all files migrated; tweaks needed
2
.gitignore
vendored
@ -198,7 +198,7 @@ checkpoints
|
|||||||
.DS_Store
|
.DS_Store
|
||||||
|
|
||||||
# Let the frontend manage its own gitignore
|
# Let the frontend manage its own gitignore
|
||||||
!invokeai/frontend/*
|
!invokeai/frontend/web/*
|
||||||
|
|
||||||
# Scratch folder
|
# Scratch folder
|
||||||
.scratch/
|
.scratch/
|
||||||
|
@ -3,11 +3,10 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
from invokeai.backend.models import ModelManager
|
from invokeai.backend import ModelManager, Generate
|
||||||
|
|
||||||
from ...globals import Globals
|
from ...globals import Globals
|
||||||
from ....generate import Generate
|
import invokeai.version
|
||||||
import ldm.invoke
|
|
||||||
|
|
||||||
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
|
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
|
||||||
def get_generate(args, config) -> Generate:
|
def get_generate(args, config) -> Generate:
|
||||||
@ -16,7 +15,7 @@ def get_generate(args, config) -> Generate:
|
|||||||
if not os.path.exists(config_file):
|
if not os.path.exists(config_file):
|
||||||
report_model_error(args, FileNotFoundError(f"The file {config_file} could not be found."))
|
report_model_error(args, FileNotFoundError(f"The file {config_file} could not be found."))
|
||||||
|
|
||||||
print(f'>> {ldm.invoke.__app_name__}, version {ldm.invoke.__version__}')
|
print(f'>> {invokeai.version.__app_name__}, version {invokeai.version.__version__}')
|
||||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||||
|
|
||||||
# these two lines prevent a horrible warning message from appearing
|
# these two lines prevent a horrible warning message from appearing
|
||||||
@ -160,7 +159,7 @@ def report_model_error(opt:Namespace, e:Exception):
|
|||||||
# Temporary initializer for Generate until we migrate off of it
|
# Temporary initializer for Generate until we migrate off of it
|
||||||
def old_get_generate(args, config) -> Generate:
|
def old_get_generate(args, config) -> Generate:
|
||||||
# TODO: Remove the need for globals
|
# TODO: Remove the need for globals
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
|
|
||||||
# alert - setting globals here
|
# alert - setting globals here
|
||||||
Globals.root = os.path.expanduser(args.root_dir or os.environ.get('INVOKEAI_ROOT') or os.path.abspath('.'))
|
Globals.root = os.path.expanduser(args.root_dir or os.environ.get('INVOKEAI_ROOT') or os.path.abspath('.'))
|
@ -3,8 +3,7 @@ from .invocation_queue import InvocationQueueABC
|
|||||||
from .item_storage import ItemStorageABC
|
from .item_storage import ItemStorageABC
|
||||||
from .image_storage import ImageStorageBase
|
from .image_storage import ImageStorageBase
|
||||||
from .events import EventServiceBase
|
from .events import EventServiceBase
|
||||||
from ....generate import Generate
|
from invokeai.backend import Generate
|
||||||
|
|
||||||
|
|
||||||
class InvocationServices():
|
class InvocationServices():
|
||||||
"""Services that can be used by invocations"""
|
"""Services that can be used by invocations"""
|
@ -1,8 +1,8 @@
|
|||||||
'''
|
'''
|
||||||
Initialization file for invokeai.backend
|
Initialization file for invokeai.backend
|
||||||
'''
|
'''
|
||||||
# this is causing circular import issues
|
from .model_management import ModelManager
|
||||||
# from .invoke_ai_web_server import InvokeAIWebServer
|
from .generate import Generate
|
||||||
from .model_manager import ModelManager
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -98,8 +98,8 @@ from typing import List
|
|||||||
from invokeai.backend.image_util import retrieve_metadata
|
from invokeai.backend.image_util import retrieve_metadata
|
||||||
import invokeai.version
|
import invokeai.version
|
||||||
|
|
||||||
from ldm.invoke.globals import Globals
|
from .globals import Globals
|
||||||
from invokeai.backend.prompting import split_weighted_subprompts
|
from .prompting import split_weighted_subprompts
|
||||||
|
|
||||||
APP_ID = invokeai.version.__app_id__
|
APP_ID = invokeai.version.__app_id__
|
||||||
APP_NAME = invokeai.version.__app_name__
|
APP_NAME = invokeai.version.__app_name__
|
@ -39,14 +39,14 @@ import invokeai.configs as configs
|
|||||||
|
|
||||||
from ..args import PRECISION_CHOICES, Args
|
from ..args import PRECISION_CHOICES, Args
|
||||||
from ..globals import Globals, global_config_dir, global_config_file, global_cache_dir
|
from ..globals import Globals, global_config_dir, global_config_file, global_cache_dir
|
||||||
from .model_install import addModelsForm, process_and_execute
|
from ...frontend.config.model_install import addModelsForm, process_and_execute
|
||||||
from .model_install_backend import (
|
from .model_install_backend import (
|
||||||
default_dataset,
|
default_dataset,
|
||||||
download_from_hf,
|
download_from_hf,
|
||||||
recommended_datasets,
|
recommended_datasets,
|
||||||
hf_download_with_resume,
|
hf_download_with_resume,
|
||||||
)
|
)
|
||||||
from .widgets import IntTitleSlider, CenteredButtonPress, set_min_terminal_size
|
from ...frontend.config.widgets import IntTitleSlider, CenteredButtonPress, set_min_terminal_size
|
||||||
|
|
||||||
|
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
@ -18,9 +18,9 @@ from tqdm import tqdm
|
|||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
import invokeai.configs as configs
|
