mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
wip: Initial implementation of safetensor support for IP Adapter
This commit is contained in:
@ -323,10 +323,13 @@ class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
|
||||
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
|
||||
|
||||
|
||||
class IPAdapterConfig(ModelConfigBase):
|
||||
"""Model config for IP Adaptor format models."""
|
||||
|
||||
class IPAdapterBaseConfig(ModelConfigBase):
|
||||
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
|
||||
|
||||
|
||||
class IPAdapterDiffusersConfig(IPAdapterBaseConfig):
|
||||
"""Model config for IP Adapter diffusers format models."""
|
||||
|
||||
image_encoder_model_id: str
|
||||
format: Literal[ModelFormat.InvokeAI]
|
||||
|
||||
@ -335,6 +338,16 @@ class IPAdapterConfig(ModelConfigBase):
|
||||
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
|
||||
|
||||
|
||||
class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
|
||||
"""Model config for IP Adapter checkpoint format models."""
|
||||
|
||||
format: Literal[ModelFormat.Checkpoint]
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
|
||||
|
||||
|
||||
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
|
||||
"""Model config for CLIPVision."""
|
||||
|
||||
@ -390,7 +403,8 @@ AnyModelConfig = Annotated[
|
||||
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
|
||||
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
|
||||
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
|
||||
Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()],
|
||||
Annotated[IPAdapterDiffusersConfig, IPAdapterDiffusersConfig.get_tag()],
|
||||
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
|
||||
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
|
||||
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
|
||||
],
|
||||
|
@ -7,19 +7,13 @@ from typing import Optional
|
||||
import torch
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.Checkpoint)
|
||||
class IPAdapterInvokeAILoader(ModelLoader):
|
||||
"""Class to load IP Adapter diffusers models."""
|
||||
|
||||
@ -32,7 +26,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
|
||||
raise ValueError("There are no submodels in an IP-Adapter model.")
|
||||
model_path = Path(config.path)
|
||||
model: RawModel = build_ip_adapter(
|
||||
ip_adapter_ckpt_path=str(model_path / "ip_adapter.bin"),
|
||||
ip_adapter_ckpt_path=str(model_path),
|
||||
device=torch.device("cpu"),
|
||||
dtype=self._torch_dtype,
|
||||
)
|
||||
|
@ -230,9 +230,10 @@ class ModelProbe(object):
|
||||
return ModelType.LoRA
|
||||
elif any(key.startswith(v) for v in {"controlnet", "control_model", "input_blocks"}):
|
||||
return ModelType.ControlNet
|
||||
elif any(key.startswith(v) for v in {"image_proj.", "ip_adapter."}):
|
||||
return ModelType.IPAdapter
|
||||
elif key in {"emb_params", "string_to_param"}:
|
||||
return ModelType.TextualInversion
|
||||
|
||||
else:
|
||||
# diffusers-ti
|
||||
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
|
||||
@ -527,8 +528,15 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
|
||||
|
||||
|
||||
class IPAdapterCheckpointProbe(CheckpointProbeBase):
|
||||
"""Class for probing IP Adapters"""
|
||||
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
raise NotImplementedError()
|
||||
checkpoint = self.checkpoint
|
||||
for key in checkpoint.keys():
|
||||
if not key.startswith(("image_proj.", "ip_adapter.")):
|
||||
continue
|
||||
return BaseModelType.StableDiffusionXL
|
||||
raise InvalidModelConfigException(f"{self.model_path}: Unable to determine base type")
|
||||
|
||||
|
||||
class CLIPVisionCheckpointProbe(CheckpointProbeBase):
|
||||
@ -689,9 +697,7 @@ class ControlNetFolderProbe(FolderProbeBase):
|
||||
else (
|
||||
BaseModelType.StableDiffusion2
|
||||
if dimension == 1024
|
||||
else BaseModelType.StableDiffusionXL
|
||||
if dimension == 2048
|
||||
else None
|
||||
else BaseModelType.StableDiffusionXL if dimension == 2048 else None
|
||||
)
|
||||
)
|
||||
if not base_model:
|
||||
@ -768,7 +774,7 @@ class T2IAdapterFolderProbe(FolderProbeBase):
|
||||
)
|
||||
|
||||
|
||||
############## register probe classes ######
|
||||
# Register probe classes
|
||||
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe)
|
||||
|
Reference in New Issue
Block a user