mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
revert and disable auto-formatting of invocations
This commit is contained in:
parent
dd4a1c998b
commit
6477e31c1e
@ -26,45 +26,18 @@ class TextToImageInvocation(BaseInvocation):
|
||||
|
||||
# Inputs
|
||||
# TODO: consider making prompt optional to enable providing prompt through a link
|
||||
# fmt: off
|
||||
prompt: Optional[str] = Field(description="The prompt to generate an image from")
|
||||
seed: int = Field(
|
||||
default=-1,
|
||||
ge=-1,
|
||||
le=np.iinfo(np.uint32).max,
|
||||
description="The seed to use (-1 for a random seed)",
|
||||
)
|
||||
steps: int = Field(
|
||||
default=10, gt=0, description="The number of steps to use to generate the image"
|
||||
)
|
||||
width: int = Field(
|
||||
default=512,
|
||||
multiple_of=64,
|
||||
gt=0,
|
||||
description="The width of the resulting image",
|
||||
)
|
||||
height: int = Field(
|
||||
default=512,
|
||||
multiple_of=64,
|
||||
gt=0,
|
||||
description="The height of the resulting image",
|
||||
)
|
||||
cfg_scale: float = Field(
|
||||
default=7.5,
|
||||
gt=0,
|
||||
description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt",
|
||||
)
|
||||
sampler_name: SAMPLER_NAME_VALUES = Field(
|
||||
default="k_lms", description="The sampler to use"
|
||||
)
|
||||
seamless: bool = Field(
|
||||
default=False,
|
||||
description="Whether or not to generate an image that can tile without seams",
|
||||
)
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
progress_images: bool = Field(
|
||||
default=False,
|
||||
description="Whether or not to produce progress images during generation",
|
||||
)
|
||||
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
|
||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
|
||||
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
|
||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
|
||||
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
||||
# fmt: on
|
||||
|
||||
# TODO: pass this an emitter method or something? or a session for dispatching?
|
||||
def dispatch_progress(
|
||||
|
@ -260,13 +260,14 @@ class LerpInvocation(BaseInvocation):
|
||||
|
||||
class InverseLerpInvocation(BaseInvocation):
|
||||
"""Inverse linear interpolation of all pixels of an image"""
|
||||
|
||||
#fmt: off
|
||||
type: Literal["ilerp"] = "ilerp"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = Field(default=None, description="The image to lerp")
|
||||
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
|
||||
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
|
||||
#fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get(
|
||||
|
@ -7,7 +7,8 @@ from .baseinvocation import BaseInvocationOutput
|
||||
|
||||
class PromptOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output a prompt"""
|
||||
|
||||
#fmt: off
|
||||
type: Literal["prompt"] = "prompt"
|
||||
|
||||
prompt: str = Field(default=None, description="The output prompt")
|
||||
#fmt: on
|
||||
|
@ -11,14 +11,13 @@ from .image import ImageField, ImageOutput
|
||||
|
||||
class RestoreFaceInvocation(BaseInvocation):
|
||||
"""Restores faces in an image."""
|
||||
|
||||
type: Literal["restore_face"] = "restore_face"
|
||||
#fmt: off
|
||||
type: Literal["restore_face"] = "restore_face"
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image")
|
||||
strength: float = Field(
|
||||
default=0.75, gt=0, le=1, description="The strength of the restoration"
|
||||
)
|
||||
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
|
||||
#fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get(
|
||||
|
@ -13,13 +13,14 @@ from .image import ImageField, ImageOutput
|
||||
|
||||
class UpscaleInvocation(BaseInvocation):
|
||||
"""Upscales an image."""
|
||||
|
||||
#fmt: off
|
||||
type: Literal["upscale"] = "upscale"
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
|
||||
level: Literal[2, 4] = Field(default=2, description="The upscale level")
|
||||
#fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get(
|
||||
|
@ -9,13 +9,13 @@ T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
class PaginatedResults(GenericModel, Generic[T]):
|
||||
"""Paginated results"""
|
||||
|
||||
#fmt: off
|
||||
items: list[T] = Field(description="Items")
|
||||
page: int = Field(description="Current Page")
|
||||
pages: int = Field(description="Total number of pages")
|
||||
per_page: int = Field(description="Number of items per page")
|
||||
total: int = Field(description="Total number of items in result")
|
||||
|
||||
#fmt: on
|
||||
|
||||
class ItemStorageABC(ABC, Generic[T]):
|
||||
_on_changed_callbacks: list[Callable[[T], None]]
|
||||
|
Loading…
Reference in New Issue
Block a user