import invokeai.configs as configs
|
||||||
from invokeai.backend.stable_diffusion import StableDiffusionGeneratorPipeline
|
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||||
from ..globals import Globals, global_cache_dir, global_config_dir
|
from ..globals import Globals, global_cache_dir, global_config_dir
|
||||||
from invokeai.backend import ModelManager
|
from ..model_management import ModelManager
|
||||||
|
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
||||||
|
|
@ -25,17 +25,18 @@ from omegaconf import OmegaConf
|
|||||||
from PIL import Image, ImageOps
|
from PIL import Image, ImageOps
|
||||||
from pytorch_lightning import logging, seed_everything
|
from pytorch_lightning import logging, seed_everything
|
||||||
|
|
||||||
from invokeai.backend import ModelManager
|
from . import ModelManager
|
||||||
from invokeai.backend.prompting import get_uc_and_c_and_ec
|
from .prompting import get_uc_and_c_and_ec
|
||||||
from invokeai.backend.stable_diffusion import (DDIMSampler, KSampler, PLMSSampler)
|
from .stable_diffusion import (DDIMSampler, KSampler, PLMSSampler, HuggingFaceConceptsLibrary)
|
||||||
from invokeai.backend.generator import infill_methods
|
from .generator import infill_methods
|
||||||
from invokeai.backend.stable_diffusion.concepts_lib import HuggingFaceConceptsLibrary
|
from .util import choose_precision, choose_torch_device
|
||||||
from invokeai.backend.devices import choose_precision, choose_torch_device
|
from .image_util import (InitImageResizer,
|
||||||
from invokeai.backend.image_util import InitImageResizer, PngWriter, Txt2Mask
|
PngWriter,
|
||||||
|
Txt2Mask,
|
||||||
|
configure_model_padding)
|
||||||
|
|
||||||
from ldm.invoke.globals import Globals, global_cache_dir
|
from .globals import Globals, global_cache_dir
|
||||||
from ldm.invoke.args import metadata_from_png
|
from .args import metadata_from_png
|
||||||
from ldm.invoke.seamless import configure_model_padding
|
|
||||||
|
|
||||||
def fix_func(orig):
|
def fix_func(orig):
|
||||||
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
@ -23,7 +23,7 @@ from tqdm import trange
|
|||||||
|
|
||||||
import invokeai.assets.web as web_assets
|
import invokeai.assets.web as web_assets
|
||||||
from ..stable_diffusion.diffusion.ddpm import DiffusionWrapper
|
from ..stable_diffusion.diffusion.ddpm import DiffusionWrapper
|
||||||
from ..util import rand_perlin_2d
|
from ..util.util import rand_perlin_2d
|
||||||
|
|
||||||
downsampling = 8
|
downsampling = 8
|
||||||
CAUTION_IMG = 'caution.png'
|
CAUTION_IMG = 'caution.png'
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
'''
|
'''
|
||||||
ldm.invoke.globals defines a small number of global variables that would
|
invokeai.backend.globals defines a small number of global variables that would
|
||||||
otherwise have to be passed through long and complex call chains.
|
otherwise have to be passed through long and complex call chains.
|
||||||
|
|
||||||
It defines a Namespace object named "Globals" that contains
|
It defines a Namespace object named "Globals" that contains
|
@ -9,6 +9,7 @@ from .pngwriter import (PngWriter,
|
|||||||
retrieve_metadata,
|
retrieve_metadata,
|
||||||
write_metadata,
|
write_metadata,
|
||||||
)
|
)
|
||||||
|
from .seamless import configure_model_padding
|
||||||
|
|
||||||
def debug_image(
|
def debug_image(
|
||||||
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
|
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
|
||||||
|
@ -4,7 +4,7 @@ wraps the actual patchmatch object. It respects the global
|
|||||||
"try_patchmatch" attribute, so that patchmatch loading can
|
"try_patchmatch" attribute, so that patchmatch loading can
|
||||||
be suppressed or deferred
|
be suppressed or deferred
|
||||||
'''
|
'''
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
class PatchMatch:
|
class PatchMatch:
|
||||||
|
@ -32,7 +32,7 @@ import numpy as np
|
|||||||
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
||||||
from PIL import Image, ImageOps
|
from PIL import Image, ImageOps
|
||||||
from torchvision import transforms
|
from torchvision import transforms
|
||||||
from ldm.invoke.globals import global_cache_dir
|
from invokeai.backend.globals import global_cache_dir
|
||||||
|
|
||||||
CLIPSEG_MODEL = 'CIDAS/clipseg-rd64-refined'
|
CLIPSEG_MODEL = 'CIDAS/clipseg-rd64-refined'
|
||||||
CLIPSEG_SIZE = 352
|
CLIPSEG_SIZE = 352
|
||||||
|
8
invokeai/backend/model_management/__init__.py
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.backend.model_management
|
||||||
|
'''
|
||||||
|
from .model_manager import ModelManager
|
||||||
|
from .convert_ckpt_to_diffusers import (load_pipeline_from_original_stable_diffusion_ckpt,
|
||||||
|
convert_ckpt_to_diffusers)
|
||||||
|
from ...frontend.merge.merge_diffusers import (merge_diffusion_models,
|
||||||
|
merge_diffusion_models_and_commit)
|
@ -21,11 +21,11 @@ import re
|
|||||||
import torch
|
import torch
|
||||||
import warnings
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from ldm.invoke.globals import (
|
from invokeai.backend.globals import (
|
||||||
global_cache_dir,
|
global_cache_dir,
|
||||||
global_config_dir,
|
global_config_dir,
|
||||||
)
|
)
|
||||||
from invokeai.models import ModelManager, SDLegacyType
|
from .model_manager import ModelManager, SDLegacyType
|
||||||
from safetensors.torch import load_file
|
