all files migrated; tweaks needed

This commit is contained in:
Lincoln Stein
2023-03-03 00:02:15 -05:00
parent 3f0b0f3250
commit 6a990565ff
496 changed files with 276 additions and 934 deletions

View File

@ -1,8 +1,8 @@
'''
Initialization file for invokeai.backend
'''
# this is causing circular import issues
# from .invoke_ai_web_server import InvokeAIWebServer
from .model_manager import ModelManager
from .model_management import ModelManager
from .generate import Generate

1347
invokeai/backend/args.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,860 @@
#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
#
# Coauthor: Kevin Turner http://github.com/keturn
#
print("Loading Python libraries...\n")
import argparse
import io
import os
import re
import shutil
import sys
import traceback
import warnings
from argparse import Namespace
from pathlib import Path
from urllib import request
from shutil import get_terminal_size
import npyscreen
import torch
import transformers
from diffusers import AutoencoderKL
from huggingface_hub import HfFolder
from huggingface_hub import login as hf_hub_login
from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import (
AutoProcessor,
CLIPSegForImageSegmentation,
CLIPTextModel,
CLIPTokenizer,
)
import invokeai.configs as configs
from ..args import PRECISION_CHOICES, Args
from ..globals import Globals, global_config_dir, global_config_file, global_cache_dir
from ...frontend.config.model_install import addModelsForm, process_and_execute
from .model_install_backend import (
default_dataset,
download_from_hf,
recommended_datasets,
hf_download_with_resume,
)
from ...frontend.config.widgets import IntTitleSlider, CenteredButtonPress, set_min_terminal_size
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
# --------------------------globals-----------------------
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
Default_config_file = Path(global_config_dir()) / "models.yaml"
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
Datasets = OmegaConf.load(Dataset_path)
# minimum size for the UI
MIN_COLS = 135
MIN_LINES = 45
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
# Place frequently-used startup commands here, one or more per line.
# Examples:
# --outdir=D:\data\images
# --no-nsfw_checker
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
"""
# --------------------------------------------
def postscript(errors: None):
if not any(errors):
message = f"""
** INVOKEAI INSTALLATION SUCCESSFUL **
If you installed manually from source or with 'pip install': activate the virtual environment
then run one of the following commands to start InvokeAI.
Web UI:
invokeai --web # (connect to http://localhost:9090)
invokeai --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network)
Command-line interface:
invokeai
If you installed using an installation script, run:
{Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
Add the '--help' argument to see all of the command-line switches available for use.
"""
else:
message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
for err in errors:
message += f"\t - {err}\n"
message += "Please check the logs above and correct any issues."
print(message)
# ---------------------------------------------
def yes_or_no(prompt: str, default_yes=True):
default = "y" if default_yes else "n"
response = input(f"{prompt} [{default}] ") or default
if default_yes:
return response[0] not in ("n", "N")
else:
return response[0] in ("y", "Y")
# ---------------------------------------------
def HfLogin(access_token) -> str:
"""
Helper for logging in to Huggingface
The stdout capture is needed to hide the irrelevant "git credential helper" warning
"""
capture = io.StringIO()
sys.stdout = capture
try:
hf_hub_login(token=access_token, add_to_git_credential=False)
sys.stdout = sys.__stdout__
except Exception as exc:
sys.stdout = sys.__stdout__
print(exc)
raise exc
# -------------------------------------
class ProgressBar:
def __init__(self, model_name="file"):
self.pbar = None
self.name = model_name
def __call__(self, block_num, block_size, total_size):
if not self.pbar:
self.pbar = tqdm(
desc=self.name,
initial=0,
unit="iB",
unit_scale=True,
unit_divisor=1000,
total=total_size,
)
self.pbar.update(block_size)
# ---------------------------------------------
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
try:
print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr)
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
request.urlretrieve(
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
)
print("...downloaded successfully", file=sys.stderr)
else:
print("...exists", file=sys.stderr)
except Exception:
print("...download failed", file=sys.stderr)
print(f"Error downloading {label} model", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
# ---------------------------------------------
# this will preload the Bert tokenizer fles
def download_bert():
print(
"Installing bert tokenizer...",
file=sys.stderr
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
from transformers import BertTokenizerFast
download_from_hf(BertTokenizerFast, "bert-base-uncased")
# ---------------------------------------------
def download_sd1_clip():
print("Installing SD1 clip model...", file=sys.stderr)
version = "openai/clip-vit-large-patch14"
download_from_hf(CLIPTokenizer, version)
download_from_hf(CLIPTextModel, version)
# ---------------------------------------------
def download_sd2_clip():
version = 'stabilityai/stable-diffusion-2'
print("Installing SD2 clip model...", file=sys.stderr)
download_from_hf(CLIPTokenizer, version, subfolder='tokenizer')
download_from_hf(CLIPTextModel, version, subfolder='text_encoder')
# ---------------------------------------------
def download_realesrgan():
print("Installing models from RealESRGAN...", file=sys.stderr)
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-x4v3.pth"
)
wdn_model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
)
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn")
def download_gfpgan():
print("Installing GFPGAN models...", file=sys.stderr)
for model in (
[
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"./models/gfpgan/GFPGANv1.4.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
"./models/gfpgan/weights/detection_Resnet50_Final.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
"./models/gfpgan/weights/parsing_parsenet.pth",
],
):
model_url, model_dest = model[0], os.path.join(Globals.root, model[1])
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
# ---------------------------------------------
def download_codeformer():
print("Installing CodeFormer model file...", file=sys.stderr)
model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
model_dest = os.path.join(Globals.root, "models/codeformer/codeformer.pth")
download_with_progress_bar(model_url, model_dest, "CodeFormer")
# ---------------------------------------------
def download_clipseg():
print("Installing clipseg model for text-based masking...", file=sys.stderr)
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
try:
download_from_hf(AutoProcessor, CLIPSEG_MODEL)
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL)
except Exception:
print("Error installing clipseg model:")
print(traceback.format_exc())
# -------------------------------------
def download_safety_checker():
print("Installing model for NSFW content detection...", file=sys.stderr)
try:
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
except ModuleNotFoundError:
print("Error installing NSFW checker model:")
print(traceback.format_exc())
return
safety_model_id = "CompVis/stable-diffusion-safety-checker"
print("AutoFeatureExtractor...", file=sys.stderr)
download_from_hf(AutoFeatureExtractor, safety_model_id)
print("StableDiffusionSafetyChecker...", file=sys.stderr)
download_from_hf(StableDiffusionSafetyChecker, safety_model_id)
# -------------------------------------
def download_vaes():
print("Installing stabilityai VAE...", file=sys.stderr)
try:
# first the diffusers version
repo_id = "stabilityai/sd-vae-ft-mse"
args = dict(
cache_dir=global_cache_dir("diffusers"),
)
if not AutoencoderKL.from_pretrained(repo_id, **args):
raise Exception(f"download of {repo_id} failed")
repo_id = "stabilityai/sd-vae-ft-mse-original"
model_name = "vae-ft-mse-840000-ema-pruned.ckpt"
# next the legacy checkpoint version
if not hf_download_with_resume(
repo_id=repo_id,
model_name=model_name,
model_dir=str(Globals.root / Model_dir / Weights_dir),
):
raise Exception(f"download of {model_name} failed")
except Exception as e:
print(f"Error downloading StabilityAI standard VAE: {str(e)}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
# -------------------------------------
def get_root(root: str = None) -> str:
if root:
return root
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
# -------------------------------------
class editOptsForm(npyscreen.FormMultiPage):
# for responsive resizing - disabled
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
def create(self):
program_opts = self.parentApp.program_opts
old_opts = self.parentApp.invokeai_opts
first_time = not (Globals.root / Globals.initfile).exists()
access_token = HfFolder.get_token()
window_width,window_height = get_terminal_size()
for i in [
"Configure startup settings. You can come back and change these later.",
"Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.",
"Use cursor arrows to make a checkbox selection, and space to toggle.",
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color="CONTROL",
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== BASIC OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Select an output directory for images:",
editable=False,
color="CONTROL",
)
self.outdir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
value=old_opts.outdir or str(default_output_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=40,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Activate the NSFW checker to blur images showing potential sexual imagery:",
editable=False,
color="CONTROL",
)
self.safety_checker = self.add_widget_intelligent(
npyscreen.Checkbox,
name="NSFW checker",
value=old_opts.safety_checker,
relx=5,
scroll_exit=True,
)
self.nextrely += 1
for i in [
"If you have an account at HuggingFace you may paste your access token here",
'to allow InvokeAI to download styles & subjects from the "Concept Library".',
"See https://huggingface.co/settings/tokens",
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color="CONTROL",
)
self.hf_token = self.add_widget_intelligent(
npyscreen.TitlePassword,
name="Access Token (ctrl-shift-V pastes):",
value=access_token,
begin_entry_at=42,
