mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Move pil_to_tensor() and tensor_to_pil() utilities to the SpandrelImageToImage class.
This commit is contained in:
parent
1ab20f43c8
commit
6161aa73af
@ -1,6 +1,4 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
@ -17,44 +15,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
||||
|
||||
|
||||
def pil_to_tensor(image: Image.Image) -> torch.Tensor:
|
||||
"""Convert PIL Image to torch.Tensor.
|
||||
|
||||
Args:
|
||||
image (Image.Image): A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
||||
"""
|
||||
image_np = np.array(image)
|
||||
# (H, W, C) -> (C, H, W)
|
||||
image_np = np.transpose(image_np, (2, 0, 1))
|
||||
image_np = image_np / 255
|
||||
image_tensor = torch.from_numpy(image_np).float()
|
||||
# (C, H, W) -> (N, C, H, W)
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
return image_tensor
|
||||
|
||||
|
||||
def tensor_to_pil(tensor: torch.Tensor) -> Image.Image:
|
||||
"""Convert torch.Tensor to PIL Image.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
||||
|
||||
Returns:
|
||||
Image.Image: A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
||||
"""
|
||||
# (N, C, H, W) -> (C, H, W)
|
||||
tensor = tensor.squeeze(0)
|
||||
# (C, H, W) -> (H, W, C)
|
||||
tensor = tensor.permute(1, 2, 0)
|
||||
tensor = tensor.clamp(0, 1)
|
||||
tensor = (tensor * 255).cpu().detach().numpy().astype(np.uint8)
|
||||
image = Image.fromarray(tensor)
|
||||
return image
|
||||
|
||||
|
||||
@invocation("upscale_spandrel", title="Upscale (spandrel)", tags=["upscale"], category="upscale", version="1.0.0")
|
||||
class UpscaleSpandrelInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Upscales an image using any upscaler supported by spandrel (https://github.com/chaiNNer-org/spandrel)."""
|
||||
@ -75,13 +35,13 @@ class UpscaleSpandrelInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
||||
|
||||
# Prepare input image for inference.
|
||||
image_tensor = pil_to_tensor(image)
|
||||
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
|
||||
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
||||
|
||||
# Run inference.
|
||||
image_tensor = spandrel_model.run(image_tensor)
|
||||
|
||||
# Convert the output tensor to a PIL image.
|
||||
pil_image = tensor_to_pil(image_tensor)
|
||||
pil_image = SpandrelImageToImageModel.tensor_to_pil(image_tensor)
|
||||
image_dto = context.images.save(image=pil_image)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
@ -1,7 +1,9 @@
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from spandrel import ImageModelDescriptor, ModelLoader
|
||||
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
@ -16,8 +18,50 @@ class SpandrelImageToImageModel(RawModel):
|
||||
def __init__(self, spandrel_model: ImageModelDescriptor[Any]):
|
||||
self._spandrel_model = spandrel_model
|
||||
|
||||
@staticmethod
|
||||
def pil_to_tensor(image: Image.Image) -> torch.Tensor:
|
||||
"""Convert PIL Image to the torch.Tensor format expected by SpandrelImageToImageModel.run().
|
||||
|
||||
Args:
|
||||
image (Image.Image): A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
||||
"""
|
||||
image_np = np.array(image)
|
||||
# (H, W, C) -> (C, H, W)
|
||||
image_np = np.transpose(image_np, (2, 0, 1))
|
||||
image_np = image_np / 255
|
||||
image_tensor = torch.from_numpy(image_np).float()
|
||||
# (C, H, W) -> (N, C, H, W)
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
return image_tensor
|
||||
|
||||
@staticmethod
|
||||
def tensor_to_pil(tensor: torch.Tensor) -> Image.Image:
|
||||
"""Convert a torch.Tensor produced by SpandrelImageToImageModel.run() to a PIL Image.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
||||
|
||||
Returns:
|
||||
Image.Image: A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
||||
"""
|
||||
# (N, C, H, W) -> (C, H, W)
|
||||
tensor = tensor.squeeze(0)
|
||||
# (C, H, W) -> (H, W, C)
|
||||
tensor = tensor.permute(1, 2, 0)
|
||||
tensor = tensor.clamp(0, 1)
|
||||
tensor = (tensor * 255).cpu().detach().numpy().astype(np.uint8)
|
||||
image = Image.fromarray(tensor)
|
||||
return image
|
||||
|
||||
def run(self, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
"""Run the image-to-image model."""
|
||||
"""Run the image-to-image model.
|
||||
|
||||
Args:
|
||||
image_tensor (torch.Tensor): A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
||||
"""
|
||||
return self._spandrel_model(image_tensor)
|
||||
|
||||
@classmethod
|
||||
|
Loading…
Reference in New Issue
Block a user