from safetensors.torch import load_file
|
||||||
from typing import Union
|
from typing import Union
|
||||||
|
|
||||||
@ -56,7 +56,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
|
|||||||
from diffusers.utils import is_safetensors_available
|
from diffusers.utils import is_safetensors_available
|
||||||
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
||||||
|
|
||||||
from invokeai.generator import StableDiffusionGeneratorPipeline
|
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||||
|
|
||||||
def shave_segments(path, n_shave_prefix_segments=1):
|
def shave_segments(path, n_shave_prefix_segments=1):
|
||||||
"""
|
"""
|
||||||
@ -1014,7 +1014,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
|||||||
|
|
||||||
return pipe
|
return pipe
|
||||||
|
|
||||||
def convert_ckpt_to_diffuser(
|
def convert_ckpt_to_diffusers(
|
||||||
checkpoint_path:Union[str,Path],
|
checkpoint_path:Union[str,Path],
|
||||||
dump_path:Union[str,Path],
|
dump_path:Union[str,Path],
|
||||||
**kwargs,
|
**kwargs,
|
@ -31,14 +31,13 @@ from omegaconf import OmegaConf
|
|||||||
from omegaconf.dictconfig import DictConfig
|
from omegaconf.dictconfig import DictConfig
|
||||||
from picklescan.scanner import scan_file_path
|
from picklescan.scanner import scan_file_path
|
||||||
|
|
||||||
from .devices import CPU_DEVICE
|
from ..util import CPU_DEVICE
|
||||||
from ldm.invoke.globals import Globals, global_cache_dir
|
from invokeai.backend.globals import Globals, global_cache_dir
|
||||||
from .util import (
|
from ..util import (
|
||||||
ask_user,
|
ask_user,
|
||||||
download_with_resume,
|
download_with_resume,
|
||||||
url_attachment_name,
|
|
||||||
)
|
)
|
||||||
from .stable_diffusion import StableDiffusionGeneratorPipeline
|
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||||
|
|
||||||
class SDLegacyType(Enum):
|
class SDLegacyType(Enum):
|
||||||
V1 = 1
|
V1 = 1
|
||||||
@ -416,6 +415,51 @@ class ModelManager(object):
|
|||||||
|
|
||||||
return pipeline, width, height, model_hash
|
return pipeline, width, height, model_hash
|
||||||
|
|
||||||
|
def _load_ckpt_model(self, model_name, mconfig):
|
||||||
|
config = mconfig.config
|
||||||
|
weights = mconfig.weights
|
||||||
|
vae = mconfig.get("vae")
|
||||||
|
width = mconfig.width
|
||||||
|
height = mconfig.height
|
||||||
|
|
||||||
|
if not os.path.isabs(config):
|
||||||
|
config = os.path.join(Globals.root, config)
|
||||||
|
if not os.path.isabs(weights):
|
||||||
|
weights = os.path.normpath(os.path.join(Globals.root, weights))
|
||||||
|
|
||||||
|
# Convert to diffusers and return a diffusers pipeline
|
||||||
|
print(
|
||||||
|
f">> Converting legacy checkpoint {model_name} into a diffusers model..."
|
||||||
|
)
|
||||||
|
|
||||||
|
from . import load_pipeline_from_original_stable_diffusion_ckpt
|
||||||
|
|
||||||
|
self.offload_model(self.current_model)
|
||||||
|
if vae_config := self._choose_diffusers_vae(model_name):
|
||||||
|
vae = self._load_vae(vae_config)
|
||||||
|
if self._has_cuda():
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
|
||||||
|
checkpoint_path=weights,
|
||||||
|
original_config_file=config,
|
||||||
|
vae=vae,
|
||||||
|
return_generator_pipeline=True,
|
||||||
|
precision=torch.float16
|
||||||
|
if self.precision == "float16"
|
||||||
|
else torch.float32,
|
||||||
|
)
|
||||||
|
if self.sequential_offload:
|
||||||
|
pipeline.enable_offload_submodels(self.device)
|
||||||
|
else:
|
||||||
|
pipeline.to(self.device)
|
||||||
|
|
||||||
|
return (
|
||||||
|
pipeline,
|
||||||
|
width,
|
||||||
|
height,
|
||||||
|
"NOHASH",
|
||||||
|
)
|
||||||
|
|
||||||
def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path:
|
def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path:
|
||||||
if isinstance(model_name, DictConfig) or isinstance(model_name, dict):
|
if isinstance(model_name, DictConfig) or isinstance(model_name, dict):
|
||||||
mconfig = model_name
|
mconfig = model_name
|
||||||
@ -519,66 +563,6 @@ class ModelManager(object):
|
|||||||
self.commit(commit_to_conf)
|
self.commit(commit_to_conf)
|
||||||
return model_name
|
return model_name
|
||||||
|
|
||||||
def import_ckpt_model(
|
|
||||||
self,
|
|
||||||
weights: Union[str, Path],
|
|
||||||
config: Union[str, Path] = "configs/stable-diffusion/v1-inference.yaml",
|
|
||||||
vae: Union[str, Path] = None,
|
|
||||||
model_name: str = None,
|
|
||||||
model_description: str = None,
|
|
||||||
commit_to_conf: Path = None,
|
|
||||||
) -> str:
|
|
||||||
"""
|
|
||||||
Attempts to install the indicated ckpt file and returns True if successful.
|
|
||||||
|
|
||||||
"weights" can be either a path-like object corresponding to a local .ckpt file
|
|
||||||
or a http/https URL pointing to a remote model.
|
|
||||||
|
|
||||||
"vae" is a Path or str object pointing to a ckpt or safetensors file to be used
|
|
||||||
as the VAE for this model.
|
|
||||||
|
|
||||||
"config" is the model config file to use with this ckpt file. It defaults to
|
|
||||||
v1-inference.yaml. If a URL is provided, the config will be downloaded.
|
|
||||||
|
|
||||||
You can optionally provide a model name and/or description. If not provided,
|
|
||||||
then these will be derived from the weight file name. If you provide a commit_to_conf
|
|
||||||
path to the configuration file, then the new entry will be committed to the
|
|
||||||
models.yaml file.