use_two_lines=False,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== ADVANCED OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="GPU Management",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.free_gpu_mem = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Free GPU memory after each generation",
value=old_opts.free_gpu_mem,
relx=5,
scroll_exit=True,
)
self.xformers = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Enable xformers support if available",
value=old_opts.xformers,
relx=5,
scroll_exit=True,
)
self.ckpt_convert = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Load legacy checkpoint models into memory as diffusers models",
value=old_opts.ckpt_convert,
relx=5,
scroll_exit=True,
)
self.always_use_cpu = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Force CPU to be used on GPU systems",
value=old_opts.always_use_cpu,
relx=5,
scroll_exit=True,
)
precision = old_opts.precision or (
"float32" if program_opts.full_precision else "auto"
)
self.precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Precision",
values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(precision),
begin_entry_at=3,
max_height=len(PRECISION_CHOICES) + 1,
scroll_exit=True,
)
self.max_loaded_models = self.add_widget_intelligent(
IntTitleSlider,
name="Number of models to cache in CPU memory (each will use 2-4 GB!)",
value=old_opts.max_loaded_models,
out_of=10,
lowest=1,
begin_entry_at=4,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Directory containing embedding/textual inversion files:",
editable=False,
color="CONTROL",
)
self.embedding_path = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
value=str(default_embedding_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=40,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== LICENSE ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
for i in [
"BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ",
"AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT",
"https://huggingface.co/spaces/CompVis/stable-diffusion-license",
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color="CONTROL",
)
self.license_acceptance = self.add_widget_intelligent(
npyscreen.Checkbox,
name="I accept the CreativeML Responsible AI License",
value=not first_time,
relx=2,
scroll_exit=True,
)
self.nextrely += 1
label = (
"DONE"
if program_opts.skip_sd_weights or program_opts.default_only
else "NEXT"
)
self.ok_button = self.add_widget_intelligent(
CenteredButtonPress,
name=label,
relx=(window_width - len(label)) // 2,
rely=-3,
when_pressed_function=self.on_ok,
)
def on_ok(self):
options = self.marshall_arguments()
if self.validate_field_values(options):
self.parentApp.new_opts = options
if hasattr(self.parentApp, "model_select"):
self.parentApp.setNextForm("MODELS")
else:
self.parentApp.setNextForm(None)
self.editing = False
else:
self.editing = True
def validate_field_values(self, opt: Namespace) -> bool:
bad_fields = []
if not opt.license_acceptance:
bad_fields.append(
"Please accept the license terms before proceeding to model downloads"
)
if not Path(opt.outdir).parent.exists():
bad_fields.append(
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
)
if not Path(opt.embedding_path).parent.exists():
bad_fields.append(
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_path).parent)} is an existing directory."
)
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:\n"
for problem in bad_fields:
message += f"* {problem}\n"
npyscreen.notify_confirm(message)
return False
else:
return True
def marshall_arguments(self):
new_opts = Namespace()
for attr in [
"outdir",
"safety_checker",
"free_gpu_mem",
"max_loaded_models",
"xformers",
"always_use_cpu",
"embedding_path",
"ckpt_convert",
]:
setattr(new_opts, attr, getattr(self, attr).value)
new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
return new_opts
class EditOptApplication(npyscreen.NPSAppManaged):
def __init__(self, program_opts: Namespace, invokeai_opts: Namespace):
super().__init__()
self.program_opts = program_opts
self.invokeai_opts = invokeai_opts
self.user_cancelled = False
self.user_selections = default_user_selections(program_opts)
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.options = self.addForm(
"MAIN",
editOptsForm,
name="InvokeAI Startup Options",
)
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
self.model_select = self.addForm(
"MODELS",
addModelsForm,
name="Install Stable Diffusion Models",
multipage=True,
)
def new_opts(self):
return self.options.marshall_arguments()
def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace:
editApp = EditOptApplication(program_opts, invokeai_opts)
editApp.run()
return editApp.new_opts()
def default_startup_options(init_file: Path) -> Namespace:
opts = Args().parse_args([])
outdir = Path(opts.outdir)
if not outdir.is_absolute():
opts.outdir = str(Globals.root / opts.outdir)
if not init_file.exists():
opts.safety_checker = True
return opts
def default_user_selections(program_opts: Namespace) -> Namespace:
return Namespace(
starter_models=default_dataset()
if program_opts.default_only
else recommended_datasets()
if program_opts.yes_to_all
else dict(),
purge_deleted_models=False,
scan_directory=None,
autoscan_on_startup=None,
import_model_paths=None,
convert_to_diffusers=None,
)
# -------------------------------------
def initialize_rootdir(root: str, yes_to_all: bool = False):
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
for name in (
"models",
"configs",
"embeddings",
"text-inversion-output",
"text-inversion-training-data",
):
os.makedirs(os.path.join(root, name), exist_ok=True)
configs_src = Path(configs.__path__[0])
configs_dest = Path(root) / "configs"
if not os.path.samefile(configs_src, configs_dest):
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
# -------------------------------------
def run_console_ui(
program_opts: Namespace, initfile: Path = None
) -> (Namespace, Namespace):
# parse_args() will read from init file if present
invokeai_opts = default_startup_options(initfile)
set_min_terminal_size(MIN_COLS, MIN_LINES)
editApp = EditOptApplication(program_opts, invokeai_opts)
editApp.run()
if editApp.user_cancelled:
return (None, None)
else:
return (editApp.new_opts, editApp.user_selections)
# -------------------------------------
def write_opts(opts: Namespace, init_file: Path):
"""
Update the invokeai.init file with values from opts Namespace
"""
# touch file if it doesn't exist
if not init_file.exists():
with open(init_file, "w") as f:
f.write(INIT_FILE_PREAMBLE)
# We want to write in the changed arguments without clobbering
# any other initialization values the user has entered. There is
# no good way to do this because of the one-way nature of
# argparse: i.e. --outdir could be --outdir, --out, or -o
# initfile needs to be replaced with a fully structured format
# such as yaml; this is a hack that will work much of the time
args_to_skip = re.compile(
"^--?(o|out|no-xformer|xformer|no-ckpt|ckpt|free|no-nsfw|nsfw|prec|max_load|embed|always|ckpt|free_gpu)"
)
# fix windows paths
opts.outdir = opts.outdir.replace('\\','/')
opts.embedding_path = opts.embedding_path.replace('\\','/')
new_file = f"{init_file}.new"
try:
lines = [x.strip() for x in open(init_file, "r").readlines()]
with open(new_file, "w") as out_file:
for line in lines:
if len(line) > 0 and not args_to_skip.match(line):
out_file.write(line + "\n")
out_file.write(
f"""
--outdir={opts.outdir}
--embedding_path={opts.embedding_path}
--precision={opts.precision}
--max_loaded_models={int(opts.max_loaded_models)}
--{'no-' if not opts.safety_checker else ''}nsfw_checker
--{'no-' if not opts.xformers else ''}xformers
--{'no-' if not opts.ckpt_convert else ''}ckpt_convert
{'--free_gpu_mem' if opts.free_gpu_mem else ''}
{'--always_use_cpu' if opts.always_use_cpu else ''}
"""
)
except OSError as e:
print(f"** An error occurred while writing the init file: {str(e)}")
os.replace(new_file, init_file)
if opts.hf_token:
HfLogin(opts.hf_token)
# -------------------------------------
def default_output_dir() -> Path:
return Globals.root / "outputs"
# -------------------------------------
def default_embedding_dir() -> Path:
return Globals.root / "embeddings"
# -------------------------------------
def write_default_options(program_opts: Namespace, initfile: Path):
opt = default_startup_options(initfile)
opt.hf_token = HfFolder.get_token()
write_opts(opt, initfile)
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--skip-sd-weights",
dest="skip_sd_weights",
action=argparse.BooleanOptionalAction,
default=False,
help="skip downloading the large Stable Diffusion weight files",
)
parser.add_argument(
"--skip-support-models",
dest="skip_support_models",
action=argparse.BooleanOptionalAction,
default=False,
help="skip downloading the support models",
)
parser.add_argument(
"--full-precision",
dest="full_precision",
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help="use 32-bit weights instead of faster 16-bit weights",
)
parser.add_argument(
"--yes",
"-y",
dest="yes_to_all",
action="store_true",
help='answer "yes" to all prompts',
)
parser.add_argument(
"--default_only",
action="store_true",
help="when --yes specified, only install the default model",
)
parser.add_argument(
"--config_file",
"-c",
dest="config_file",
type=str,
default=None,
help="path to configuration file to create",
)
parser.add_argument(
"--root_dir",
dest="root",
type=str,
default=None,
help="path to root of install directory",
)
opt = parser.parse_args()
# setting a global here
Globals.root = Path(os.path.expanduser(get_root(opt.root) or ""))
errors = set()
try:
models_to_download = default_user_selections(opt)
# We check for to see if the runtime directory is correctly initialized.
init_file = Path(Globals.root, Globals.initfile)
if not init_file.exists() or not global_config_file().exists():
initialize_rootdir(Globals.root, opt.yes_to_all)
if opt.yes_to_all:
write_default_options(opt, init_file)
init_options = Namespace(
precision="float32" if opt.full_precision else "float16"
)
else:
init_options, models_to_download = run_console_ui(opt, init_file)
if init_options:
write_opts(init_options, init_file)
else:
print(
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
)
sys.exit(0)
if opt.skip_support_models:
print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **")
else:
print("\n** DOWNLOADING SUPPORT MODELS **")
download_bert()
download_sd1_clip()
download_sd2_clip()
download_realesrgan()
download_gfpgan()
download_codeformer()
download_clipseg()
download_safety_checker()
download_vaes()
if opt.skip_sd_weights:
print("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
elif models_to_download:
print("\n** DOWNLOADING DIFFUSION WEIGHTS **")
process_and_execute(opt, models_to_download)
postscript(errors=errors)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
# -------------------------------------
if __name__ == "__main__":
main()

