refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary

This commit is contained in:
Damian Stewart 2022-12-05 20:00:18 +01:00
parent c6f31e5f36
commit 69d42762de
3 changed files with 37 additions and 133 deletions

View File

@ -11,11 +11,11 @@ import torch
import torchvision.transforms as T
from diffusers.models import attention
from ldm.models.diffusion.cross_attention_control import InvokeAICrossAttention
from ldm.models.diffusion.cross_attention_control import InvokeAIDiffusersCrossAttention
# monkeypatch diffusers CrossAttention 🙈
# this is to make prompt2prompt and (future) attention maps work
attention.CrossAttention = InvokeAICrossAttention
attention.CrossAttention = InvokeAIDiffusersCrossAttention
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput

View File

@ -212,7 +212,7 @@ def setup_cross_attention_control(model, context: Context):
def get_attention_modules(model, which: CrossAttentionType):
# cross_attention_class: type = ldm.modules.attention.CrossAttention
cross_attention_class: type = InvokeAICrossAttention
cross_attention_class: type = InvokeAIDiffusersCrossAttention
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [(name,module) for name, module in model.named_modules() if
isinstance(module, cross_attention_class) and which_attn in name]
@ -315,12 +315,16 @@ def get_mem_free_total(device):
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total
class InvokeAICrossAttention(diffusers.models.attention.CrossAttention):
def __init__(self, **kwargs):
super().__init__(**kwargs)
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
def __init__(self):
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
self.attention_slice_wrangler = None
self.slicing_strategy_getter = None
@ -342,16 +346,9 @@ class InvokeAICrossAttention(diffusers.models.attention.CrossAttention):
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int,int]]]):
self.slicing_strategy_getter = getter
def _attention(self, query, key, value):
#default_result = super()._attention(query, key, value)
damian_result = self.get_attention_mem_efficient(query, key, value)
hidden_states = self.reshape_batch_dim_to_heads(damian_result)
return hidden_states
def einsum_lowest_level(self, query, key, value, dim, offset, slice_size):
# calculate attention scores
#attention_scores = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
#attention_scores = torch.einsum('b i d, b j d -> b i j', q, k)
if dim is not None:
print(f"sliced dim {dim}, offset {offset}, slice_size {slice_size}")
attention_scores = torch.baddbmm(
@ -370,11 +367,9 @@ class InvokeAICrossAttention(diffusers.models.attention.CrossAttention):
else:
attention_slice = default_attention_slice
#return torch.einsum('b i j, b j d -> b i d', attention_slice, v)
hidden_states = torch.bmm(attention_slice, value)
return hidden_states
def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
@ -424,12 +419,12 @@ class InvokeAICrossAttention(diffusers.models.attention.CrossAttention):
return self.einsum_op_slice_dim1(q, k, v, slice_size)
# fallback for when there is no saved strategy, or saved strategy does not slice
mem_free_total = get_mem_free_total(q.device)
mem_free_total = self.cached_mem_free_total or get_mem_free_total(q.device)
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def get_attention_mem_efficient(self, q, k, v):
def get_invokeai_attention_mem_efficient(self, q, k, v):
if q.device.type == 'cuda':
#print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
return self.einsum_op_cuda(q, k, v)
@ -442,3 +437,19 @@ class InvokeAICrossAttention(diffusers.models.attention.CrossAttention):
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return self.einsum_op_tensor_mem(q, k, v, 32)
class InvokeAIDiffusersCrossAttention(diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
InvokeAICrossAttentionMixin.__init__(self)
def _attention(self, query, key, value):
#default_result = super()._attention(query, key, value)
damian_result = self.get_invokeai_attention_mem_efficient(query, key, value)
hidden_states = self.reshape_batch_dim_to_heads(damian_result)
return hidden_states

View File

@ -7,6 +7,7 @@ import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from ldm.models.diffusion.cross_attention_control import InvokeAICrossAttentionMixin
from ldm.modules.diffusionmodules.util import checkpoint
import psutil
@ -163,8 +164,7 @@ def get_mem_free_total(device):
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total
class CrossAttention(nn.Module):
class CrossAttention(nn.Module, InvokeAICrossAttentionMixin):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
print(f"Warning! ldm.modules.attention.CrossAttention is no longer being maintained. Please use InvokeAICrossAttention instead.")
@ -184,117 +184,6 @@ class CrossAttention(nn.Module):
nn.Dropout(dropout)
)
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
self.cached_mem_free_total = None
self.attention_slice_wrangler = None
self.slicing_strategy_getter = None
def set_attention_slice_wrangler(self, wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]]):
'''
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
Pass None to use the default attention calculation.
:return:
'''
self.attention_slice_wrangler = wrangler
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int,int]]]):
self.slicing_strategy_getter = getter
def cache_free_memory_count(self, device):
self.cached_mem_free_total = get_mem_free_total(device)
print("free cuda memory: ", self.cached_mem_free_total)
def clear_cached_free_memory_count(self):
self.cached_mem_free_total = None
def einsum_lowest_level(self, q, k, v, dim, offset, slice_size):
# calculate attention scores
attention_scores = einsum('b i d, b j d -> b i j', q, k)
# calculate attention slice by taking the best scores for each latent pixel
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
attention_slice_wrangler = self.attention_slice_wrangler
if attention_slice_wrangler is not None:
attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
else:
attention_slice = default_attention_slice
return einsum('b i j, b j d -> b i d', attention_slice, v)
def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
return r
def einsum_op_slice_dim1(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
return r
def einsum_op_mps_v1(self, q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return self.einsum_op_slice_dim1(q, k, v, slice_size)
def einsum_op_mps_v2(self, q, k, v):
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
return self.einsum_op_slice_dim0(q, k, v, 1)
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return self.einsum_lowest_level(q, k, v, None, None, None)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(self, q, k, v):
# check if we already have a slicing strategy (this should only happen during cross-attention controlled generation)
slicing_strategy_getter = self.slicing_strategy_getter
if slicing_strategy_getter is not None:
(dim, slice_size) = slicing_strategy_getter(self)
if dim is not None:
# print("using saved slicing strategy with dim", dim, "slice size", slice_size)
if dim == 0:
return self.einsum_op_slice_dim0(q, k, v, slice_size)
elif dim == 1:
return self.einsum_op_slice_dim1(q, k, v, slice_size)
# fallback for when there is no saved strategy, or saved strategy does not slice
mem_free_total = self.cached_mem_free_total or get_mem_free_total(q.device)
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def get_attention_mem_efficient(self, q, k, v):
if q.device.type == 'cuda':
#print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
return self.einsum_op_cuda(q, k, v)
if q.device.type == 'mps':
if self.mem_total_gb >= 32:
return self.einsum_op_mps_v1(q, k, v)
return self.einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return self.einsum_op_tensor_mem(q, k, v, 32)
def forward(self, x, context=None, mask=None):
h = self.heads
@ -307,7 +196,11 @@ class CrossAttention(nn.Module):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = self.get_attention_mem_efficient(q, k, v)
# prevent scale being applied twice
cached_scale = self.scale
self.scale = 1
r = self.get_invokeai_attention_mem_efficient(q, k, v)
self.scale = cached_scale
hidden_states = rearrange(r, '(b h) n d -> b n (h d)', h=h)
return self.to_out(hidden_states)