|
|
||||||
|
|
||||||
Return value is the name of the imported file, or None if an error occurred.
|
|
||||||
"""
|
|
||||||
if str(weights).startswith(("http:", "https:")):
|
|
||||||
model_name = model_name or url_attachment_name(weights)
|
|
||||||
|
|
||||||
weights_path = self._resolve_path(weights, "models/ldm/stable-diffusion-v1")
|
|
||||||
config_path = self._resolve_path(config, "configs/stable-diffusion")
|
|
||||||
|
|
||||||
if weights_path is None or not weights_path.exists():
|
|
||||||
return
|
|
||||||
if config_path is None or not config_path.exists():
|
|
||||||
return
|
|
||||||
|
|
||||||
model_name = (
|
|
||||||
model_name or Path(weights).stem
|
|
||||||
) # note this gives ugly pathnames if used on a URL without a Content-Disposition header
|
|
||||||
model_description = (
|
|
||||||
model_description or f"Imported stable diffusion weights file {model_name}"
|
|
||||||
)
|
|
||||||
new_config = dict(
|
|
||||||
weights=str(weights_path),
|
|
||||||
config=str(config_path),
|
|
||||||
description=model_description,
|
|
||||||
format="ckpt",
|
|
||||||
width=512,
|
|
||||||
height=512,
|
|
||||||
)
|
|
||||||
if vae:
|
|
||||||
new_config["vae"] = vae
|
|
||||||
self.add_model(model_name, new_config, True)
|
|
||||||
if commit_to_conf:
|
|
||||||
self.commit(commit_to_conf)
|
|
||||||
return model_name
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def probe_model_type(self, checkpoint: dict) -> SDLegacyType:
|
def probe_model_type(self, checkpoint: dict) -> SDLegacyType:
|
||||||
"""
|
"""
|
||||||
@ -746,7 +730,6 @@ class ModelManager(object):
|
|||||||
)
|
)
|
||||||
return
|
return
|
||||||
|
|
||||||
if convert:
|
|
||||||
diffuser_path = Path(
|
diffuser_path = Path(
|
||||||
Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem
|
Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem
|
||||||
)
|
)
|
||||||
@ -759,23 +742,6 @@ class ModelManager(object):
|
|||||||
original_config_file=model_config_file,
|
original_config_file=model_config_file,
|
||||||
commit_to_conf=commit_to_conf,
|
commit_to_conf=commit_to_conf,
|
||||||
)
|
)
|
||||||
else:
|
|
||||||
model_name = self.import_ckpt_model(
|
|
||||||
model_path,
|
|
||||||
config=model_config_file,
|
|
||||||
model_name=model_name,
|
|
||||||
model_description=description,
|
|
||||||
vae=str(
|
|
||||||
Path(
|
|
||||||
Globals.root,
|
|
||||||
"models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt",
|
|
||||||
)
|
|
||||||
),
|
|
||||||
commit_to_conf=commit_to_conf,
|
|
||||||
)
|
|
||||||
|
|
||||||
if commit_to_conf:
|
|
||||||
self.commit(commit_to_conf)
|
|
||||||
return model_name
|
return model_name
|
||||||
|
|
||||||
def convert_and_import(
|
def convert_and_import(
|
||||||
@ -800,7 +766,7 @@ class ModelManager(object):
|
|||||||
|
|
||||||
new_config = None
|
new_config = None
|
||||||
|
|
||||||
from ldm.invoke.ckpt_to_diffuser import convert_ckpt_to_diffuser
|
from . import convert_ckpt_to_diffusers
|
||||||
|
|
||||||
if diffusers_path.exists():
|
if diffusers_path.exists():
|
||||||
print(
|
print(
|
||||||
@ -815,7 +781,7 @@ class ModelManager(object):
|
|||||||
# By passing the specified VAE to the conversion function, the autoencoder
|
# By passing the specified VAE to the conversion function, the autoencoder
|
||||||
# will be built into the model rather than tacked on afterward via the config file
|
# will be built into the model rather than tacked on afterward via the config file
|
||||||
vae_model = self._load_vae(vae) if vae else None
|
vae_model = self._load_vae(vae) if vae else None
|
||||||
convert_ckpt_to_diffuser(
|
convert_ckpt_to_diffusers (
|
||||||
ckpt_path,
|
ckpt_path,
|
||||||
diffusers_path,
|
diffusers_path,
|
||||||
extract_ema=True,
|
extract_ema=True,
|
@ -13,9 +13,9 @@ from transformers import CLIPTokenizer, CLIPTextModel
|
|||||||
|
|
||||||
from compel import Compel
|
from compel import Compel
|
||||||
from compel.prompt_parser import FlattenedPrompt, Blend, Fragment, CrossAttentionControlSubstitute, PromptParser
|
from compel.prompt_parser import FlattenedPrompt, Blend, Fragment, CrossAttentionControlSubstitute, PromptParser
|
||||||
from ..devices import torch_dtype
|
from ..util import torch_dtype
|
||||||
from ..stable_diffusion import InvokeAIDiffuserComponent
|
from ..stable_diffusion import InvokeAIDiffuserComponent
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
|
|
||||||
def get_tokenizer(model) -> CLIPTokenizer:
|
def get_tokenizer(model) -> CLIPTokenizer:
|
||||||
# TODO remove legacy ckpt fallback handling
|
# TODO remove legacy ckpt fallback handling
|
||||||
|
@ -23,16 +23,16 @@ class Restoration():
|
|||||||
|
|
||||||
# Face Restore Models
|
# Face Restore Models
|
||||||
def load_gfpgan(self, gfpgan_model_path):
|
def load_gfpgan(self, gfpgan_model_path):
|
||||||
from ldm.invoke.restoration.gfpgan import GFPGAN
|
from .gfpgan import GFPGAN
|
||||||
return GFPGAN(gfpgan_model_path)
|
return GFPGAN(gfpgan_model_path)
|
||||||
|
|
||||||
def load_codeformer(self):
|
def load_codeformer(self):
|
||||||
from ldm.invoke.restoration.codeformer import CodeFormerRestoration
|
from .codeformer import CodeFormerRestoration
|
||||||
return CodeFormerRestoration()
|
return CodeFormerRestoration()
|
||||||
|
|
||||||
# Upscale Models
|
# Upscale Models
|
||||||
def load_esrgan(self, esrgan_bg_tile=400):
|
def load_esrgan(self, esrgan_bg_tile=400):
|
||||||
from ldm.invoke.restoration.realesrgan import ESRGAN
|
from .realesrgan import ESRGAN
|
||||||
esrgan = ESRGAN(esrgan_bg_tile)
|
esrgan = ESRGAN(esrgan_bg_tile)
|
||||||
print('>> ESRGAN Initialized')
|
print('>> ESRGAN Initialized')
|
||||||
return esrgan;
|
return esrgan;