View File

@ -0,0 +1,455 @@
"""
Utility (backend) functions used by model_install.py
"""
import os
import re
import shutil
import sys
import warnings
from pathlib import Path
from tempfile import TemporaryFile
import requests
from diffusers import AutoencoderKL
from huggingface_hub import hf_hub_url
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
from typing import List
import invokeai.configs as configs
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from ..globals import Globals, global_cache_dir, global_config_dir
from ..model_management import ModelManager
warnings.filterwarnings("ignore")
# --------------------------globals-----------------------
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
# initial models omegaconf
Datasets = None
Config_preamble = """
# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
"""
def default_config_file():
return Path(global_config_dir()) / "models.yaml"
def sd_configs():
return Path(global_config_dir()) / "stable-diffusion"
def initial_models():
global Datasets
if Datasets:
return Datasets
return (Datasets := OmegaConf.load(Dataset_path))
def install_requested_models(
install_initial_models: List[str] = None,
remove_models: List[str] = None,
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
):
'''
Entry point for installing/deleting starter models, or installing external models.
'''
config_file_path=config_file_path or default_config_file()
if not config_file_path.exists():
open(config_file_path,'w')
model_manager= ModelManager(OmegaConf.load(config_file_path),precision=precision)
if remove_models and len(remove_models) > 0:
print("== DELETING UNCHECKED STARTER MODELS ==")
for model in remove_models:
print(f'{model}...')
model_manager.del_model(model, delete_files=purge_deleted)
model_manager.commit(config_file_path)
if install_initial_models and len(install_initial_models) > 0:
print("== INSTALLING SELECTED STARTER MODELS ==")
successfully_downloaded = download_weight_datasets(
models=install_initial_models,
access_token=None,
precision=precision,
) # FIX: for historical reasons, we don't use model manager here
update_config_file(successfully_downloaded, config_file_path)
if len(successfully_downloaded) < len(install_initial_models):
print("** Some of the model downloads were not successful")
# due to above, we have to reload the model manager because conf file
# was changed behind its back
model_manager= ModelManager(OmegaConf.load(config_file_path),precision=precision)
external_models = external_models or list()
if scan_directory:
external_models.append(str(scan_directory))
if len(external_models)>0:
print("== INSTALLING EXTERNAL MODELS ==")
for path_url_or_repo in external_models:
try:
model_manager.heuristic_import(
path_url_or_repo,
convert=convert_to_diffusers,
commit_to_conf=config_file_path
)
except KeyboardInterrupt:
sys.exit(-1)
except Exception:
pass
if scan_at_startup and scan_directory.is_dir():
argument = '--autoconvert' if convert_to_diffusers else '--autoimport'
initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f'{Globals.initfile}.new')
directory = str(scan_directory).replace('\\','/')
with open(initfile,'r') as input:
with open(replacement,'w') as output:
while line := input.readline():
if not line.startswith(argument):
output.writelines([line])
output.writelines([f'{argument} {directory}'])
os.replace(replacement,initfile)
# -------------------------------------
def yes_or_no(prompt: str, default_yes=True):
default = "y" if default_yes else "n"
response = input(f"{prompt} [{default}] ") or default
if default_yes:
return response[0] not in ("n", "N")
else:
return response[0] in ("y", "Y")
# -------------------------------------
def get_root(root: str = None) -> str:
if root:
return root
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
# ---------------------------------------------
def recommended_datasets() -> dict:
datasets = dict()
for ds in initial_models().keys():
if initial_models()[ds].get("recommended", False):
datasets[ds] = True
return datasets
# ---------------------------------------------
def default_dataset() -> dict:
datasets = dict()
for ds in initial_models().keys():
if initial_models()[ds].get("default", False):
datasets[ds] = True
return datasets
# ---------------------------------------------
def all_datasets() -> dict:
datasets = dict()
for ds in initial_models().keys():
datasets[ds] = True
return datasets
# ---------------------------------------------
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = initial_models()["stable-diffusion-1.4"]["file"]
print('The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.')
print(f"model.ckpt => {new_name}")
os.replace(
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
)
# ---------------------------------------------
def download_weight_datasets(
models: List[str], access_token: str, precision: str = "float32"
):
migrate_models_ckpt()
successful = dict()
for mod in models:
print(f"Downloading {mod}:")
successful[mod] = _download_repo_or_file(
initial_models()[mod], access_token, precision=precision
)
return successful
def _download_repo_or_file(
mconfig: DictConfig, access_token: str, precision: str = "float32"
) -> Path:
path = None
if mconfig["format"] == "ckpt":
path = _download_ckpt_weights(mconfig, access_token)
else:
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
_download_diffusion_weights(
mconfig["vae"], access_token, precision=precision
)
return path
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
repo_id = mconfig["repo_id"]
filename = mconfig["file"]
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
return hf_download_with_resume(
repo_id=repo_id,
model_dir=cache_dir,
model_name=filename,
access_token=access_token,
)
# ---------------------------------------------
def download_from_hf(
model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs
):
path = global_cache_dir(cache_subdir)
model = model_class.from_pretrained(
model_name,
cache_dir=path,
resume_download=True,
**kwargs,
)
model_name = "--".join(("models", *model_name.split("/")))
return path / model_name if model else None
def _download_diffusion_weights(
mconfig: DictConfig, access_token: str, precision: str = "float32"
):
repo_id = mconfig["repo_id"]
model_class = (
StableDiffusionGeneratorPipeline
if mconfig.get("format", None) == "diffusers"
else AutoencoderKL
)
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
path = None
for extra_args in extra_arg_list:
try:
path = download_from_hf(
model_class,
repo_id,
cache_subdir="diffusers",
safety_checker=None,
**extra_args,
)
except OSError as e:
if str(e).startswith("fp16 is not a valid"):
pass
else:
print(f"An unexpected error occurred while downloading the model: {e})")
if path:
break
return path
# ---------------------------------------------
def hf_download_with_resume(
repo_id: str, model_dir: str, model_name: str, access_token: str = None
) -> Path:
model_dest = Path(os.path.join(model_dir, model_name))
os.makedirs(model_dir, exist_ok=True)
url = hf_hub_url(repo_id, model_name)
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
open_mode = "wb"
exist_size = 0
if os.path.exists(model_dest):
exist_size = os.path.getsize(model_dest)
header["Range"] = f"bytes={exist_size}-"
open_mode = "ab"
resp = requests.get(url, headers=header, stream=True)
total = int(resp.headers.get("content-length", 0))
if (
resp.status_code == 416
): # "range not satisfiable", which means nothing to return
print(f"* {model_name}: complete file found. Skipping.")
return model_dest
elif resp.status_code != 200:
print(f"** An error occurred during downloading {model_name}: {resp.reason}")
elif exist_size > 0:
print(f"* {model_name}: partial file found. Resuming...")
else:
print(f"* {model_name}: Downloading...")
try:
if total < 2000:
print(f"*** ERROR DOWNLOADING {model_name}: {resp.text}")
return None
with open(model_dest, open_mode) as file, tqdm(
desc=model_name,
initial=exist_size,
total=total + exist_size,
unit="iB",
unit_scale=True,
unit_divisor=1000,
) as bar:
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
except Exception as e:
print(f"An error occurred while downloading {model_name}: {str(e)}")
return None
return model_dest
# ---------------------------------------------
def update_config_file(successfully_downloaded: dict, config_file: Path):
config_file = (
Path(config_file) if config_file is not None else default_config_file()
)
# In some cases (incomplete setup, etc), the default configs directory might be missing.
# Create it if it doesn't exist.
# this check is ignored if opt.config_file is specified - user is assumed to know what they
# are doing if they are passing a custom config file from elsewhere.
if config_file is default_config_file() and not config_file.parent.exists():
configs_src = Dataset_path.parent
configs_dest = default_config_file().parent
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
yaml = new_config_file_contents(successfully_downloaded, config_file)
try:
backup = None
if os.path.exists(config_file):
print(
f"** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
)
backup = config_file.with_suffix(".yaml.orig")
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
if sys.platform == "win32" and backup.is_file():
backup.unlink()
config_file.rename(backup)
with TemporaryFile() as tmp:
tmp.write(Config_preamble.encode())
tmp.write(yaml.encode())
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
tmp.seek(0)
new_config.write(tmp.read())
except Exception as e:
print(f"**Error creating config file {config_file}: {str(e)} **")
if backup is not None:
print("restoring previous config file")
## workaround, for WinError 183, see above
if sys.platform == "win32" and config_file.is_file():
config_file.unlink()
backup.rename(config_file)
return
print(f"Successfully created new configuration file {config_file}")
# ---------------------------------------------
def new_config_file_contents(
successfully_downloaded: dict, config_file: Path,
) -> str:
if config_file.exists():
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
else:
conf = OmegaConf.create()
default_selected = None
for model in successfully_downloaded:
# a bit hacky - what we are doing here is seeing whether a checkpoint
# version of the model was previously defined, and whether the current
# model is a diffusers (indicated with a path)
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
delete_weights(model, conf[model])
stanza = {}
mod = initial_models()[model]
stanza["description"] = mod["description"]
stanza["repo_id"] = mod["repo_id"]
stanza["format"] = mod["format"]
# diffusers don't need width and height (probably .ckpt doesn't either)
# so we no longer require these in INITIAL_MODELS.yaml
if "width" in mod:
stanza["width"] = mod["width"]
if "height" in mod:
stanza["height"] = mod["height"]
if "file" in mod:
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=Globals.root
)
stanza["config"] = os.path.normpath(os.path.join(sd_configs(), mod["config"]))
if "vae" in mod:
if "file" in mod["vae"]:
stanza["vae"] = os.path.normpath(
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
)
else:
stanza["vae"] = mod["vae"]
if mod.get("default", False):
stanza["default"] = True
default_selected = True
conf[model] = stanza
# if no default model was chosen, then we select the first
# one in the list
if not default_selected:
conf[list(successfully_downloaded.keys())[0]]["default"] = True
return OmegaConf.to_yaml(conf)
# ---------------------------------------------
def delete_weights(model_name: str, conf_stanza: dict):
if not (weights := conf_stanza.get("weights")):
return
if re.match("/VAE/", conf_stanza.get("config")):
return
print(
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
)
weights = Path(weights)
if not weights.is_absolute():
weights = Path(Globals.root) / weights
try:
weights.unlink()
except OSError as e:
print(str(e))

