mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'v2.3' into bugfix/restore-update-command
This commit is contained in:
commit
65cf733a0c
File diff suppressed because one or more lines are too long
@ -200,6 +200,8 @@ class Generate:
|
||||
# it wasn't actually doing anything. This logic could be reinstated.
|
||||
self.device = torch.device(choose_torch_device())
|
||||
print(f">> Using device_type {self.device.type}")
|
||||
if self.device.type == 'cuda':
|
||||
print(f">> CUDA device '{torch.cuda.get_device_name(torch.cuda.current_device())}' (GPU {os.environ.get('CUDA_VISIBLE_DEVICES') or 0})")
|
||||
if full_precision:
|
||||
if self.precision != "auto":
|
||||
raise ValueError("Remove --full_precision / -F if using --precision")
|
||||
|
@ -389,6 +389,7 @@ def main_loop(gen, opt):
|
||||
prior_variations,
|
||||
postprocessed,
|
||||
first_seed,
|
||||
gen.model_name,
|
||||
)
|
||||
path = file_writer.save_image_and_prompt_to_png(
|
||||
image=image,
|
||||
@ -402,6 +403,7 @@ def main_loop(gen, opt):
|
||||
else first_seed
|
||||
],
|
||||
model_hash=gen.model_hash,
|
||||
model_id=gen.model_name,
|
||||
),
|
||||
name=filename,
|
||||
compress_level=opt.png_compression,
|
||||
@ -941,13 +943,14 @@ def add_postprocessing_to_metadata(opt, original_file, new_file, tool, command):
|
||||
|
||||
|
||||
def prepare_image_metadata(
|
||||
opt,
|
||||
prefix,
|
||||
seed,
|
||||
operation="generate",
|
||||
prior_variations=[],
|
||||
postprocessed=False,
|
||||
first_seed=None,
|
||||
opt,
|
||||
prefix,
|
||||
seed,
|
||||
operation="generate",
|
||||
prior_variations=[],
|
||||
postprocessed=False,
|
||||
first_seed=None,
|
||||
model_id='unknown',
|
||||
):
|
||||
if postprocessed and opt.save_original:
|
||||
filename = choose_postprocess_name(opt, prefix, seed)
|
||||
@ -955,7 +958,9 @@ def prepare_image_metadata(
|
||||
wildcards = dict(opt.__dict__)
|
||||
wildcards["prefix"] = prefix
|
||||
wildcards["seed"] = seed
|
||||
wildcards["model_id"] = model_id
|
||||
try:
|
||||
print(f'DEBUG: fnformat={opt.fnformat}')
|
||||
filename = opt.fnformat.format(**wildcards)
|
||||
except KeyError as e:
|
||||
print(
|
||||
@ -972,18 +977,17 @@ def prepare_image_metadata(
|
||||
first_seed = first_seed or seed
|
||||
this_variation = [[seed, opt.variation_amount]]
|
||||
opt.with_variations = prior_variations + this_variation
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,model_id=model_id)
|
||||
elif len(prior_variations) > 0:
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,model_id=model_id)
|
||||
elif operation == "postprocess":
|
||||
formatted_dream_prompt = "!fix " + opt.dream_prompt_str(
|
||||
seed=seed, prompt=opt.input_file_path
|
||||
seed=seed, prompt=opt.input_file_path, model_id=model_id,
|
||||
)
|
||||
else:
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=seed,model_id=model_id)
|
||||
return filename, formatted_dream_prompt
|
||||
|
||||
|
||||
def choose_postprocess_name(opt, prefix, seed) -> str:
|
||||
match = re.search("postprocess:(\w+)", opt.last_operation)
|
||||
if match:
|
||||
|
@ -333,7 +333,7 @@ class Args(object):
|
||||
switches.append(f'-V {formatted_variations}')
|
||||
if 'variations' in a and len(a['variations'])>0:
|
||||
switches.append(f'-V {a["variations"]}')
|
||||
return ' '.join(switches)
|
||||
return ' '.join(switches) + f' # model_id={kwargs.get("model_id","unknown model")}'
|
||||
|
||||
def __getattribute__(self,name):
|
||||
'''
|
||||
@ -878,7 +878,7 @@ class Args(object):
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--fnformat',