|
@ -3,7 +3,7 @@ import torch
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import warnings
|
import warnings
|
||||||
import sys
|
import sys
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
|
|
||||||
pretrained_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
pretrained_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
||||||
|
|
@ -5,7 +5,7 @@ from torch import nn, Tensor
|
|||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from typing import Optional, List
|
from typing import Optional, List
|
||||||
|
|
||||||
from ldm.invoke.restoration.vqgan_arch import *
|
from .vqgan_arch import *
|
||||||
from basicsr.utils import get_root_logger
|
from basicsr.utils import get_root_logger
|
||||||
from basicsr.utils.registry import ARCH_REGISTRY
|
from basicsr.utils.registry import ARCH_REGISTRY
|
||||||
|
|
||||||
@ -25,7 +25,6 @@ def calc_mean_std(feat, eps=1e-5):
|
|||||||
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
||||||
return feat_mean, feat_std
|
return feat_mean, feat_std
|
||||||
|
|
||||||
|
|
||||||
def adaptive_instance_normalization(content_feat, style_feat):
|
def adaptive_instance_normalization(content_feat, style_feat):
|
||||||
"""Adaptive instance normalization.
|
"""Adaptive instance normalization.
|
||||||
|
|
@ -3,7 +3,7 @@ import warnings
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
@ -3,7 +3,7 @@ import warnings
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from PIL.Image import Image as ImageType
|
from PIL.Image import Image as ImageType
|
||||||
|
|
@ -10,7 +10,7 @@ import traceback
|
|||||||
from typing import Callable
|
from typing import Callable
|
||||||
from urllib import request, error as ul_error
|
from urllib import request, error as ul_error
|
||||||
from huggingface_hub import HfFolder, hf_hub_url, ModelSearchArguments, ModelFilter, HfApi
|
from huggingface_hub import HfFolder, hf_hub_url, ModelSearchArguments, ModelFilter, HfApi
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
|
|
||||||
class HuggingFaceConceptsLibrary(object):
|
class HuggingFaceConceptsLibrary(object):
|
||||||
def __init__(self, root=None):
|
def __init__(self, root=None):
|
||||||
|
@ -26,11 +26,11 @@ from torchvision.transforms.functional import resize as tv_resize
|
|||||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||||
from typing_extensions import ParamSpec
|
from typing_extensions import ParamSpec
|
||||||
|
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
from ..stable_diffusion.diffusion import InvokeAIDiffuserComponent, PostprocessingSettings, AttentionMapSaver
|
from .diffusion import InvokeAIDiffuserComponent, PostprocessingSettings, AttentionMapSaver
|
||||||
from ..stable_diffusion.textual_inversion_manager import TextualInversionManager
|
from .textual_inversion_manager import TextualInversionManager
|
||||||
from ..stable_diffusion.offloading import LazilyLoadedModelGroup, FullyLoadedModelGroup, ModelGroup
|
from .offloading import LazilyLoadedModelGroup, FullyLoadedModelGroup, ModelGroup
|
||||||
from ..devices import normalize_device, CPU_DEVICE
|
from ..util import normalize_device, CPU_DEVICE
|
||||||
from compel import EmbeddingsProvider
|
from compel import EmbeddingsProvider
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
|
@ -15,7 +15,7 @@ from torch import nn
|
|||||||
from compel.cross_attention_control import Arguments
|
from compel.cross_attention_control import Arguments
|
||||||
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||||
from diffusers.models.cross_attention import AttnProcessor
|
from diffusers.models.cross_attention import AttnProcessor
|
||||||
from ...devices import torch_dtype
|
from ...util import torch_dtype
|
||||||
|
|
||||||
|
|
||||||
class CrossAttentionType(enum.Enum):
|
class CrossAttentionType(enum.Enum):
|
||||||
|
@ -23,7 +23,7 @@ from omegaconf import ListConfig
|
|||||||
import urllib
|
import urllib
|
||||||
|
|
||||||
from ..textual_inversion_manager import TextualInversionManager
|
from ..textual_inversion_manager import TextualInversionManager
|
||||||
from ...util import (
|
from ...util.util import (
|
||||||
log_txt_as_img,
|
log_txt_as_img,
|
||||||
exists,
|
exists,
|
||||||
default,
|
default,
|
||||||
|
@ -4,7 +4,7 @@ import torch
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from ...devices import choose_torch_device
|
from ...util import choose_torch_device
|
||||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||||
from .sampler import Sampler
|
from .sampler import Sampler
|
||||||
from ..diffusionmodules.util import noise_like
|
from ..diffusionmodules.util import noise_like
|
||||||
|
@ -7,7 +7,7 @@ import torch
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from ...devices import choose_torch_device
|
from ...util import choose_torch_device
|
||||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||||
|
|
||||||
from ..diffusionmodules.util import (
|
from ..diffusionmodules.util import (
|
||||||
|
@ -8,7 +8,7 @@ import torch
|
|||||||
from diffusers.models.cross_attention import AttnProcessor
|
from diffusers.models.cross_attention import AttnProcessor
|
||||||
from typing_extensions import TypeAlias
|
from typing_extensions import TypeAlias
|
||||||
|
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
from .cross_attention_control import Arguments, \
|
from .cross_attention_control import Arguments, \
|
||||||
restore_default_cross_attention, override_cross_attention, Context, get_cross_attention_modules, \
|
restore_default_cross_attention, override_cross_attention, Context, get_cross_attention_modules, \
|
||||||
CrossAttentionType, SwapCrossAttnContext
|
CrossAttentionType, SwapCrossAttnContext