1349
invokeai/backend/generate.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -23,7 +23,7 @@ from tqdm import trange
import invokeai.assets.web as web_assets
from ..stable_diffusion.diffusion.ddpm import DiffusionWrapper
from ..util import rand_perlin_2d
from ..util.util import rand_perlin_2d
downsampling = 8
CAUTION_IMG = 'caution.png'

115
invokeai/backend/globals.py Normal file
View File

@ -0,0 +1,115 @@
'''
invokeai.backend.globals defines a small number of global variables that would
otherwise have to be passed through long and complex call chains.
It defines a Namespace object named "Globals" that contains
the attributes:
- root - the root directory under which "models" and "outputs" can be found
- initfile - path to the initialization file
- try_patchmatch - option to globally disable loading of 'patchmatch' module
- always_use_cpu - force use of CPU even if GPU is available
'''
import os
import os.path as osp
from argparse import Namespace
from pathlib import Path
from typing import Union
Globals = Namespace()
# Where to look for the initialization file and other key components
Globals.initfile = 'invokeai.init'
Globals.models_file = 'models.yaml'
Globals.models_dir = 'models'
Globals.config_dir = 'configs'
Globals.autoscan_dir = 'weights'
Globals.converted_ckpts_dir = 'converted_ckpts'
# Set the default root directory. This can be overwritten by explicitly
# passing the `--root <directory>` argument on the command line.
# logic is:
# 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory)
# 2) use VIRTUAL_ENV environment variable, with a check for initfile being there
# 3) use ~/invokeai
if os.environ.get('INVOKEAI_ROOT'):
Globals.root = osp.abspath(os.environ.get('INVOKEAI_ROOT'))
elif os.environ.get('VIRTUAL_ENV') and Path(os.environ.get('VIRTUAL_ENV'),'..',Globals.initfile).exists():
Globals.root = osp.abspath(osp.join(os.environ.get('VIRTUAL_ENV'), '..'))
else:
Globals.root = osp.abspath(osp.expanduser('~/invokeai'))
# Try loading patchmatch
Globals.try_patchmatch = True
# Use CPU even if GPU is available (main use case is for debugging MPS issues)
Globals.always_use_cpu = False
# Whether the internet is reachable for dynamic downloads
# The CLI will test connectivity at startup time.
Globals.internet_available = True
# Whether to disable xformers
Globals.disable_xformers = False
# Low-memory tradeoff for guidance calculations.
Globals.sequential_guidance = False
# whether we are forcing full precision
Globals.full_precision = False
# whether we should convert ckpt files into diffusers models on the fly
Globals.ckpt_convert = True
# logging tokenization everywhere
Globals.log_tokenization = False
def global_config_file()->Path:
return Path(Globals.root, Globals.config_dir, Globals.models_file)
def global_config_dir()->Path:
return Path(Globals.root, Globals.config_dir)
def global_models_dir()->Path:
return Path(Globals.root, Globals.models_dir)
def global_autoscan_dir()->Path:
return Path(Globals.root, Globals.autoscan_dir)
def global_converted_ckpts_dir()->Path:
return Path(global_models_dir(), Globals.converted_ckpts_dir)
def global_set_root(root_dir:Union[str,Path]):
Globals.root = root_dir
def global_cache_dir(subdir:Union[str,Path]='')->Path:
'''
Returns Path to the model cache directory. If a subdirectory
is provided, it will be appended to the end of the path, allowing
for huggingface-style conventions:
global_cache_dir('diffusers')
global_cache_dir('hub')
Current HuggingFace documentation (mid-Jan 2023) indicates that
transformers models will be cached into a "transformers" subdirectory,
but in practice they seem to go into "hub". But if needed:
global_cache_dir('transformers')
One other caveat is that HuggingFace is moving some diffusers models
into the "hub" subdirectory as well, so this will need to be revisited
from time to time.
'''
home: str = os.getenv('HF_HOME')
if home is None:
home = os.getenv('XDG_CACHE_HOME')
if home is not None:
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in HuggingFace Hub Client Library.
# See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome
home += os.sep + 'huggingface'
if home is not None:
return Path(home,subdir)
else:
return Path(Globals.root,'models',subdir)

View File

@ -9,6 +9,7 @@ from .pngwriter import (PngWriter,
retrieve_metadata,
write_metadata,
)
from .seamless import configure_model_padding
def debug_image(
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False

View File

@ -4,7 +4,7 @@ wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
'''
from ldm.invoke.globals import Globals
from invokeai.backend.globals import Globals
import numpy as np
class PatchMatch:

View File

@ -0,0 +1,31 @@
import torch.nn as nn
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding['x'], mode=self.asymmetric_padding_mode['x'])
working = nn.functional.pad(working, self.asymmetric_padding['y'], mode=self.asymmetric_padding_mode['y'])
return nn.functional.conv2d(working, weight, bias, self.stride, nn.modules.utils._pair(0), self.dilation, self.groups)
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options.
"""
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode['x'] = 'circular' if ('x' in seamless_axes) else 'constant'
m.asymmetric_padding['x'] = (m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[1], 0, 0)
m.asymmetric_padding_mode['y'] = 'circular' if ('y' in seamless_axes) else 'constant'
m.asymmetric_padding['y'] = (0, 0, m._reversed_padding_repeated_twice[2], m._reversed_padding_repeated_twice[3])
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
else:
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
if hasattr(m, 'asymmetric_padding_mode'):
del m.asymmetric_padding_mode
if hasattr(m, 'asymmetric_padding'):
del m.asymmetric_padding

View File

@ -32,7 +32,7 @@ import numpy as np
from transformers import AutoProcessor, CLIPSegForImageSegmentation
from PIL import Image, ImageOps
from torchvision import transforms
from ldm.invoke.globals import global_cache_dir
from invokeai.backend.globals import global_cache_dir
CLIPSEG_MODEL = 'CIDAS/clipseg-rd64-refined'
CLIPSEG_SIZE = 352

View File

@ -0,0 +1,8 @@
'''
Initialization file for invokeai.backend.model_management
'''
from .model_manager import ModelManager
from .convert_ckpt_to_diffusers import (load_pipeline_from_original_stable_diffusion_ckpt,
convert_ckpt_to_diffusers)
from ...frontend.merge.merge_diffusers import (merge_diffusion_models,
merge_diffusion_models_and_commit)