|
||||
default='{prefix}.{seed}.png',
|
||||
default=None,
|
||||
type=str,
|
||||
help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png',
|
||||
)
|
||||
@ -1155,6 +1155,7 @@ def format_metadata(**kwargs):
|
||||
def metadata_dumps(opt,
|
||||
seeds=[],
|
||||
model_hash=None,
|
||||
model_id=None,
|
||||
postprocessing=None):
|
||||
'''
|
||||
Given an Args object, returns a dict containing the keys and
|
||||
@ -1167,7 +1168,7 @@ def metadata_dumps(opt,
|
||||
# top-level metadata minus `image` or `images`
|
||||
metadata = {
|
||||
'model' : 'stable diffusion',
|
||||
'model_id' : opt.model,
|
||||
'model_id' : model_id or opt.model,
|
||||
'model_hash' : model_hash,
|
||||
'app_id' : ldm.invoke.__app_id__,
|
||||
'app_version' : ldm.invoke.__version__,
|
||||
|
@ -1002,7 +1002,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
tokenizer=tokenizer,
|
||||
unet=unet.to(precision),
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker.to(precision),
|
||||
safety_checker=None if return_generator_pipeline else safety_checker.to(precision),
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
else:
|
||||
|
535
ldm/invoke/dynamic_prompts.py
Executable file
535
ldm/invoke/dynamic_prompts.py
Executable file
@ -0,0 +1,535 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
"""
|
||||
Simple script to generate a file of InvokeAI prompts and settings
|
||||
that scan across steps and other parameters.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import pydoc
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import time
|
||||
from contextlib import redirect_stderr
|
||||
from io import TextIOBase
|
||||
from itertools import product
|
||||
from multiprocessing import Process
|
||||
from multiprocessing.connection import Connection, Pipe
|
||||
from pathlib import Path
|
||||
from tempfile import gettempdir
|
||||
from typing import Callable, Iterable, List
|
||||
|
||||
import numpy as np
|
||||
import yaml
|
||||
from omegaconf import OmegaConf, dictconfig, listconfig
|
||||
|
||||
|
||||
def expand_prompts(
|
||||
template_file: Path,
|
||||
run_invoke: bool = False,
|
||||
invoke_model: str = None,
|
||||
invoke_outdir: Path = None,
|
||||
processes_per_gpu: int = 1,
|
||||
):
|
||||
"""
|
||||
:param template_file: A YAML file containing templated prompts and args
|
||||
:param run_invoke: A boolean which if True will pass expanded prompts to invokeai CLI
|
||||
:param invoke_model: Name of the model to load when run_invoke is true; otherwise uses default
|
||||
:param invoke_outdir: Directory for outputs when run_invoke is true; otherwise uses default
|
||||
"""
|
||||
if template_file.name.endswith(".json"):
|
||||
with open(template_file, "r") as file:
|
||||
with io.StringIO(yaml.dump(json.load(file))) as fh:
|
||||
conf = OmegaConf.load(fh)
|
||||
else:
|
||||
conf = OmegaConf.load(template_file)
|
||||
|
||||
# loading here to avoid long wait for help message
|
||||
import torch
|
||||
|
||||
torch.multiprocessing.set_start_method("spawn")
|
||||
gpu_count = torch.cuda.device_count() if torch.cuda.is_available() else 1
|
||||
commands = expanded_invokeai_commands(conf, run_invoke)
|
||||
children = list()
|
||||
|
||||
try:
|
||||
if run_invoke:
|
||||
invokeai_args = [shutil.which("invokeai"), "--from_file", "-"]
|
||||
if invoke_model:
|
||||
invokeai_args.extend(("--model", invoke_model))
|
||||
if invoke_outdir:
|
||||
outdir = os.path.expanduser(invoke_outdir)
|
||||
invokeai_args.extend(("--outdir", outdir))
|
||||
else:
|
||||
outdir = gettempdir()
|
||||
