mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'development' of github.com:invoke-ai/InvokeAI into development
This commit is contained in:
commit
6215592b12
@ -110,12 +110,14 @@ class CrossAttentionControl:
|
||||
type(module).__name__ == "CrossAttention" and which_attn in name]
|
||||
|
||||
@classmethod
|
||||
def clear_requests(cls, model):
|
||||
def clear_requests(cls, model, clear_attn_slice=True):
|
||||
self_attention_modules = cls.get_attention_modules(model, cls.CrossAttentionType.SELF)
|
||||
tokens_attention_modules = cls.get_attention_modules(model, cls.CrossAttentionType.TOKENS)
|
||||
for m in self_attention_modules+tokens_attention_modules:
|
||||
m.save_last_attn_slice = False
|
||||
m.use_last_attn_slice = False
|
||||
if clear_attn_slice:
|
||||
m.last_attn_slice = None
|
||||
|
||||
@classmethod
|
||||
def request_save_attention_maps(cls, model, cross_attention_type: CrossAttentionType):
|
||||
|
@ -134,23 +134,31 @@ class InvokeAIDiffuserComponent:
|
||||
# representing batched uncond + cond, but then when it comes to applying the saved attention, the
|
||||
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
|
||||
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
||||
|
||||
# process x using the original prompt, saving the attention maps
|
||||
for type in cross_attention_control_types_to_do:
|
||||
CrossAttentionControl.request_save_attention_maps(self.model, type)
|
||||
_ = self.model_forward_callback(x, sigma, conditioning)
|
||||
CrossAttentionControl.clear_requests(self.model)
|
||||
try:
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
||||
|
||||
# process x again, using the saved attention maps to control where self.edited_conditioning will be applied
|
||||
for type in cross_attention_control_types_to_do:
|
||||
CrossAttentionControl.request_apply_saved_attention_maps(self.model, type)
|
||||
edited_conditioning = self.conditioning.cross_attention_control_args.edited_conditioning
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, edited_conditioning)
|
||||
# process x using the original prompt, saving the attention maps
|
||||
for type in cross_attention_control_types_to_do:
|
||||
CrossAttentionControl.request_save_attention_maps(self.model, type)
|
||||
_ = self.model_forward_callback(x, sigma, conditioning)
|
||||
CrossAttentionControl.clear_requests(self.model, clear_attn_slice=False)
|
||||
|
||||
CrossAttentionControl.clear_requests(self.model)
|
||||
# process x again, using the saved attention maps to control where self.edited_conditioning will be applied
|
||||
for type in cross_attention_control_types_to_do:
|
||||
CrossAttentionControl.request_apply_saved_attention_maps(self.model, type)
|
||||
edited_conditioning = self.conditioning.cross_attention_control_args.edited_conditioning
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, edited_conditioning)
|
||||
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
CrossAttentionControl.clear_requests(self.model)
|
||||
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
except RuntimeError:
|
||||
# make sure we clean out the attention slices we're storing on the model
|
||||
# TODO don't store things on the model
|
||||
CrossAttentionControl.clear_requests(self.model)
|
||||
raise
|
||||
|
||||
def estimate_percent_through(self, step_index, sigma):
|
||||
if step_index is not None and self.cross_attention_control_context is not None:
|
||||
|
Loading…
Reference in New Issue
Block a user