|
||||||
|
@ -15,7 +15,7 @@ import torch.nn as nn
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from einops import repeat
|
from einops import repeat
|
||||||
|
|
||||||
from ...util import instantiate_from_config
|
from ...util.util import instantiate_from_config
|
||||||
|
|
||||||
|
|
||||||
def make_beta_schedule(
|
def make_beta_schedule(
|
||||||
|
@ -10,7 +10,7 @@ from einops import repeat
|
|||||||
from transformers import CLIPTokenizer, CLIPTextModel
|
from transformers import CLIPTokenizer, CLIPTextModel
|
||||||
|
|
||||||
from ldm.invoke.devices import choose_torch_device
|
from ldm.invoke.devices import choose_torch_device
|
||||||
from ldm.invoke.globals import global_cache_dir
|
from invokeai.backend.globals import global_cache_dir
|
||||||
from ldm.modules.x_transformer import (
|
from ldm.modules.x_transformer import (
|
||||||
Encoder,
|
Encoder,
|
||||||
TransformerWrapper,
|
TransformerWrapper,
|
||||||
|
4
invokeai/backend/training/__init.py__
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.backend.training
|
||||||
|
'''
|
||||||
|
from .textual_inversion_training import do_textual_inversion_training, parse_args
|
@ -48,7 +48,7 @@ from transformers import CLIPTextModel, CLIPTokenizer
|
|||||||
|
|
||||||
# invokeai stuff
|
# invokeai stuff
|
||||||
from ldm.invoke.args import ArgFormatter, PagingArgumentParser
|
from ldm.invoke.args import ArgFormatter, PagingArgumentParser
|
||||||
from ldm.invoke.globals import Globals, global_cache_dir
|
from invokeai.backend.globals import Globals, global_cache_dir
|
||||||
|
|
||||||
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
||||||
PIL_INTERPOLATION = {
|
PIL_INTERPOLATION = {
|
18
invokeai/backend/util/__init__.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.backend.util
|
||||||
|
'''
|
||||||
|
from .devices import (choose_torch_device,
|
||||||
|
choose_precision,
|
||||||
|
normalize_device,
|
||||||
|
torch_dtype,
|
||||||
|
CPU_DEVICE,
|
||||||
|
CUDA_DEVICE,
|
||||||
|
MPS_DEVICE,
|
||||||
|
)
|
||||||
|
from .util import (ask_user,
|
||||||
|
download_with_resume,
|
||||||
|
instantiate_from_config,
|
||||||
|
url_attachment_name,
|
||||||
|
)
|
||||||
|
from .log import write_log
|
||||||
|
|
@ -5,9 +5,11 @@ from contextlib import nullcontext
|
|||||||
import torch
|
import torch
|
||||||
from torch import autocast
|
from torch import autocast
|
||||||
|
|
||||||
from ldm.invoke.globals import Globals
|
from invokeai.backend.globals import Globals
|
||||||
|
|
||||||
CPU_DEVICE = torch.device("cpu")
|
CPU_DEVICE = torch.device("cpu")
|
||||||
|
CUDA_DEVICE = torch.device("cuda")
|
||||||
|
MPS_DEVICE = torch.device("mps")
|
||||||
|
|
||||||
def choose_torch_device() -> torch.device:
|
def choose_torch_device() -> torch.device:
|
||||||
'''Convenience routine for guessing which GPU device to run model on'''
|
'''Convenience routine for guessing which GPU device to run model on'''
|
4
invokeai/backend/web/__init__.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for the web backend.
|
||||||
|
'''
|
||||||
|
from .invoke_ai_web_server import InvokeAIWebServer
|
@ -12,7 +12,7 @@ from threading import Event
|
|||||||
from uuid import uuid4
|
from uuid import uuid4
|
||||||
|
|
||||||
import eventlet
|
import eventlet
|
||||||
import invokeai.frontend.dist as frontend
|
import invokeai.frontend.web.dist as frontend
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from PIL.Image import Image as ImageType
|
from PIL.Image import Image as ImageType
|
||||||
from compel.prompt_parser import Blend
|
from compel.prompt_parser import Blend
|
||||||
@ -20,24 +20,24 @@ from flask import Flask, redirect, send_from_directory, request, make_response
|
|||||||
from flask_socketio import SocketIO
|
from flask_socketio import SocketIO
|
||||||
from werkzeug.utils import secure_filename
|
from werkzeug.utils import secure_filename
|
||||||
|
|
||||||
from invokeai.backend.modules.get_canvas_generation_mode import (
|
from .modules.get_canvas_generation_mode import (
|
||||||
get_canvas_generation_mode,
|
get_canvas_generation_mode,
|
||||||
)
|
)
|
||||||
from .modules.parameters import parameters_to_command
|
from .modules.parameters import parameters_to_command
|
||||||
from .prompting import (get_tokens_for_prompt_object,
|
from ..prompting import (get_tokens_for_prompt_object,
|
||||||
get_prompt_structure,
|
get_prompt_structure,
|
||||||
get_tokenizer
|
get_tokenizer
|
||||||
)
|
)
|
||||||
from .image_util import PngWriter, retrieve_metadata
|
from ..image_util import PngWriter, retrieve_metadata
|
||||||
from .generator import infill_methods
|
from ..generator import infill_methods
|
||||||
from .stable_diffusion import PipelineIntermediateState
|
from ..stable_diffusion import PipelineIntermediateState
|
||||||
|
|
||||||
from ldm.generate import Generate
|
from .. import Generate
|
||||||
from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
|
from ..args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
|
||||||
from ldm.invoke.globals import ( Globals, global_converted_ckpts_dir,
|
from ..globals import ( Globals, global_converted_ckpts_dir,
|
||||||
global_models_dir
|
global_models_dir
|
||||||
)
|
)
|
||||||
from ldm.invoke.merge_diffusers import merge_diffusion_models
|
from ..model_management import merge_diffusion_models
|
||||||
|
|
||||||
# Loading Arguments
|
# Loading Arguments
|
||||||
opt = Args()
|
opt = Args()
|
||||||
@ -236,7 +236,7 @@ class InvokeAIWebServer:
|
|||||||
sys.exit(0)
|
sys.exit(0)
|
||||||
else:
|
else:
|
||||||
useSSL = args.certfile or args.keyfile
|
useSSL = args.certfile or args.keyfile
|
||||||
print(">> Started Invoke AI Web Server!")