logdir = Path(outdir, "invokeai-batch-logs")
|
||||
|
||||
processes_to_launch = gpu_count * processes_per_gpu
|
||||
print(
|
||||
f">> Spawning {processes_to_launch} invokeai processes across {gpu_count} CUDA gpus",
|
||||
file=sys.stderr,
|
||||
)
|
||||
print(
|
||||
f'>> Outputs will be written into {invoke_outdir or "default InvokeAI outputs directory"}, and error logs will be written to {logdir}',
|
||||
file=sys.stderr,
|
||||
)
|
||||
import ldm.invoke.CLI
|
||||
|
||||
parent_conn, child_conn = Pipe()
|
||||
children = set()
|
||||
for i in range(processes_to_launch):
|
||||
p = Process(
|
||||
target=_run_invoke,
|
||||
kwargs=dict(
|
||||
entry_point=ldm.invoke.CLI.main,
|
||||
conn_in=child_conn,
|
||||
conn_out=parent_conn,
|
||||
args=invokeai_args,
|
||||
gpu=i % gpu_count,
|
||||
logdir=logdir,
|
||||
),
|
||||
)
|
||||
p.start()
|
||||
children.add(p)
|
||||
child_conn.close()
|
||||
sequence = 0
|
||||
for command in commands:
|
||||
sequence += 1
|
||||
parent_conn.send(
|
||||
command + f' --fnformat="dp.{sequence:04}.{{prompt}}.png"'
|
||||
)
|
||||
parent_conn.close()
|
||||
else:
|
||||
for command in commands:
|
||||
print(command)
|
||||
except KeyboardInterrupt:
|
||||
for p in children:
|
||||
p.terminate()
|
||||
|
||||
|
||||
class MessageToStdin(object):
|
||||
def __init__(self, connection: Connection):
|
||||
self.connection = connection
|
||||
self.linebuffer = list()
|
||||
|
||||
def readline(self) -> str:
|
||||
try:
|
||||
if len(self.linebuffer) == 0:
|
||||
message = self.connection.recv()
|
||||
self.linebuffer = message.split("\n")
|
||||
result = self.linebuffer.pop(0)
|
||||
return result
|
||||
except EOFError:
|
||||
return None
|
||||
|
||||
|
||||
class FilterStream(object):
|
||||
def __init__(
|
||||
self, stream: TextIOBase, include: re.Pattern = None, exclude: re.Pattern = None
|
||||
):
|
||||
self.stream = stream
|
||||
self.include = include
|
||||
self.exclude = exclude
|
||||
|
||||
def write(self, data: str):
|
||||
if self.include and self.include.match(data):
|
||||
self.stream.write(data)
|
||||
self.stream.flush()
|
||||
elif self.exclude and not self.exclude.match(data):
|
||||
self.stream.write(data)
|
||||
self.stream.flush()
|
||||
|
||||
def flush(self):
|
||||
self.stream.flush()
|
||||
|
||||
|
||||
def _run_invoke(
|
||||
entry_point: Callable,
|
||||
conn_in: Connection,
|
||||
conn_out: Connection,
|
||||
args: List[str],
|
||||
logdir: Path,
|
||||
gpu: int = 0,
|
||||
):
|
||||
pid = os.getpid()
|
||||
logdir.mkdir(parents=True, exist_ok=True)
|
||||
logfile = Path(logdir, f'{time.strftime("%Y-%m-%d-%H:%M:%S")}-pid={pid}.txt')
|
||||
print(
|
||||
f">> Process {pid} running on GPU {gpu}; logging to {logfile}", file=sys.stderr
|
||||
)
|
||||
conn_out.close()
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu}"
|
||||
sys.argv = args
|
||||
sys.stdin = MessageToStdin(conn_in)
|
||||
sys.stdout = FilterStream(sys.stdout, include=re.compile("^\[\d+\]"))
|
||||
with open(logfile, "w") as stderr, redirect_stderr(stderr):
|
||||
entry_point()
|
||||
|
||||
|
||||
def _filter_output(stream: TextIOBase):
|
||||
while line := stream.readline():
|
||||
if re.match("^\[\d+\]", line):
|
||||
print(line)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=HELP,
|
||||
)
|
||||
parser.add_argument(
|
||||
"template_file",
|
||||
type=Path,
|
||||
nargs="?",
|
||||
