Merge branch 'main' into bugfix/use-cu117-wheel

This commit is contained in:
Lincoln Stein 2023-02-04 09:43:52 -05:00 committed by GitHub
commit 61c3886843
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 183 additions and 181 deletions

View File

@ -47,11 +47,11 @@ if [ "$0" != "bash" ]; then
;;
3)
echo "Starting Textual Inversion:"
exec textual_inversion --gui $@
exec invokeai-ti --gui $@
;;
4)
echo "Merging Models:"
exec merge_models --gui $@
exec invokeai-merge --gui $@
;;
5)
echo "Developer Console:"

View File

@ -20,6 +20,7 @@
import os
import re
import torch
import warnings
from pathlib import Path
from ldm.invoke.globals import Globals, global_cache_dir
from safetensors.torch import load_file
@ -44,6 +45,7 @@ from diffusers import (
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
logging as dlogging,
)
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline
@ -795,8 +797,9 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
prediction_type:str=None,
extract_ema:bool=True,
upcast_attn:bool=False,
vae:AutoencoderKL=None
)->StableDiffusionGeneratorPipeline:
vae:AutoencoderKL=None,
return_generator_pipeline:bool=False,
)->Union[StableDiffusionPipeline,StableDiffusionGeneratorPipeline]:
'''
Load a Stable Diffusion pipeline object from a CompVis-style `.ckpt`/`.safetensors` file and (ideally) a `.yaml`
config file.
@ -824,165 +827,172 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
running stable diffusion 2.1.
'''
checkpoint = load_file(checkpoint_path) if Path(checkpoint_path).suffix == '.safetensors' else torch.load(checkpoint_path)
cache_dir = global_cache_dir('hub')
with warnings.catch_warnings():
warnings.simplefilter('ignore')
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
# Sometimes models don't have the global_step item
if "global_step" in checkpoint:
global_step = checkpoint["global_step"]
else:
print(" | global_step key not found in model")
global_step = None
checkpoint = load_file(checkpoint_path) if Path(checkpoint_path).suffix == '.safetensors' else torch.load(checkpoint_path)
cache_dir = global_cache_dir('hub')
pipeline_class = StableDiffusionGeneratorPipeline if return_generator_pipeline else StableDiffusionPipeline
# sometimes there is a state_dict key and sometimes not
if 'state_dict' in checkpoint:
checkpoint = checkpoint["state_dict"]
upcast_attention = False
if original_config_file is None:
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
original_config_file = os.path.join(Globals.root,'configs','stable-diffusion','v2-inference-v.yaml')
if global_step == 110000:
# v2.1 needs to upcast attention
upcast_attention = True
# Sometimes models don't have the global_step item
if "global_step" in checkpoint:
global_step = checkpoint["global_step"]
else:
original_config_file = os.path.join(Globals.root,'configs','stable-diffusion','v1-inference.yaml')
print(" | global_step key not found in model")
global_step = None
original_config = OmegaConf.load(original_config_file)
# sometimes there is a state_dict key and sometimes not
if 'state_dict' in checkpoint:
checkpoint = checkpoint["state_dict"]
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
upcast_attention = False
if original_config_file is None:
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if (
"parameterization" in original_config["model"]["params"]
and original_config["model"]["params"]["parameterization"] == "v"
):
if prediction_type is None:
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
# as it relies on a brittle global step parameter here
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
if image_size is None:
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
# as it relies on a brittle global step parameter here
image_size = 512 if global_step == 875000 else 768
else:
if prediction_type is None:
prediction_type = "epsilon"
if image_size is None:
image_size = 512
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
original_config_file = os.path.join(Globals.root,'configs','stable-diffusion','v2-inference-v.yaml')
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
if global_step == 110000:
# v2.1 needs to upcast attention
upcast_attention = True
else:
original_config_file = os.path.join(Globals.root,'configs','stable-diffusion','v1-inference.yaml')
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
# make sure scheduler works correctly with DDIM
scheduler.register_to_config(clip_sample=False)
original_config = OmegaConf.load(original_config_file)
if scheduler_type == "pndm":
config = dict(scheduler.config)
config["skip_prk_steps"] = True
scheduler = PNDMScheduler.from_config(config)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "heun":
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler":
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet_config["upcast_attention"] = upcast_attention
unet = UNet2DConditionModel(**unet_config)
if (
"parameterization" in original_config["model"]["params"]
and original_config["model"]["params"]["parameterization"] == "v"
):
if prediction_type is None:
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
# as it relies on a brittle global step parameter here
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
if image_size is None:
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
# as it relies on a brittle global step parameter here
image_size = 512 if global_step == 875000 else 768
else:
if prediction_type is None:
prediction_type = "epsilon"
if image_size is None:
image_size = 512
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model, or use the one passed
if not vae:
print(f' | Using checkpoint model\'s original VAE')
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
else:
print(f' | Using external VAE specified in config')
# Convert the text model.
model_type = pipeline_type
if model_type is None:
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
if model_type == "FrozenOpenCLIPEmbedder":
text_model = convert_open_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2",
subfolder="tokenizer",
cache_dir=global_cache_dir('diffusers')
)
pipe = StableDiffusionGeneratorPipeline(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
elif model_type == "PaintByExample":
vision_model = convert_paint_by_example_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
pipe = PaintByExamplePipeline(
vae=vae,
image_encoder=vision_model,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=feature_extractor,
# make sure scheduler works correctly with DDIM
scheduler.register_to_config(clip_sample=False)
if scheduler_type == "pndm":
config = dict(scheduler.config)
config["skip_prk_steps"] = True
scheduler = PNDMScheduler.from_config(config)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "heun":
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler":
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet_config["upcast_attention"] = upcast_attention
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
elif model_type in ['FrozenCLIPEmbedder','WeightedFrozenCLIPEmbedder']:
text_model = convert_ldm_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
pipe = StableDiffusionGeneratorPipeline(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=feature_extractor,
)
else:
text_config = create_ldm_bert_config(original_config)
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased",cache_dir=cache_dir)
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model, or use the one passed
if not vae:
print(' | Using checkpoint model\'s original VAE')
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
else:
print(' | Using external VAE specified in config')
# Convert the text model.
model_type = pipeline_type
if model_type is None:
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
if model_type == "FrozenOpenCLIPEmbedder":
text_model = convert_open_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2",
subfolder="tokenizer",
cache_dir=global_cache_dir('diffusers')
)
pipe = pipeline_class(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
elif model_type == "PaintByExample":
vision_model = convert_paint_by_example_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
pipe = PaintByExamplePipeline(
vae=vae,
image_encoder=vision_model,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=feature_extractor,
)
elif model_type in ['FrozenCLIPEmbedder','WeightedFrozenCLIPEmbedder']:
text_model = convert_ldm_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
pipe = pipeline_class(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=feature_extractor,
)
else:
text_config = create_ldm_bert_config(original_config)
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased",cache_dir=cache_dir)
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
dlogging.set_verbosity(verbosity)
return pipe
@ -1000,6 +1010,7 @@ def convert_ckpt_to_diffuser(
checkpoint_path,
**kwargs
)
pipe.save_pretrained(
dump_path,
safe_serialization=is_safetensors_available(),