|
print(">> Started Invoke AI Web Server")
|
||||||
if self.host == "0.0.0.0":
|
if self.host == "0.0.0.0":
|
||||||
print(
|
print(
|
||||||
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
|
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
|
@ -1,4 +1,4 @@
|
|||||||
from invokeai.backend.modules.parse_seed_weights import parse_seed_weights
|
from .parse_seed_weights import parse_seed_weights
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
SAMPLER_CHOICES = [
|
SAMPLER_CHOICES = [
|
Before Width: | Height: | Size: 2.7 KiB After Width: | Height: | Size: 2.7 KiB |
Before Width: | Height: | Size: 292 KiB After Width: | Height: | Size: 292 KiB |
Before Width: | Height: | Size: 164 KiB After Width: | Height: | Size: 164 KiB |
Before Width: | Height: | Size: 9.5 KiB After Width: | Height: | Size: 9.5 KiB |
Before Width: | Height: | Size: 3.4 KiB After Width: | Height: | Size: 3.4 KiB |
@ -18,21 +18,22 @@ import pyparsing # type: ignore
|
|||||||
|
|
||||||
import invokeai.version
|
import invokeai.version
|
||||||
|
|
||||||
from ..generate import Generate
|
from ...backend import Generate
|
||||||
from .args import (Args, dream_cmd_from_png, metadata_dumps,
|
from ...backend.args import (Args,
|
||||||
|
dream_cmd_from_png,
|
||||||
|
metadata_dumps,
|
||||||
metadata_from_png)
|
metadata_from_png)
|
||||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||||
from invokeai.backend.image_util import make_grid, PngWriter, retrieve_metadata, write_metadata
|
from ...backend.image_util import make_grid, PngWriter, retrieve_metadata, write_metadata
|
||||||
from invokeai.backend import ModelManager
|
from ...backend import ModelManager
|
||||||
from .globals import Globals
|
from ...backend.globals import Globals
|
||||||
from .log import write_log
|
from ...backend.util import write_log
|
||||||
from .readline import Completer, get_completer
|
from .readline import Completer, get_completer
|
||||||
from invokeai.backend.util import url_attachment_name
|
from ...backend.util import url_attachment_name
|
||||||
|
|
||||||
# global used in multiple functions (fix)
|
# global used in multiple functions (fix)
|
||||||
infile = None
|
infile = None
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
"""Initialize command-line parsers and the diffusion model"""
|
"""Initialize command-line parsers and the diffusion model"""
|
||||||
global infile
|
global infile
|
||||||
@ -82,8 +83,6 @@ def main():
|
|||||||
# when the frozen CLIP tokenizer is imported
|
# when the frozen CLIP tokenizer is imported
|
||||||
import transformers # type: ignore
|
import transformers # type: ignore
|
||||||
|
|
||||||
from ldm.generate import Generate
|
|
||||||
|
|
||||||
transformers.logging.set_verbosity_error()
|
transformers.logging.set_verbosity_error()
|
||||||
import diffusers
|
import diffusers
|
||||||
|
|
||||||
@ -1021,7 +1020,7 @@ def get_next_command(infile=None, model_name="no model") -> str: # command stri
|
|||||||
|
|
||||||
def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan):
|
def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan):
|
||||||
print("\n* --web was specified, starting web server...")
|
print("\n* --web was specified, starting web server...")