help="path to a template file, use --example to generate an example file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--example",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help=f'Print an example template file in YAML format. Use "{sys.argv[0]} --example > example.yaml" to save output to a file',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--json-example",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help=f'Print an example template file in json format. Use "{sys.argv[0]} --json-example > example.json" to save output to a file',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--instructions",
|
||||
"-i",
|
||||
dest="instructions",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Print verbose instructions.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--invoke",
|
||||
action="store_true",
|
||||
help="Execute invokeai using specified optional --model, --processes_per_gpu and --outdir",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
help="Feed the generated prompts to the invokeai CLI using the indicated model. Will be overriden by a model: section in template file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outdir", type=Path, help="Write images and log into indicated directory"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--processes_per_gpu",
|
||||
type=int,
|
||||
default=1,
|
||||
help="When executing invokeai, how many parallel processes to execute per CUDA GPU.",
|
||||
)
|
||||
opt = parser.parse_args()
|
||||
|
||||
if opt.example:
|
||||
print(EXAMPLE_TEMPLATE_FILE)
|
||||
sys.exit(0)
|
||||
|
||||
if opt.json_example:
|
||||
print(_yaml_to_json(EXAMPLE_TEMPLATE_FILE))
|
||||
sys.exit(0)
|
||||
|
||||
if opt.instructions:
|
||||
pydoc.pager(INSTRUCTIONS)
|
||||
sys.exit(0)
|
||||
|
||||
if not opt.template_file:
|
||||
parser.print_help()
|
||||
sys.exit(-1)
|
||||
|
||||
expand_prompts(
|
||||
template_file=opt.template_file,
|
||||
run_invoke=opt.invoke,
|
||||
invoke_model=opt.model,
|
||||
invoke_outdir=opt.outdir,
|
||||
processes_per_gpu=opt.processes_per_gpu,
|
||||
)
|
||||
|
||||
|
||||
def expanded_invokeai_commands(
|
||||
conf: OmegaConf, always_switch_models: bool = False
|
||||
) -> List[List[str]]:
|
||||
models = expand_values(conf.get("model"))
|
||||
steps = expand_values(conf.get("steps")) or [30]
|
||||
cfgs = expand_values(conf.get("cfg")) or [7.5]
|
||||
samplers = expand_values(conf.get("sampler")) or ["ddim"]
|
||||
seeds = expand_values(conf.get("seed")) or [0]
|
||||
dimensions = expand_values(conf.get("dimensions")) or ["512x512"]
|
||||
init_img = expand_values(conf.get("init_img")) or [""]
|
||||
perlin = expand_values(conf.get("perlin")) or [0]
|
||||
threshold = expand_values(conf.get("threshold")) or [0]
|
||||
strength = expand_values(conf.get("strength")) or [0.75]
|
||||
prompts = expand_prompt(conf.get("prompt")) or ["banana sushi"]
|
||||
|
||||
cross_product = product(
|
||||
*[
|
||||
models,
|
||||
seeds,
|
||||
prompts,
|
||||
samplers,
|
||||
cfgs,
|
||||
steps,
|
||||
perlin,
|
||||
threshold,
|
||||
init_img,
|
||||
strength,
|
||||
dimensions,
|
||||
]
|
||||
)
|
||||
previous_model = None
|
||||
|
||||
result = list()
|
||||
for p in cross_product:
|
||||
(
|
||||
model,
|
||||
seed,
|
||||
prompt,
|
||||
sampler,
|
||||
cfg,
|
||||
step,
|
||||
perlin,
|
||||
threshold,
|
||||
init_img,
|
||||
strength,
|
||||
dimensions,
|
||||
) = tuple(p)
|
||||
(width, height) = dimensions.split("x")
|
||||
switch_args = (
|
||||
f"!switch {model}\n"
|
||||
if always_switch_models or previous_model != model
|
||||
else ""
|
||||
)
|
||||
image_args = f"-I{init_img} -f{strength}" if init_img else ""
|
||||
command = f"{switch_args}{prompt} -S{seed} -A{sampler} -C{cfg} -s{step} {image_args} --perlin={perlin} --threshold={threshold} -W{width} -H{height}"