File diff suppressed because it is too large Load Diff

View File

@ -31,14 +31,13 @@ from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from picklescan.scanner import scan_file_path
from .devices import CPU_DEVICE
from ldm.invoke.globals import Globals, global_cache_dir
from .util import (
from ..util import CPU_DEVICE
from invokeai.backend.globals import Globals, global_cache_dir
from ..util import (
ask_user,
download_with_resume,
url_attachment_name,
)
from .stable_diffusion import StableDiffusionGeneratorPipeline
from ..stable_diffusion import StableDiffusionGeneratorPipeline
class SDLegacyType(Enum):
V1 = 1
@ -416,6 +415,51 @@ class ModelManager(object):
return pipeline, width, height, model_hash
def _load_ckpt_model(self, model_name, mconfig):
config = mconfig.config
weights = mconfig.weights
vae = mconfig.get("vae")
width = mconfig.width
height = mconfig.height
if not os.path.isabs(config):
config = os.path.join(Globals.root, config)
if not os.path.isabs(weights):
weights = os.path.normpath(os.path.join(Globals.root, weights))
# Convert to diffusers and return a diffusers pipeline
print(
f">> Converting legacy checkpoint {model_name} into a diffusers model..."
)
from . import load_pipeline_from_original_stable_diffusion_ckpt
self.offload_model(self.current_model)
if vae_config := self._choose_diffusers_vae(model_name):
vae = self._load_vae(vae_config)
if self._has_cuda():
torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
checkpoint_path=weights,
original_config_file=config,
vae=vae,
return_generator_pipeline=True,
precision=torch.float16
if self.precision == "float16"
else torch.float32,
)
if self.sequential_offload:
pipeline.enable_offload_submodels(self.device)
else:
pipeline.to(self.device)
return (
pipeline,
width,
height,
"NOHASH",
)
def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path:
if isinstance(model_name, DictConfig) or isinstance(model_name, dict):
mconfig = model_name
@ -519,66 +563,6 @@ class ModelManager(object):
self.commit(commit_to_conf)
return model_name
def import_ckpt_model(
self,
weights: Union[str, Path],
config: Union[str, Path] = "configs/stable-diffusion/v1-inference.yaml",
vae: Union[str, Path] = None,
model_name: str = None,
model_description: str = None,
commit_to_conf: Path = None,
) -> str:
"""
Attempts to install the indicated ckpt file and returns True if successful.
"weights" can be either a path-like object corresponding to a local .ckpt file
or a http/https URL pointing to a remote model.
"vae" is a Path or str object pointing to a ckpt or safetensors file to be used
as the VAE for this model.
"config" is the model config file to use with this ckpt file. It defaults to
v1-inference.yaml. If a URL is provided, the config will be downloaded.
You can optionally provide a model name and/or description. If not provided,
then these will be derived from the weight file name. If you provide a commit_to_conf
path to the configuration file, then the new entry will be committed to the
models.yaml file.
Return value is the name of the imported file, or None if an error occurred.
"""
if str(weights).startswith(("http:", "https:")):
model_name = model_name or url_attachment_name(weights)
weights_path = self._resolve_path(weights, "models/ldm/stable-diffusion-v1")
config_path = self._resolve_path(config, "configs/stable-diffusion")
if weights_path is None or not weights_path.exists():
return
if config_path is None or not config_path.exists():
return
model_name = (
model_name or Path(weights).stem
) # note this gives ugly pathnames if used on a URL without a Content-Disposition header
model_description = (
model_description or f"Imported stable diffusion weights file {model_name}"
)
new_config = dict(
weights=str(weights_path),
config=str(config_path),
description=model_description,
format="ckpt",
width=512,
height=512,
)
if vae:
new_config["vae"] = vae
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
return model_name
@classmethod
def probe_model_type(self, checkpoint: dict) -> SDLegacyType:
"""
@ -746,36 +730,18 @@ class ModelManager(object):
)
return
if convert:
diffuser_path = Path(
Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem
)
model_name = self.convert_and_import(
model_path,
diffusers_path=diffuser_path,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
model_name=model_name,
model_description=description,
original_config_file=model_config_file,
commit_to_conf=commit_to_conf,
)
else:
model_name = self.import_ckpt_model(
model_path,
config=model_config_file,
model_name=model_name,
model_description=description,
vae=str(
Path(
Globals.root,
"models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt",
)
),
commit_to_conf=commit_to_conf,
)
if commit_to_conf:
self.commit(commit_to_conf)
diffuser_path = Path(
Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem
)
model_name = self.convert_and_import(
model_path,
diffusers_path=diffuser_path,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
model_name=model_name,
model_description=description,
original_config_file=model_config_file,
commit_to_conf=commit_to_conf,
)
return model_name
def convert_and_import(
@ -800,7 +766,7 @@ class ModelManager(object):
new_config = None
from ldm.invoke.ckpt_to_diffuser import convert_ckpt_to_diffuser
from . import convert_ckpt_to_diffusers
if diffusers_path.exists():
print(
@ -815,7 +781,7 @@ class ModelManager(object):
# By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file
vae_model = self._load_vae(vae) if vae else None
convert_ckpt_to_diffuser(
convert_ckpt_to_diffusers (
ckpt_path,
diffusers_path,
extract_ema=True,

View File

@ -13,9 +13,9 @@ from transformers import CLIPTokenizer, CLIPTextModel
from compel import Compel
from compel.prompt_parser import FlattenedPrompt, Blend, Fragment, CrossAttentionControlSubstitute, PromptParser
from ..devices import torch_dtype
from ..util import torch_dtype
from ..stable_diffusion import InvokeAIDiffuserComponent
from ldm.invoke.globals import Globals
from invokeai.backend.globals import Globals
def get_tokenizer(model) -> CLIPTokenizer:
# TODO remove legacy ckpt fallback handling

View File

@ -0,0 +1,4 @@
'''
Initialization file for the ldm.invoke.restoration package
'''
from .base import Restoration

View File

@ -0,0 +1,38 @@
class Restoration():
def __init__(self) -> None:
pass
def load_face_restore_models(self, gfpgan_model_path='./models/gfpgan/GFPGANv1.4.pth'):
# Load GFPGAN
gfpgan = self.load_gfpgan(gfpgan_model_path)
if gfpgan.gfpgan_model_exists:
print('>> GFPGAN Initialized')
else:
print('>> GFPGAN Disabled')
gfpgan = None
# Load CodeFormer
codeformer = self.load_codeformer()
if codeformer.codeformer_model_exists:
print('>> CodeFormer Initialized')
else:
print('>> CodeFormer Disabled')
codeformer = None
return gfpgan, codeformer
# Face Restore Models
def load_gfpgan(self, gfpgan_model_path):
from .gfpgan import GFPGAN
return GFPGAN(gfpgan_model_path)
def load_codeformer(self):
from .codeformer import CodeFormerRestoration
return CodeFormerRestoration()
# Upscale Models
def load_esrgan(self, esrgan_bg_tile=400):
from .realesrgan import ESRGAN
esrgan = ESRGAN(esrgan_bg_tile)
print('>> ESRGAN Initialized')
return esrgan;

View File

@ -0,0 +1,108 @@
import os
import torch
import numpy as np
import warnings
import sys
from invokeai.backend.globals import Globals
pretrained_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
class CodeFormerRestoration():
def __init__(self,
codeformer_dir='models/codeformer',
codeformer_model_path='codeformer.pth') -> None:
if not os.path.isabs(codeformer_dir):
codeformer_dir = os.path.join(Globals.root, codeformer_dir)
self.model_path = os.path.join(codeformer_dir, codeformer_model_path)
self.codeformer_model_exists = os.path.isfile(self.model_path)
if not self.codeformer_model_exists:
print('## NOT FOUND: CodeFormer model not found at ' + self.model_path)
sys.path.append(os.path.abspath(codeformer_dir))
def process(self, image, strength, device, seed=None, fidelity=0.75):
if seed is not None:
print(f'>> CodeFormer - Restoring Faces for image seed:{seed}')
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from ldm.invoke.restoration.codeformer_arch import CodeFormer
from torchvision.transforms.functional import normalize
from PIL import Image
cf_class = CodeFormer
cf = cf_class(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=['32', '64', '128', '256']
).to(device)
# note that this file should already be downloaded and cached at
# this point
checkpoint_path = load_file_from_url(url=pretrained_model_url,
model_dir=os.path.abspath(os.path.dirname(self.model_path)),
progress=True
)
checkpoint = torch.load(checkpoint_path)['params_ema']
cf.load_state_dict(checkpoint)
cf.eval()
image = image.convert('RGB')
# Codeformer expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
face_helper = FaceRestoreHelper(
upscale_factor=1,
use_parse=True,
device=device,
model_rootpath=os.path.join(Globals.root,'models','gfpgan','weights'),
)
face_helper.clean_all()
face_helper.read_image(bgr_image_array)
face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
face_helper.align_warp_face()
for idx, cropped_face in enumerate(face_helper.cropped_faces):
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
output = cf(cropped_face_t, w=fidelity, adain=True)[0]
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except RuntimeError as error:
print(f'\tFailed inference for CodeFormer: {error}.')
restored_face = cropped_face
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
face_helper.get_inverse_affine(None)
restored_img = face_helper.paste_faces_to_input_image()
# Flip the channels back to RGB
res = Image.fromarray(restored_img[...,::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
cf = None
return res