View File

@ -8,13 +8,14 @@ import argparse
import curses
import os
import sys
import traceback
import warnings
from argparse import Namespace
from pathlib import Path
from typing import List, Union
import npyscreen
import warnings
from diffusers import DiffusionPipeline
from diffusers import DiffusionPipeline, logging as dlogging
from omegaconf import OmegaConf
from ldm.invoke.globals import (
@ -46,18 +47,24 @@ def merge_diffusion_models(
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
pipe = DiffusionPipeline.from_pretrained(
model_ids_or_paths[0],
cache_dir=kwargs.get("cache_dir", global_cache_dir()),
custom_pipeline="checkpoint_merger",
)
merged_pipe = pipe.merge(
pretrained_model_name_or_path_list=model_ids_or_paths,
alpha=alpha,
interp=interp,
force=force,
**kwargs,
)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
pipe = DiffusionPipeline.from_pretrained(
model_ids_or_paths[0],
cache_dir=kwargs.get("cache_dir", global_cache_dir()),
custom_pipeline="checkpoint_merger",
)
merged_pipe = pipe.merge(
pretrained_model_name_or_path_list=model_ids_or_paths,
alpha=alpha,
interp=interp,
force=force,
**kwargs,
)
dlogging.set_verbosity(verbosity)
return merged_pipe
@ -443,22 +450,5 @@ def main():
] = cache_dir # because not clear the merge pipeline is honoring cache_dir
args.cache_dir = cache_dir
with warnings.catch_warnings():
warnings.simplefilter('ignore')
try:
if args.front_end:
run_gui(args)
else:
run_cli(args)
print(f'>> Conversion successful.')
except Exception as e:
if str(e).startswith('Not enough space'):
print('** Not enough horizontal space! Try making the window wider, or relaunch with a smaller starting size.')
else:
print(f"** An error occurred while merging the pipelines: {str(e)}")
sys.exit(-1)
except KeyboardInterrupt:
sys.exit(-1)
if __name__ == "__main__":
main()

View File

@ -356,6 +356,7 @@ class ModelManager(object):
checkpoint_path = weights,
original_config_file = config,
vae = vae,
return_generator_pipeline=True,
)
return (
pipeline.to(self.device).to(torch.float16 if self.precision == 'float16' else torch.float32),