mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add support for loading SDXL LoRA weights in diffusers format.
This commit is contained in:
parent
824ca92760
commit
6a8eb392b2
@ -1,18 +1,21 @@
|
|||||||
|
import bisect
|
||||||
import os
|
import os
|
||||||
import torch
|
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Optional, Dict, Union, Literal, Any
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
from safetensors.torch import load_file
|
from safetensors.torch import load_file
|
||||||
|
|
||||||
from .base import (
|
from .base import (
|
||||||
|
BaseModelType,
|
||||||
|
InvalidModelException,
|
||||||
ModelBase,
|
ModelBase,
|
||||||
ModelConfigBase,
|
ModelConfigBase,
|
||||||
BaseModelType,
|
ModelNotFoundException,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
classproperty,
|
classproperty,
|
||||||
InvalidModelException,
|
|
||||||
ModelNotFoundException,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -482,30 +485,61 @@ class LoRAModelRaw: # (torch.nn.Module):
|
|||||||
return model_size
|
return model_size
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _convert_sdxl_compvis_keys(cls, state_dict):
|
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict):
|
||||||
|
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||||
|
|
||||||
|
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||||
|
diffusers format, then this function will have no effect.
|
||||||
|
|
||||||
|
This function is adapted from:
|
||||||
|
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||||
|
"""
|
||||||
|
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||||
|
not_converted_count = 0 # The number of keys that were not converted.
|
||||||
|
|
||||||
|
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||||
|
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||||
|
# `input_blocks_4_1_proj_in`.
|
||||||
|
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||||
|
stability_unet_keys.sort()
|
||||||
|
|
||||||
new_state_dict = dict()
|
new_state_dict = dict()
|
||||||
for full_key, value in state_dict.items():
|
for full_key, value in state_dict.items():
|
||||||
if full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
if full_key.startswith("lora_unet_"):
|
||||||
continue # clip same
|
search_key = full_key.replace("lora_unet_", "")
|
||||||
|
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||||
if not full_key.startswith("lora_unet_"):
|
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||||
raise NotImplementedError(f"Unknown prefix for sdxl lora key - {full_key}")
|
map_key = stability_unet_keys[position - 1]
|
||||||
src_key = full_key.replace("lora_unet_", "")
|
# Now, check if the map_key *actually* matches the search_key.
|
||||||
try:
|
if search_key.startswith(map_key):
|
||||||
dst_key = None
|
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||||
while "_" in src_key:
|
|
||||||
if src_key in SDXL_UNET_COMPVIS_MAP:
|
|
||||||
dst_key = SDXL_UNET_COMPVIS_MAP[src_key]
|
|
||||||
break
|
|
||||||
src_key = "_".join(src_key.split("_")[:-1])
|
|
||||||
|
|
||||||
if dst_key is None:
|
|
||||||
raise Exception(f"Unknown sdxl lora key - {full_key}")
|
|
||||||
new_key = full_key.replace(src_key, dst_key)
|
|
||||||
except:
|
|
||||||
print(SDXL_UNET_COMPVIS_MAP)
|
|
||||||
raise
|
|
||||||
new_state_dict[new_key] = value
|
new_state_dict[new_key] = value
|
||||||
|
converted_count += 1
|
||||||
|
else:
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
not_converted_count += 1
|
||||||
|
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||||
|
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||||
|
|
||||||
|
if converted_count > 0 and not_converted_count > 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||||
|
f" not_converted={not_converted_count}"
|
||||||
|
)
|
||||||
|
|
||||||
return new_state_dict
|
return new_state_dict
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -537,7 +571,7 @@ class LoRAModelRaw: # (torch.nn.Module):
|
|||||||
state_dict = cls._group_state(state_dict)
|
state_dict = cls._group_state(state_dict)
|
||||||
|
|
||||||
if base_model == BaseModelType.StableDiffusionXL:
|
if base_model == BaseModelType.StableDiffusionXL:
|
||||||
state_dict = cls._convert_sdxl_compvis_keys(state_dict)
|
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||||
|
|
||||||
for layer_key, values in state_dict.items():
|
for layer_key, values in state_dict.items():
|
||||||
# lora and locon
|
# lora and locon
|
||||||
@ -588,6 +622,7 @@ class LoRAModelRaw: # (torch.nn.Module):
|
|||||||
# code from
|
# code from
|
||||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||||
def make_sdxl_unet_conversion_map():
|
def make_sdxl_unet_conversion_map():
|
||||||
|
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||||
unet_conversion_map_layer = []
|
unet_conversion_map_layer = []
|
||||||
|
|
||||||
for i in range(3): # num_blocks is 3 in sdxl
|
for i in range(3): # num_blocks is 3 in sdxl
|
||||||
@ -671,7 +706,6 @@ def make_sdxl_unet_conversion_map():
|
|||||||
return unet_conversion_map
|
return unet_conversion_map
|
||||||
|
|
||||||
|
|
||||||
SDXL_UNET_COMPVIS_MAP = {
|
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||||
f"{sd}".rstrip(".").replace(".", "_"): f"{hf}".rstrip(".").replace(".", "_")
|
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||||
for sd, hf in make_sdxl_unet_conversion_map()
|
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user