View File

@ -0,0 +1,275 @@
import math
import numpy as np
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from typing import Optional, List
from .vqgan_arch import *
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
"""Adaptive instance normalization.
Adjust the reference features to have the similar color and illuminations
as those in the degradate features.
Args:
content_feat (Tensor): The reference feature.
style_feat (Tensor): The degradate features.
"""
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask=None):
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
class TransformerSALayer(nn.Module):
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
super().__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
# Implementation of Feedforward model - MLP
self.linear1 = nn.Linear(embed_dim, dim_mlp)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_mlp, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# self attention
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
# ffn
tgt2 = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout2(tgt2)
return tgt
class Fuse_sft_block(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.encode_enc = ResBlock(2*in_ch, out_ch)
self.scale = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
self.shift = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
def forward(self, enc_feat, dec_feat, w=1):
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
scale = self.scale(enc_feat)
shift = self.shift(enc_feat)
residual = w * (dec_feat * scale + shift)
out = dec_feat + residual
return out
@ARCH_REGISTRY.register()
class CodeFormer(VQAutoEncoder):
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
codebook_size=1024, latent_size=256,
connect_list=['32', '64', '128', '256'],
fix_modules=['quantize','generator']):
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
if fix_modules is not None:
for module in fix_modules:
for param in getattr(self, module).parameters():
param.requires_grad = False
self.connect_list = connect_list
self.n_layers = n_layers
self.dim_embd = dim_embd
self.dim_mlp = dim_embd*2
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
self.feat_emb = nn.Linear(256, self.dim_embd)
# transformer
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
for _ in range(self.n_layers)])
# logits_predict head
self.idx_pred_layer = nn.Sequential(
nn.LayerNorm(dim_embd),
nn.Linear(dim_embd, codebook_size, bias=False))
self.channels = {
'16': 512,
'32': 256,
'64': 256,
'128': 128,
'256': 128,
'512': 64,
}
# after second residual block for > 16, before attn layer for ==16
self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
# after first residual block for > 16, before attn layer for ==16
self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
# fuse_convs_dict
self.fuse_convs_dict = nn.ModuleDict()
for f_size in self.connect_list:
in_ch = self.channels[f_size]
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
# ################### Encoder #####################
enc_feat_dict = {}
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.encoder.blocks):
x = block(x)
if i in out_list:
enc_feat_dict[str(x.shape[-1])] = x.clone()
lq_feat = x
# ################# Transformer ###################
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
# BCHW -> BC(HW) -> (HW)BC
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
query_emb = feat_emb
# Transformer encoder
for layer in self.ft_layers:
query_emb = layer(query_emb, query_pos=pos_emb)
# output logits
logits = self.idx_pred_layer(query_emb) # (hw)bn
logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
if code_only: # for training stage II
# logits doesn't need softmax before cross_entropy loss
return logits, lq_feat
# ################# Quantization ###################
# if self.training:
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
# # b(hw)c -> bc(hw) -> bchw
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
# ------------
soft_one_hot = F.softmax(logits, dim=2)
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
# preserve gradients
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
if detach_16:
quant_feat = quant_feat.detach() # for training stage III
if adain:
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
# ################## Generator ####################
x = quant_feat
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.generator.blocks):
x = block(x)
if i in fuse_list: # fuse after i-th block
f_size = str(x.shape[-1])
if w>0:
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
out = x
# logits doesn't need softmax before cross_entropy loss
return out, logits, lq_feat

View File

@ -0,0 +1,87 @@
import torch
import warnings
import os
import sys
import numpy as np
from invokeai.backend.globals import Globals
from PIL import Image
class GFPGAN():
def __init__(
self,
gfpgan_model_path='models/gfpgan/GFPGANv1.4.pth'
) -> None:
if not os.path.isabs(gfpgan_model_path):
gfpgan_model_path=os.path.abspath(os.path.join(Globals.root,gfpgan_model_path))
self.model_path = gfpgan_model_path
self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists:
print('## NOT FOUND: GFPGAN model not found at ' + self.model_path)
return None
def model_exists(self):
return os.path.isfile(self.model_path)
def process(self, image, strength: float, seed: str = None):
if seed is not None:
print(f'>> GFPGAN - Restoring Faces for image seed:{seed}')
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
cwd = os.getcwd()
os.chdir(os.path.join(Globals.root,'models'))
try:
from gfpgan import GFPGANer
self.gfpgan = GFPGANer(
model_path=self.model_path,
upscale=1,
arch='clean',
channel_multiplier=2,
bg_upsampler=None,
)
except Exception:
import traceback
print('>> Error loading GFPGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
os.chdir(cwd)
if self.gfpgan is None:
print(
f'>> WARNING: GFPGAN not initialized.'
)
print(
f'>> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}'
)
image = image.convert('RGB')
# GFPGAN expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
_, _, restored_img = self.gfpgan.enhance(
bgr_image_array,
has_aligned=False,
only_center_face=False,
paste_back=True,
)
# Flip the channels back to RGB
res = Image.fromarray(restored_img[...,::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.gfpgan = None
return res

View File

@ -0,0 +1,108 @@
import warnings
import math
from PIL import Image, ImageFilter
class Outcrop(object):
def __init__(
self,
image,
generate, # current generate object
):
self.image = image
self.generate = generate
def process (
self,
extents:dict,
opt, # current options
orig_opt, # ones originally used to generate the image
image_callback = None,
prefix = None
):
# grow and mask the image
extended_image = self._extend_all(extents)
# switch samplers temporarily
curr_sampler = self.generate.sampler
self.generate.sampler_name = opt.sampler_name
self.generate._set_sampler()
def wrapped_callback(img,seed,**kwargs):
preferred_seed = orig_opt.seed if orig_opt.seed is not None and orig_opt.seed >= 0 else seed
image_callback(img,preferred_seed,use_prefix=prefix,**kwargs)
result= self.generate.prompt2image(
opt.prompt,
seed = opt.seed or orig_opt.seed,
sampler = self.generate.sampler,
steps = opt.steps,
cfg_scale = opt.cfg_scale,
ddim_eta = self.generate.ddim_eta,
width = extended_image.width,
height = extended_image.height,
init_img = extended_image,
strength = 0.90,
image_callback = wrapped_callback if image_callback else None,
seam_size = opt.seam_size or 96,
seam_blur = opt.seam_blur or 16,
seam_strength = opt.seam_strength or 0.7,
seam_steps = 20,
tile_size = 32,
color_match = True,
force_outpaint = True, # this just stops the warning about erased regions
)
# swap sampler back
self.generate.sampler = curr_sampler
return result
def _extend_all(
self,
extents:dict,
) -> Image:
'''
Extend the image in direction ('top','bottom','left','right') by
the indicated value. The image canvas is extended, and the empty
rectangular section will be filled with a blurred copy of the
adjacent image.
'''
image = self.image
for direction in extents:
assert direction in ['top', 'left', 'bottom', 'right'],'Direction must be one of "top", "left", "bottom", "right"'
pixels = extents[direction]
# round pixels up to the nearest 64
pixels = math.ceil(pixels/64) * 64
print(f'>> extending image {direction}ward by {pixels} pixels')
image = self._rotate(image,direction)
image = self._extend(image,pixels)
image = self._rotate(image,direction,reverse=True)
return image
def _rotate(self,image:Image,direction:str,reverse=False) -> Image:
'''
Rotates image so that the area to extend is always at the top top.
Simplifies logic later. The reverse argument, if true, will undo the
previous transpose.
'''
transposes = {
'right': ['ROTATE_90','ROTATE_270'],
'bottom': ['ROTATE_180','ROTATE_180'],
'left': ['ROTATE_270','ROTATE_90']
}
if direction not in transposes:
return image
transpose = transposes[direction][1 if reverse else 0]
return image.transpose(Image.Transpose.__dict__[transpose])
def _extend(self,image:Image,pixels:int)-> Image:
extended_img = Image.new('RGBA',(image.width,image.height+pixels))
extended_img.paste((0,0,0),[0,0,image.width,image.height+pixels])
extended_img.paste(image,box=(0,pixels))
# now make the top part transparent to use as a mask
alpha = extended_img.getchannel('A')
alpha.paste(0,(0,0,extended_img.width,pixels))
extended_img.putalpha(alpha)
return extended_img

View File

@ -0,0 +1,92 @@
import warnings
import math
from PIL import Image, ImageFilter
class Outpaint(object):
def __init__(self, image, generate):
self.image = image
self.generate = generate
def process(self, opt, old_opt, image_callback = None, prefix = None):
image = self._create_outpaint_image(self.image, opt.out_direction)
seed = old_opt.seed
prompt = old_opt.prompt
def wrapped_callback(img,seed,**kwargs):
image_callback(img,seed,use_prefix=prefix,**kwargs)
return self.generate.prompt2image(
prompt,
seed = seed,
sampler = self.generate.sampler,
steps = opt.steps,
cfg_scale = opt.cfg_scale,
ddim_eta = self.generate.ddim_eta,
width = opt.width,
height = opt.height,
init_img = image,
strength = 0.83,
image_callback = wrapped_callback,
prefix = prefix,
)
def _create_outpaint_image(self, image, direction_args):
assert len(direction_args) in [1, 2], 'Direction (-D) must have exactly one or two arguments.'
if len(direction_args) == 1:
direction = direction_args[0]
pixels = None
elif len(direction_args) == 2:
direction = direction_args[0]
pixels = int(direction_args[1])
assert direction in ['top', 'left', 'bottom', 'right'], 'Direction (-D) must be one of "top", "left", "bottom", "right"'
image = image.convert("RGBA")
# we always extend top, but rotate to extend along the requested side
if direction == 'left':
image = image.transpose(Image.Transpose.ROTATE_270)
elif direction == 'bottom':
image = image.transpose(Image.Transpose.ROTATE_180)
elif direction == 'right':
image = image.transpose(Image.Transpose.ROTATE_90)
pixels = image.height//2 if pixels is None else int(pixels)
assert 0 < pixels < image.height, 'Direction (-D) pixels length must be in the range 0 - image.size'
# the top part of the image is taken from the source image mirrored
# coordinates (0,0) are the upper left corner of an image
top = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM).convert("RGBA")
top = top.crop((0, top.height - pixels, top.width, top.height))
# setting all alpha of the top part to 0
alpha = top.getchannel("A")
alpha.paste(0, (0, 0, top.width, top.height))
top.putalpha(alpha)
# taking the bottom from the original image
bottom = image.crop((0, 0, image.width, image.height - pixels))
new_img = image.copy()
new_img.paste(top, (0, 0))
new_img.paste(bottom, (0, pixels))
# create a 10% dither in the middle
dither = min(image.height//10, pixels)
for x in range(0, image.width, 2):
for y in range(pixels - dither, pixels + dither):
(r, g, b, a) = new_img.getpixel((x, y))
new_img.putpixel((x, y), (r, g, b, 0))
# let's rotate back again
if direction == 'left':
new_img = new_img.transpose(Image.Transpose.ROTATE_90)
elif direction == 'bottom':
new_img = new_img.transpose(Image.Transpose.ROTATE_180)
elif direction == 'right':
new_img = new_img.transpose(Image.Transpose.ROTATE_270)
return new_img