|
||||
result.append(command)
|
||||
previous_model = model
|
||||
return result
|
||||
|
||||
|
||||
def expand_prompt(
|
||||
stanza: str | dict | listconfig.ListConfig | dictconfig.DictConfig,
|
||||
) -> list | range:
|
||||
if not stanza:
|
||||
return None
|
||||
if isinstance(stanza, listconfig.ListConfig):
|
||||
return stanza
|
||||
if isinstance(stanza, str):
|
||||
return [stanza]
|
||||
if not isinstance(stanza, dictconfig.DictConfig):
|
||||
raise ValueError(f"Unrecognized template: {stanza}")
|
||||
|
||||
if not (template := stanza.get("template")):
|
||||
raise KeyError('"prompt" section must contain a "template" definition')
|
||||
|
||||
fragment_labels = re.findall("{([^{}]+?)}", template)
|
||||
if len(fragment_labels) == 0:
|
||||
return [template]
|
||||
fragments = [[{x: y} for y in stanza.get(x)] for x in fragment_labels]
|
||||
dicts = merge(product(*fragments))
|
||||
return [template.format(**x) for x in dicts]
|
||||
|
||||
|
||||
def merge(dicts: Iterable) -> List[dict]:
|
||||
result = list()
|
||||
for x in dicts:
|
||||
to_merge = dict()
|
||||
for item in x:
|
||||
to_merge = to_merge | item
|
||||
result.append(to_merge)
|
||||
return result
|
||||
|
||||
|
||||
def expand_values(stanza: str | dict | listconfig.ListConfig) -> list | range:
|
||||
if not stanza:
|
||||
return None
|
||||
if isinstance(stanza, listconfig.ListConfig):
|
||||
return stanza
|
||||
elif match := re.match("^(-?\d+);(-?\d+)(;(\d+))?", str(stanza)):
|
||||
(start, stop, step) = (
|
||||
int(match.group(1)),
|
||||
int(match.group(2)),
|
||||
int(match.group(4)) or 1,
|
||||
)
|
||||
return range(start, stop + step, step)
|
||||
elif match := re.match("^(-?[\d.]+);(-?[\d.]+)(;([\d.]+))?", str(stanza)):
|
||||
(start, stop, step) = (
|
||||
float(match.group(1)),
|
||||
float(match.group(2)),
|
||||
float(match.group(4)) or 1.0,
|
||||
)
|
||||
return np.arange(start, stop + step, step).tolist()
|
||||
else:
|
||||
return [stanza]
|
||||
|
||||
|
||||
def _yaml_to_json(yaml_input: str) -> str:
|
||||
"""
|
||||
Converts a yaml string into a json string. Used internally
|
||||
to generate the example template file.
|
||||
"""
|
||||
with io.StringIO(yaml_input) as yaml_in:
|
||||
data = yaml.safe_load(yaml_in)
|
||||
return json.dumps(data, indent=2)
|
||||
|
||||
|
||||
HELP = """
|
||||
This script takes a prompt template file that contains multiple
|
||||
alternative values for the prompt and its generation arguments (such
|
||||
as steps). It then expands out the prompts using all combinations of
|
||||
arguments and either prints them to the terminal's standard output, or
|
||||
feeds the prompts directly to the invokeai command-line interface.
|
||||
|
||||
Call this script again with --instructions (-i) for verbose instructions.
|
||||
"""
|
||||
|
||||
INSTRUCTIONS = f"""
|
||||
== INTRODUCTION ==
|
||||
This script takes a prompt template file that contains multiple
|
||||
alternative values for the prompt and its generation arguments (such
|
||||
as steps). It then expands out the prompts using all combinations of
|
||||
arguments and either prints them to the terminal's standard output, or
|
||||
feeds the prompts directly to the invokeai command-line interface.
|
||||
|
||||
If the optional --invoke argument is provided, then the generated
|
||||
prompts will be fed directly to invokeai for image generation. You
|
||||
will likely want to add the --outdir option in order to save the image
|
||||
files to their own folder.