|
||||||
from invokeai.backend.invoke_ai_web_server import InvokeAIWebServer
|
from invokeai.backend.web import InvokeAIWebServer
|
||||||
|
|
||||||
# Change working directory to the stable-diffusion directory
|
# Change working directory to the stable-diffusion directory
|
||||||
os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||||
@ -1075,7 +1074,7 @@ def load_face_restoration(opt):
|
|||||||
try:
|
try:
|
||||||
gfpgan, codeformer, esrgan = None, None, None
|
gfpgan, codeformer, esrgan = None, None, None
|
||||||
if opt.restore or opt.esrgan:
|
if opt.restore or opt.esrgan:
|
||||||
from ldm.invoke.restoration import Restoration
|
from invokeai.backend.restoration import Restoration
|
||||||
|
|
||||||
restoration = Restoration()
|
restoration = Restoration()
|
||||||
if opt.restore:
|
if opt.restore:
|
4
invokeai/frontend/CLI/__init__.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.frontend.CLI
|
||||||
|
'''
|
||||||
|
from .CLI import main as invokeai_command_line_interface
|
@ -11,9 +11,9 @@ seeds:
|
|||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
import atexit
|
import atexit
|
||||||
from ldm.invoke.args import Args
|
from ...backend.args import Args
|
||||||
from ldm.invoke.globals import Globals
|
from ...backend.globals import Globals
|
||||||
from invokeai.backend.stable_diffusion import HuggingFaceConceptsLibrary
|
from ...backend.stable_diffusion import HuggingFaceConceptsLibrary
|
||||||
|
|
||||||
# ---------------readline utilities---------------------
|
# ---------------readline utilities---------------------
|
||||||
try:
|
try:
|
3
invokeai/frontend/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.frontend
|
||||||
|
'''
|
7
invokeai/frontend/config/__init__.py
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.frontend.config
|
||||||
|
'''
|
||||||
|
from .model_install import main as invokeai_model_install
|
||||||
|
from .invokeai_configure import main as invokeai_configure
|
||||||
|
from .invokeai_update import main as invokeai_update
|
||||||
|
|
4
invokeai/frontend/config/invokeai_configure.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
'''
|
||||||
|
Wrapper for invokeai.backend.configure.invokeai_configure
|
||||||
|
'''
|
||||||
|
from ...backend.config.invokeai_configure import main
|
@ -13,7 +13,7 @@ from rich.style import Style
|
|||||||
from rich.syntax import Syntax
|
from rich.syntax import Syntax
|
||||||
from rich.text import Text
|
from rich.text import Text
|
||||||
|
|
||||||
from ldm.invoke import __version__
|
from invokeai.version import __version__
|
||||||
|
|
||||||
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive"
|
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive"
|
||||||
INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
|
INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
|
@ -22,9 +22,9 @@ from npyscreen import widget
|
|||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from shutil import get_terminal_size
|
from shutil import get_terminal_size
|
||||||
|
|
||||||
from invokeai.backend.devices import choose_precision, choose_torch_device
|
from ...backend.util import choose_precision, choose_torch_device
|
||||||
from ..globals import Globals, global_config_dir
|
from invokeai.backend.globals import Globals, global_config_dir
|
||||||
from .model_install_backend import (Dataset_path, default_config_file,
|
from ...backend.config.model_install_backend import (Dataset_path, default_config_file,
|
||||||
default_dataset, get_root,
|
default_dataset, get_root,
|
||||||
install_requested_models,
|
install_requested_models,
|
||||||
recommended_datasets,
|
recommended_datasets,
|
4
invokeai/frontend/merge/__init__.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.frontend.merge
|
||||||
|
'''
|
||||||
|
from .merge_diffusers import main as invokeai_merge_diffusers
|
@ -20,10 +20,10 @@ from diffusers import logging as dlogging
|
|||||||
from npyscreen import widget
|
from npyscreen import widget
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
|
|
||||||
from ldm.invoke.config.widgets import FloatTitleSlider
|
from ...frontend.config.widgets import FloatTitleSlider
|
||||||
from ldm.invoke.globals import (Globals, global_cache_dir, global_config_file,
|
from ...backend.globals import (Globals, global_cache_dir, global_config_file,
|
||||||
global_models_dir, global_set_root)
|
global_models_dir, global_set_root)
|
||||||
from invokeai.backend import ModelManager
|
from ...backend.model_management import ModelManager
|
||||||
|
|
||||||
DEST_MERGED_MODEL_DIR = "merged_models"
|
DEST_MERGED_MODEL_DIR = "merged_models"
|
||||||
|
|
||||||
@ -199,13 +199,13 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
|
|||||||
self.add_widget_intelligent(
|
self.add_widget_intelligent(
|
||||||
npyscreen.FixedText,
|
npyscreen.FixedText,
|
||||||
color="CONTROL",
|
color="CONTROL",
|
||||||
value=f"Select two models to merge and optionally a third.",
|
value="Select two models to merge and optionally a third.",
|
||||||
editable=False,
|
editable=False,
|
||||||
)
|
)
|
||||||
self.add_widget_intelligent(
|
self.add_widget_intelligent(
|
||||||
npyscreen.FixedText,
|
npyscreen.FixedText,
|
||||||
color="CONTROL",
|
color="CONTROL",
|
||||||
value=f"Use up and down arrows to move, <space> to select an item, <tab> and <shift-tab> to move from one field to the next.",
|
value="Use up and down arrows to move, <space> to select an item, <tab> and <shift-tab> to move from one field to the next.",
|
||||||
editable=False,
|
editable=False,
|
||||||
)
|
)
|
||||||
self.add_widget_intelligent(
|
self.add_widget_intelligent(
|
||||||
@ -453,9 +453,9 @@ def main():
|
|||||||
"** You need to have at least two diffusers models defined in models.yaml in order to merge"
|
"** You need to have at least two diffusers models defined in models.yaml in order to merge"
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
print(f"** Not enough room for the user interface. Try making this window larger.")
|
print("** Not enough room for the user interface. Try making this window larger.")
|
||||||
sys.exit(-1)
|
sys.exit(-1)
|
||||||
except Exception as e:
|
except Exception:
|
||||||
print(">> An error occurred:")
|
print(">> An error occurred:")
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
sys.exit(-1)
|
sys.exit(-1)
|
5
invokeai/frontend/training/__init__.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
'''
|
||||||
|
Initialization file for invokeai.frontend.training
|
||||||
|
'''
|
||||||
|
from .textual_inversion import main as invokeai_textual_inversion
|
||||||
|
|
@ -20,8 +20,8 @@ import npyscreen
|
|||||||
from npyscreen import widget
|
from npyscreen import widget
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
|
|
||||||
from ldm.invoke.globals import Globals, global_set_root
|
from invokeai.backend.globals import Globals, global_set_root
|
||||||
from ldm.invoke.training.textual_inversion_training import (
|
from ...backend.training import (
|
||||||
do_textual_inversion_training,
|
do_textual_inversion_training,
|
||||||
parse_args,
|
parse_args,
|
||||||
)
|
)
|