View File

@ -0,0 +1,92 @@
import torch
import warnings
import numpy as np
import os
from invokeai.backend.globals import Globals
from PIL import Image
from PIL.Image import Image as ImageType
class ESRGAN():
def __init__(self, bg_tile_size=400) -> None:
self.bg_tile_size = bg_tile_size
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
def load_esrgan_bg_upsampler(self, denoise_str):
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from realesrgan import RealESRGANer
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = os.path.join(Globals.root, 'models/realesrgan/realesr-general-x4v3.pth')
wdn_model_path = os.path.join(Globals.root, 'models/realesrgan/realesr-general-wdn-x4v3.pth')
scale = 4
bg_upsampler = RealESRGANer(
scale=scale,
model_path=[model_path, wdn_model_path],
model=model,
tile=self.bg_tile_size,
dni_weight=[denoise_str, 1 - denoise_str],
tile_pad=10,
pre_pad=0,
half=use_half_precision,
)
return bg_upsampler
def process(self, image: ImageType, strength: float, seed: str = None, upsampler_scale: int = 2, denoise_str: float = 0.75):
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
try:
upsampler = self.load_esrgan_bg_upsampler(denoise_str)
except Exception:
import traceback
import sys
print('>> Error loading Real-ESRGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if upsampler_scale == 0:
print('>> Real-ESRGAN: Invalid scaling option. Image not upscaled.')
return image
if seed is not None:
print(
f'>> Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}'
)
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
image = image.convert("RGB")
# REALSRGAN expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
output, _ = upsampler.enhance(
bgr_image_array,
outscale=upsampler_scale,
alpha_upsampler='realesrgan',
)
# Flip the channels back to RGB
res = Image.fromarray(output[...,::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if output.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
upsampler = None
return res

View File

@ -0,0 +1,435 @@
'''
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
'''
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
def normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
@torch.jit.script
def swish(x):
return x*torch.sigmoid(x)
# Define VQVAE classes
class VectorQuantizer(nn.Module):
def __init__(self, codebook_size, emb_dim, beta):
super(VectorQuantizer, self).__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.emb_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
2 * torch.matmul(z_flattened, self.embedding.weight.t())
mean_distance = torch.mean(d)
# find closest encodings
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
# [0-1], higher score, higher confidence
min_encoding_scores = torch.exp(-min_encoding_scores/10)
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
min_encodings.scatter_(1, min_encoding_indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
# compute loss for embedding
loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
# preserve gradients
z_q = z + (z_q - z).detach()
# perplexity
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, loss, {
"perplexity": perplexity,
"min_encodings": min_encodings,
"min_encoding_indices": min_encoding_indices,
"min_encoding_scores": min_encoding_scores,
"mean_distance": mean_distance
}
def get_codebook_feat(self, indices, shape):
# input indices: batch*token_num -> (batch*token_num)*1
# shape: batch, height, width, channel
indices = indices.view(-1,1)
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
min_encodings.scatter_(1, indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
if shape is not None: # reshape back to match original input shape
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
return z_q
class GumbelQuantizer(nn.Module):
def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
super().__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.straight_through = straight_through
self.temperature = temp_init
self.kl_weight = kl_weight
self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
self.embed = nn.Embedding(codebook_size, emb_dim)
def forward(self, z):
hard = self.straight_through if self.training else True
logits = self.proj(z)
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
# + kl divergence to the prior loss
qy = F.softmax(logits, dim=1)
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
min_encoding_indices = soft_one_hot.argmax(dim=1)
return z_q, diff, {
"min_encoding_indices": min_encoding_indices
}
class Downsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels=None):
super(ResBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = normalize(in_channels)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = normalize(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x_in):
x = x_in
x = self.norm1(x)
x = swish(x)
x = self.conv1(x)
x = self.norm2(x)
x = swish(x)
x = self.conv2(x)
if self.in_channels != self.out_channels:
x_in = self.conv_out(x_in)
return x + x_in
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = normalize(in_channels)
self.q = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0
)
self.k = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0
)
self.v = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0
)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h*w)
q = q.permute(0, 2, 1)
k = k.reshape(b, c, h*w)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h*w)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x+h_
class Encoder(nn.Module):
def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
super().__init__()
self.nf = nf
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.attn_resolutions = attn_resolutions
curr_res = self.resolution
in_ch_mult = (1,)+tuple(ch_mult)
blocks = []
# initial convultion
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
# residual and downsampling blocks, with attention on smaller res (16x16)
for i in range(self.num_resolutions):
block_in_ch = nf * in_ch_mult[i]
block_out_ch = nf * ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != self.num_resolutions - 1:
blocks.append(Downsample(block_in_ch))
curr_res = curr_res // 2
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch))
blocks.append(AttnBlock(block_in_ch))
blocks.append(ResBlock(block_in_ch, block_in_ch))
# normalise and convert to latent size
blocks.append(normalize(block_in_ch))
blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class Generator(nn.Module):
def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
super().__init__()
self.nf = nf
self.ch_mult = ch_mult
self.num_resolutions = len(self.ch_mult)
self.num_res_blocks = res_blocks
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.in_channels = emb_dim
self.out_channels = 3
block_in_ch = self.nf * self.ch_mult[-1]
curr_res = self.resolution // 2 ** (self.num_resolutions-1)
blocks = []
# initial conv
blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch))
blocks.append(AttnBlock(block_in_ch))
blocks.append(ResBlock(block_in_ch, block_in_ch))
for i in reversed(range(self.num_resolutions)):
block_out_ch = self.nf * self.ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in self.attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != 0:
blocks.append(Upsample(block_in_ch))
curr_res = curr_res * 2
blocks.append(normalize(block_in_ch))
blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
@ARCH_REGISTRY.register()
class VQAutoEncoder(nn.Module):
def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
super().__init__()
logger = get_root_logger()
self.in_channels = 3
self.nf = nf
self.n_blocks = res_blocks
self.codebook_size = codebook_size
self.embed_dim = emb_dim
self.ch_mult = ch_mult
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.quantizer_type = quantizer
self.encoder = Encoder(
self.in_channels,
self.nf,
self.embed_dim,
self.ch_mult,
self.n_blocks,
self.resolution,
self.attn_resolutions
)
if self.quantizer_type == "nearest":
self.beta = beta #0.25
self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
elif self.quantizer_type == "gumbel":
self.gumbel_num_hiddens = emb_dim
self.straight_through = gumbel_straight_through
self.kl_weight = gumbel_kl_weight
self.quantize = GumbelQuantizer(
self.codebook_size,
self.embed_dim,
self.gumbel_num_hiddens,
self.straight_through,
self.kl_weight
)
self.generator = Generator(
self.nf,
self.embed_dim,
self.ch_mult,
self.n_blocks,
self.resolution,
self.attn_resolutions
)
if model_path is not None:
chkpt = torch.load(model_path, map_location='cpu')
if 'params_ema' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
elif 'params' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
logger.info(f'vqgan is loaded from: {model_path} [params]')
else:
raise ValueError(f'Wrong params!')
def forward(self, x):
x = self.encoder(x)
quant, codebook_loss, quant_stats = self.quantize(x)
x = self.generator(quant)
return x, codebook_loss, quant_stats
# patch based discriminator
@ARCH_REGISTRY.register()
class VQGANDiscriminator(nn.Module):
def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
super().__init__()
layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
ndf_mult = 1
ndf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
ndf_mult_prev = ndf_mult
ndf_mult = min(2 ** n, 8)
layers += [
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ndf * ndf_mult),
nn.LeakyReLU(0.2, True)
]
ndf_mult_prev = ndf_mult
ndf_mult = min(2 ** n_layers, 8)
layers += [
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
nn.BatchNorm2d(ndf * ndf_mult),
nn.LeakyReLU(0.2, True)
]
layers += [
nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
self.main = nn.Sequential(*layers)
if model_path is not None:
chkpt = torch.load(model_path, map_location='cpu')
if 'params_d' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
elif 'params' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
else:
raise ValueError(f'Wrong params!')
def forward(self, x):
return self.main(x)