|
||||
|
||||
{sys.argv[0]} --invoke --outdir=/tmp/outputs my_template.yaml
|
||||
|
||||
If --invoke isn't specified, the expanded prompts will be printed to
|
||||
output. You can capture them to a file for inspection and editing this
|
||||
way:
|
||||
|
||||
{sys.argv[0]} my_template.yaml > prompts.txt
|
||||
|
||||
And then feed them to invokeai this way:
|
||||
|
||||
invokeai --outdir=/tmp/outputs < prompts.txt
|
||||
|
||||
Note that after invokeai finishes processing the list of prompts, the
|
||||
output directory will contain a markdown file named `log.md`
|
||||
containing annotated images. You can open this file using an e-book
|
||||
reader such as the cross-platform Calibre eBook reader
|
||||
(https://calibre-ebook.com/).
|
||||
|
||||
== FORMAT OF THE TEMPLATES FILE ==
|
||||
|
||||
This will generate an example template file that you can get
|
||||
started with:
|
||||
|
||||
{sys.argv[0]} --example > example.yaml
|
||||
|
||||
An excerpt from the top of this file looks like this:
|
||||
|
||||
model:
|
||||
- stable-diffusion-1.5
|
||||
- stable-diffusion-2.1-base
|
||||
steps: 30;50;1 # start steps at 30 and go up to 50, incrementing by 1 each time
|
||||
seed: 50 # fixed constant, seed=50
|
||||
cfg: # list of CFG values to try
|
||||
- 7
|
||||
- 8
|
||||
- 12
|
||||
prompt: a walk in the park # constant value
|
||||
|
||||
In more detail, the template file can one or more of the
|
||||
following sections:
|
||||
- model:
|
||||
- steps:
|
||||
- seed:
|
||||
- cfg:
|
||||
- sampler:
|
||||
- prompt:
|
||||
- init_img:
|
||||
- perlin:
|
||||
- threshold:
|
||||
- strength
|
||||
|
||||
- Each section can have a constant value such as this:
|
||||
steps: 50
|
||||
- Or a range of numeric values in the format:
|
||||
steps: <start>;<stop>;<step> (note semicolon, not colon!)
|
||||
- Or a list of values in the format:
|
||||
- value1
|
||||
- value2
|
||||
- value3
|
||||
|
||||
The "prompt:" section is special. It can accept a constant value:
|
||||
|
||||
prompt: a walk in the woods in the style of donatello
|
||||
|
||||
Or it can accept a list of prompts:
|
||||
|
||||
prompt:
|
||||
- a walk in the woods
|
||||
- a walk on the beach
|
||||
|
||||
Or it can accept a templated list of prompts. These allow you to
|
||||
define a series of phrases, each of which is a list. You then combine
|
||||
them together into a prompt template in this way:
|
||||
|
||||
prompt:
|
||||
style:
|
||||
- oil painting
|
||||
- watercolor
|
||||
- comic book
|
||||
- studio photography
|
||||
subject:
|
||||
- sunny meadow in the mountains
|
||||
- gathering storm in the mountains
|
||||
template: a {{subject}} in the style of {{style}}
|
||||
|
||||
In the example above, the phrase names "style" and "subject" are
|
||||
examples only. You can use whatever you like. However, the "template:"
|
||||
field is required. The output will be:
|
||||
|
||||
"a sunny meadow in the mountains in the style of an oil painting"
|
||||
"a sunny meadow in the mountains in the style of watercolor masterpiece"
|
||||
...
|
||||
"a gathering storm in the mountains in the style of an ink sketch"
|
||||
|
||||
== SUPPORT FOR JSON FORMAT ==
|
||||
|
||||
For those who prefer the JSON format, this script will accept JSON
|
||||
template files as well. Please run "{sys.argv[0]} --json-example"
|
||||
to print out a version of the example template file in json format.
