mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(app): signal progress while processing spandrel tiles
This commit is contained in:
parent
487815b181
commit
682280683a
@ -61,6 +61,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|||||||
tile_size: int,
|
tile_size: int,
|
||||||
spandrel_model: SpandrelImageToImageModel,
|
spandrel_model: SpandrelImageToImageModel,
|
||||||
is_canceled: Callable[[], bool],
|
is_canceled: Callable[[], bool],
|
||||||
|
step_callback: Callable[[int, int], None],
|
||||||
) -> Image.Image:
|
) -> Image.Image:
|
||||||
# Compute the image tiles.
|
# Compute the image tiles.
|
||||||
if tile_size > 0:
|
if tile_size > 0:
|
||||||
@ -103,7 +104,12 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|||||||
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
||||||
|
|
||||||
# Run the model on each tile.
|
# Run the model on each tile.
|
||||||
for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"):
|
pbar = tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles")
|
||||||
|
|
||||||
|
# Update progress, starting with 0.
|
||||||
|
step_callback(0, pbar.total)
|
||||||
|
|
||||||
|
for tile, scaled_tile in pbar:
|
||||||
# Exit early if the invocation has been canceled.
|
# Exit early if the invocation has been canceled.
|
||||||
if is_canceled():
|
if is_canceled():
|
||||||
raise CanceledException
|
raise CanceledException
|
||||||
@ -136,12 +142,27 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|||||||
:,
|
:,
|
||||||
] = output_tile[top_overlap:, left_overlap:, :]
|
] = output_tile[top_overlap:, left_overlap:, :]
|
||||||
|
|
||||||
|
step_callback(pbar.n + 1, pbar.total)
|
||||||
|
|
||||||
# Convert the output tensor to a PIL image.
|
# Convert the output tensor to a PIL image.
|
||||||
np_image = output_tensor.detach().numpy().astype(np.uint8)
|
np_image = output_tensor.detach().numpy().astype(np.uint8)
|
||||||
pil_image = Image.fromarray(np_image)
|
pil_image = Image.fromarray(np_image)
|
||||||
|
|
||||||
return pil_image
|
return pil_image
|
||||||
|
|
||||||
|
def _get_step_callback(self, context: InvocationContext) -> Callable[[int, int], None]:
|
||||||
|
invocation_type = self.get_type()
|
||||||
|
|
||||||
|
def step_callback(step: int, total_steps: int) -> None:
|
||||||
|
context.util.signal_progress(
|
||||||
|
name=invocation_type,
|
||||||
|
step=step,
|
||||||
|
total_steps=total_steps,
|
||||||
|
message="Processing image",
|
||||||
|
)
|
||||||
|
|
||||||
|
return step_callback
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
|
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
|
||||||
@ -156,7 +177,9 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|||||||
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
||||||
|
|
||||||
# Upscale the image
|
# Upscale the image
|
||||||
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
|
pil_image = self.upscale_image(
|
||||||
|
image, self.tile_size, spandrel_model, context.util.is_canceled, self._get_step_callback(context)
|
||||||
|
)
|
||||||
|
|
||||||
image_dto = context.images.save(image=pil_image)
|
image_dto = context.images.save(image=pil_image)
|
||||||
return ImageOutput.build(image_dto)
|
return ImageOutput.build(image_dto)
|
||||||
@ -202,7 +225,9 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
|
|||||||
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
||||||
|
|
||||||
# First pass of upscaling. Note: `pil_image` will be mutated.
|
# First pass of upscaling. Note: `pil_image` will be mutated.
|
||||||
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
|
pil_image = self.upscale_image(
|
||||||
|
image, self.tile_size, spandrel_model, context.util.is_canceled, self._get_step_callback(context)
|
||||||
|
)
|
||||||
|
|
||||||
# Some models don't upscale the image, but we have no way to know this in advance. We'll check if the model
|
# Some models don't upscale the image, but we have no way to know this in advance. We'll check if the model
|
||||||
# upscaled the image and run the loop below if it did. We'll require the model to upscale both dimensions
|
# upscaled the image and run the loop below if it did. We'll require the model to upscale both dimensions
|
||||||
@ -213,7 +238,13 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
|
|||||||
# This is an upscale model, so we should keep upscaling until we reach the target size.
|
# This is an upscale model, so we should keep upscaling until we reach the target size.
|
||||||
iterations = 1
|
iterations = 1
|
||||||
while pil_image.width < target_width or pil_image.height < target_height:
|
while pil_image.width < target_width or pil_image.height < target_height:
|
||||||
pil_image = self.upscale_image(pil_image, self.tile_size, spandrel_model, context.util.is_canceled)
|
pil_image = self.upscale_image(
|
||||||
|
pil_image,
|
||||||
|
self.tile_size,
|
||||||
|
spandrel_model,
|
||||||
|
context.util.is_canceled,
|
||||||
|
self._get_step_callback(context),
|
||||||
|
)
|
||||||
iterations += 1
|
iterations += 1
|
||||||
|
|
||||||
# Sanity check to prevent excessive or infinite loops. All known upscaling models are at least 2x.
|
# Sanity check to prevent excessive or infinite loops. All known upscaling models are at least 2x.
|
||||||
|
Loading…
Reference in New Issue
Block a user