wip: Initial implementation of safetensor support for IP Adapter

This commit is contained in:
blessedcoolant
2024-03-24 01:40:28 +05:30
parent 8584171a49
commit 67afb1763e
6 changed files with 104 additions and 61 deletions

View File

@ -9,8 +9,8 @@ import torch.nn as nn
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
def FeedForward(dim: int, mult: int = 4):
inner_dim = dim * mult
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
@ -19,8 +19,8 @@ def FeedForward(dim, mult=4):
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
def reshape_tensor(x: torch.Tensor, heads: int):
bs, length, _ = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
@ -31,7 +31,7 @@ def reshape_tensor(x, heads):
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
def __init__(self, *, dim: int, dim_head: int = 64, heads: int = 8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
@ -45,7 +45,7 @@ class PerceiverAttention(nn.Module):
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
def forward(self, x: torch.Tensor, latents: torch.Tensor):
"""
Args:
x (torch.Tensor): image features
@ -80,14 +80,14 @@ class PerceiverAttention(nn.Module):
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
dim: int = 1024,
depth: int = 8,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
embedding_dim: int = 768,
output_dim: int = 1024,
ff_mult: int = 4,
):
super().__init__()
@ -110,7 +110,15 @@ class Resampler(nn.Module):
)
@classmethod
def from_state_dict(cls, state_dict: dict[torch.Tensor], depth=8, dim_head=64, heads=16, num_queries=8, ff_mult=4):
def from_state_dict(
cls,
state_dict: dict[str, torch.Tensor],
depth: int = 8,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ff_mult: int = 4,
):
"""A convenience function that initializes a Resampler from a state_dict.
Some of the shape parameters are inferred from the state_dict (e.g. dim, embedding_dim, etc.). At the time of
@ -145,7 +153,7 @@ class Resampler(nn.Module):
model.load_state_dict(state_dict)
return model
def forward(self, x):
def forward(self, x: torch.Tensor):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)