|
||||
You may save it to disk and use it as a starting point for your own
|
||||
template this way:
|
||||
|
||||
{sys.argv[0]} --json-example > template.json
|
||||
"""
|
||||
|
||||
EXAMPLE_TEMPLATE_FILE = """
|
||||
model: stable-diffusion-1.5
|
||||
steps: 30;50;10
|
||||
seed: 50
|
||||
dimensions: 512x512
|
||||
perlin: 0.0
|
||||
threshold: 0
|
||||
cfg:
|
||||
- 7
|
||||
- 12
|
||||
sampler:
|
||||
- k_euler_a
|
||||
- k_lms
|
||||
prompt:
|
||||
style:
|
||||
- oil painting
|
||||
- watercolor
|
||||
location:
|
||||
- the mountains
|
||||
- a desert
|
||||
object:
|
||||
- luxurious dwelling
|
||||
- crude tent
|
||||
template: a {object} in {location}, in the style of {style}
|
||||
"""
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -9,6 +9,8 @@ Exports function retrieve_metadata(path)
|
||||
import os
|
||||
import re
|
||||
import json
|
||||
from pathlib import Path
|
||||
from filelock import FileLock
|
||||
from PIL import PngImagePlugin, Image
|
||||
|
||||
# -------------------image generation utils-----
|
||||
@ -19,8 +21,23 @@ class PngWriter:
|
||||
self.outdir = outdir
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
|
||||
def unique_prefix(self)->str:
|
||||
next_prefix_file = Path(self.outdir,'.next_prefix')
|
||||
next_prefix_lock = Path(self.outdir,'.next_prefix.lock')
|
||||
prefix = 0
|
||||
with FileLock(next_prefix_lock):
|
||||
if not next_prefix_file.exists():
|
||||
prefix = self._unused_prefix()
|
||||
else:
|
||||
with open(next_prefix_file,'r') as file:
|
||||
prefix=int(file.readline() or int(self._unused_prefix())-1)
|
||||
prefix+=1
|
||||
with open(next_prefix_file,'w') as file:
|
||||
file.write(str(prefix))
|
||||
return f'{prefix:06}'
|
||||
|
||||
# gives the next unique prefix in outdir
|
||||
def unique_prefix(self):
|
||||
def _unused_prefix(self):
|
||||
# sort reverse alphabetically until we find max+1
|
||||
dirlist = sorted(os.listdir(self.outdir), reverse=True)
|
||||
# find the first filename that matches our pattern or return 000000.0.png
|
||||
@ -91,14 +108,12 @@ class PromptFormatter:
|
||||
switches.append(f'-H{opt.height or t2i.height}')
|
||||
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
|
||||
switches.append(f'-A{opt.sampler_name or t2i.sampler_name}')
|
||||
# to do: put model name into the t2i object
|
||||
# switches.append(f'--model{t2i.model_name}')
|
||||
if opt.seamless or t2i.seamless:
|
||||
switches.append(f'--seamless')
|
||||
switches.append('--seamless')
|
||||
if opt.init_img:
|
||||
switches.append(f'-I{opt.init_img}')
|
||||
if opt.fit:
|
||||
switches.append(f'--fit')
|
||||
switches.append('--fit')
|
||||
if opt.strength and opt.init_img is not None:
|
||||
switches.append(f'-f{opt.strength or t2i.strength}')
|
||||
if opt.gfpgan_strength:
|
||||
|
@ -116,9 +116,11 @@ requires-python = ">=3.9, <3.11"
|
||||
# modern entrypoints
|
||||
"invokeai" = "ldm.invoke.CLI:main"
|
||||
"invokeai-configure" = "ldm.invoke.config.invokeai_configure:main"
|
||||
"invokeai-model-install" = "ldm.invoke.config.model_install:main"
|
||||
"invokeai-merge" = "ldm.invoke.merge_diffusers:main"
|
||||
"invokeai-ti" = "ldm.invoke.training.textual_inversion:main"
|
||||
"invokeai-update" = "ldm.invoke.config.invokeai_update:main"
|
||||
"invokeai-batch" = "ldm.invoke.dynamic_prompts:main"
|
||||
|
||||
[project.urls]
|
||||
"Bug Reports" = "https://github.com/invoke-ai/InvokeAI/issues"
|
||||
|
9
scripts/dynamic_prompts.py
Executable file
9
scripts/dynamic_prompts.py
Executable file
@ -0,0 +1,9 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
"""
|
||||
Simple script to generate a file of InvokeAI prompts and settings
|
||||
that scan across steps and other parameters.
|
||||
"""
|
||||
|
||||
import ldm.invoke.dynamic_prompts
|
||||
ldm.invoke.dynamic_prompts.main()
|
Loading…
Reference in New Issue
Block a user