View File

@ -10,7 +10,7 @@ import traceback
from typing import Callable
from urllib import request, error as ul_error
from huggingface_hub import HfFolder, hf_hub_url, ModelSearchArguments, ModelFilter, HfApi
from ldm.invoke.globals import Globals
from invokeai.backend.globals import Globals
class HuggingFaceConceptsLibrary(object):
def __init__(self, root=None):

View File

@ -26,11 +26,11 @@ from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from typing_extensions import ParamSpec
from ldm.invoke.globals import Globals
from ..stable_diffusion.diffusion import InvokeAIDiffuserComponent, PostprocessingSettings, AttentionMapSaver
from ..stable_diffusion.textual_inversion_manager import TextualInversionManager
from ..stable_diffusion.offloading import LazilyLoadedModelGroup, FullyLoadedModelGroup, ModelGroup
from ..devices import normalize_device, CPU_DEVICE
from invokeai.backend.globals import Globals
from .diffusion import InvokeAIDiffuserComponent, PostprocessingSettings, AttentionMapSaver
from .textual_inversion_manager import TextualInversionManager
from .offloading import LazilyLoadedModelGroup, FullyLoadedModelGroup, ModelGroup
from ..util import normalize_device, CPU_DEVICE
from compel import EmbeddingsProvider
@dataclass

View File

@ -15,7 +15,7 @@ from torch import nn
from compel.cross_attention_control import Arguments
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.models.cross_attention import AttnProcessor
from ...devices import torch_dtype
from ...util import torch_dtype
class CrossAttentionType(enum.Enum):

View File

@ -23,7 +23,7 @@ from omegaconf import ListConfig
import urllib
from ..textual_inversion_manager import TextualInversionManager
from ...util import (
from ...util.util import (
log_txt_as_img,
exists,
default,

View File

@ -4,7 +4,7 @@ import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from ...devices import choose_torch_device
from ...util import choose_torch_device
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
from .sampler import Sampler
from ..diffusionmodules.util import noise_like

View File

@ -7,7 +7,7 @@ import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from ...devices import choose_torch_device
from ...util import choose_torch_device
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ..diffusionmodules.util import (

View File

@ -8,7 +8,7 @@ import torch
from diffusers.models.cross_attention import AttnProcessor
from typing_extensions import TypeAlias
from ldm.invoke.globals import Globals
from invokeai.backend.globals import Globals
from .cross_attention_control import Arguments, \
restore_default_cross_attention, override_cross_attention, Context, get_cross_attention_modules, \
CrossAttentionType, SwapCrossAttnContext

View File

@ -15,7 +15,7 @@ import torch.nn as nn
import numpy as np
from einops import repeat
from ...util import instantiate_from_config
from ...util.util import instantiate_from_config
def make_beta_schedule(

View File

@ -10,7 +10,7 @@ from einops import repeat
from transformers import CLIPTokenizer, CLIPTextModel
from ldm.invoke.devices import choose_torch_device
from ldm.invoke.globals import global_cache_dir
from invokeai.backend.globals import global_cache_dir
from ldm.modules.x_transformer import (
Encoder,
TransformerWrapper,

View File

@ -0,0 +1,4 @@
'''
Initialization file for invokeai.backend.training
'''
from .textual_inversion_training import do_textual_inversion_training, parse_args

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,18 @@
'''
Initialization file for invokeai.backend.util
'''
from .devices import (choose_torch_device,
choose_precision,
normalize_device,
torch_dtype,
CPU_DEVICE,
CUDA_DEVICE,
MPS_DEVICE,
)
from .util import (ask_user,
download_with_resume,
instantiate_from_config,
url_attachment_name,
)
from .log import write_log

View File

@ -5,9 +5,11 @@ from contextlib import nullcontext
import torch
from torch import autocast
from ldm.invoke.globals import Globals
from invokeai.backend.globals import Globals
CPU_DEVICE = torch.device("cpu")
CUDA_DEVICE = torch.device("cuda")
MPS_DEVICE = torch.device("mps")
def choose_torch_device() -> torch.device:
'''Convenience routine for guessing which GPU device to run model on'''

View File

@ -0,0 +1,66 @@
"""
Functions for better format logging
write_log -- logs the name of the output image, prompt, and prompt args to the terminal and different types of file
1 write_log_message -- Writes a message to the console
2 write_log_files -- Writes a message to files
2.1 write_log_default -- File in plain text
2.2 write_log_txt -- File in txt format
2.3 write_log_markdown -- File in markdown format
"""
import os
def write_log(results, log_path, file_types, output_cntr):
"""
logs the name of the output image, prompt, and prompt args to the terminal and files
"""
output_cntr = write_log_message(results, output_cntr)
write_log_files(results, log_path, file_types)
return output_cntr
def write_log_message(results, output_cntr):
"""logs to the terminal"""
if len(results) == 0:
return output_cntr
log_lines = [f"{path}: {prompt}\n" for path, prompt in results]
if len(log_lines)>1:
subcntr = 1
for l in log_lines:
print(f"[{output_cntr}.{subcntr}] {l}", end="")
subcntr += 1
else:
print(f"[{output_cntr}] {log_lines[0]}", end="")
return output_cntr+1
def write_log_files(results, log_path, file_types):
for file_type in file_types:
if file_type == "txt":
write_log_txt(log_path, results)
elif file_type == "md" or file_type == "markdown":
write_log_markdown(log_path, results)
else:
print(f"'{file_type}' format is not supported, so write in plain text")
write_log_default(log_path, results, file_type)
def write_log_default(log_path, results, file_type):
plain_txt_lines = [f"{path}: {prompt}\n" for path, prompt in results]
with open(log_path + "." + file_type, "a", encoding="utf-8") as file:
file.writelines(plain_txt_lines)
def write_log_txt(log_path, results):
txt_lines = [f"{path}: {prompt}\n" for path, prompt in results]
with open(log_path + ".txt", "a", encoding="utf-8") as file:
file.writelines(txt_lines)
def write_log_markdown(log_path, results):
md_lines = []
for path, prompt in results:
file_name = os.path.basename(path)
md_lines.append(f"## {file_name}\n![]({file_name})\n\n{prompt}\n")
with open(log_path + ".md", "a", encoding="utf-8") as file:
file.writelines(md_lines)

View File

@ -0,0 +1,4 @@
'''
Initialization file for the web backend.
'''
from .invoke_ai_web_server import InvokeAIWebServer

View File

@ -12,7 +12,7 @@ from threading import Event
from uuid import uuid4
import eventlet
import invokeai.frontend.dist as frontend
import invokeai.frontend.web.dist as frontend
from PIL import Image
from PIL.Image import Image as ImageType
from compel.prompt_parser import Blend
@ -20,24 +20,24 @@ from flask import Flask, redirect, send_from_directory, request, make_response
from flask_socketio import SocketIO
from werkzeug.utils import secure_filename
from invokeai.backend.modules.get_canvas_generation_mode import (
from .modules.get_canvas_generation_mode import (
get_canvas_generation_mode,
)
from .modules.parameters import parameters_to_command
from .prompting import (get_tokens_for_prompt_object,
get_prompt_structure,
get_tokenizer
)
from .image_util import PngWriter, retrieve_metadata
from .generator import infill_methods
from .stable_diffusion import PipelineIntermediateState
from ..prompting import (get_tokens_for_prompt_object,
get_prompt_structure,
get_tokenizer
)
from ..image_util import PngWriter, retrieve_metadata
from ..generator import infill_methods
from ..stable_diffusion import PipelineIntermediateState
from ldm.generate import Generate
from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
from ldm.invoke.globals import ( Globals, global_converted_ckpts_dir,
global_models_dir
)
from ldm.invoke.merge_diffusers import merge_diffusion_models
from .. import Generate
from ..args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
from ..globals import ( Globals, global_converted_ckpts_dir,
global_models_dir
)
from ..model_management import merge_diffusion_models
# Loading Arguments
opt = Args()
@ -236,7 +236,7 @@ class InvokeAIWebServer:
sys.exit(0)
else:
useSSL = args.certfile or args.keyfile
print(">> Started Invoke AI Web Server!")
print(">> Started Invoke AI Web Server")
if self.host == "0.0.0.0":
print(
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."

View File

View File

@ -1,4 +1,4 @@
from invokeai.backend.modules.parse_seed_weights import parse_seed_weights
from .parse_seed_weights import parse_seed_weights
import argparse
SAMPLER_CHOICES = [

View File

Before

Width:  |  Height:  |  Size: 2.7 KiB

After

Width:  |  Height:  |  Size: 2.7 KiB

View File

Before

Width:  |  Height:  |  Size: 292 KiB

After

Width:  |  Height:  |  Size: 292 KiB

View File

Before

Width:  |  Height:  |  Size: 9.5 KiB

After

Width:  |  Height:  |  Size: 9.5 KiB

View File

Before

Width:  |  Height:  |  Size: 3.4 KiB

After

Width:  |  Height:  |  Size: 3.4 KiB