keys():
|
||||||
if not key.startswith(("image_proj.", "ip_adapter.")):
|
if not key.startswith(("image_proj.", "ip_adapter.")):
|
||||||
continue
|
continue
|
||||||
|
cross_attention_dim = checkpoint["ip_adapter.1.to_k_ip.weight"].shape[-1]
|
||||||
|
print(cross_attention_dim)
|
||||||
|
if cross_attention_dim == 768:
|
||||||
|
return BaseModelType.StableDiffusion1
|
||||||
|
elif cross_attention_dim == 1024:
|
||||||
|
return BaseModelType.StableDiffusion2
|
||||||
|
elif cross_attention_dim == 2048:
|
||||||
return BaseModelType.StableDiffusionXL
|
return BaseModelType.StableDiffusionXL
|
||||||
|
else:
|
||||||
|
raise InvalidModelConfigException(
|
||||||
|
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
|
||||||
|
)
|
||||||
raise InvalidModelConfigException(f"{self.model_path}: Unable to determine base type")
|
raise InvalidModelConfigException(f"{self.model_path}: Unable to determine base type")
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user