Merge branch 'main' into ryan/spandrel-upscale-tiling

This commit is contained in:
Ryan Dick
2024-07-16 15:40:14 -04:00
committed by GitHub
52 changed files with 4915 additions and 2066 deletions

View File

@ -98,7 +98,7 @@ class UnetSkipConnectionBlock(nn.Module):
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if type(norm_layer) == functools.partial:
if isinstance(norm_layer, functools.partial):
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d

View File

@ -124,16 +124,14 @@ class IPAdapter(RawModel):
self.device, dtype=self.dtype
)
def to(
self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, non_blocking: bool = False
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None:
self.device = device
if dtype is not None:
self.dtype = dtype
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self._image_proj_model.to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)
def calc_size(self) -> int:
# HACK(ryand): Fix this issue with circular imports.

View File

@ -11,7 +11,6 @@ from typing_extensions import Self
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
from invokeai.backend.util.devices import TorchDevice
class LoRALayerBase:
@ -57,14 +56,9 @@ class LoRALayerBase:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
@ -106,19 +100,14 @@ class LoRALayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype, non_blocking=non_blocking)
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.down = self.down.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
@ -167,23 +156,18 @@ class LoHALayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
@ -264,12 +248,7 @@ class LoKRLayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
if self.w1 is not None:
@ -277,19 +256,19 @@ class LoKRLayer(LoRALayerBase):
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
@ -319,15 +298,10 @@ class FullLayer(LoRALayerBase):
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)
class IA3Layer(LoRALayerBase):
@ -359,16 +333,11 @@ class IA3Layer(LoRALayerBase):
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.on_input = self.on_input.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
@ -390,15 +359,10 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
def name(self) -> str:
return self._name
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype, non_blocking=non_blocking)
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
@ -521,7 +485,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model

View File

@ -289,11 +289,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(
target_device, copy=True, non_blocking=TorchDevice.get_non_blocking(target_device)
)
new_dict[k] = v.to(target_device, copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device, non_blocking=TorchDevice.get_non_blocking(target_device))
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)

View File

@ -139,15 +139,12 @@ class ModelPatcher:
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(dtype=torch.float32, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(
device=TorchDevice.CPU_DEVICE,
non_blocking=TorchDevice.get_non_blocking(TorchDevice.CPU_DEVICE),
)
layer.to(device=TorchDevice.CPU_DEVICE)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
@ -156,7 +153,7 @@ class ModelPatcher:
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
module.weight += layer_weight.to(dtype=dtype)
yield # wait for context manager exit
@ -164,9 +161,7 @@ class ModelPatcher:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
)
model.get_submodule(module_key).weight.copy_(weight)
@classmethod
@contextmanager

View File

@ -190,12 +190,7 @@ class IAIOnnxRuntimeModel(RawModel):
return self.session.run(None, inputs)
# compatability with RawModel ABC
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass
# compatability with diffusers load code

View File

@ -18,10 +18,5 @@ class RawModel(ABC):
"""
@abstractmethod
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass

View File

@ -65,17 +65,12 @@ class TextualInversionModelRaw(RawModel):
return result
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if not torch.cuda.is_available():
return
for emb in [self.embedding, self.embedding_2]:
if emb is not None:
emb.to(device=device, dtype=dtype, non_blocking=non_blocking)
emb.to(device=device, dtype=dtype)
def calc_size(self) -> int:
"""Get the size of this model in bytes."""

View File

@ -112,15 +112,3 @@ class TorchDevice:
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]
@staticmethod
def get_non_blocking(to_device: torch.device) -> bool:
"""Return the non_blocking flag to be used when moving a tensor to a given device.
MPS may have unexpected errors with non-blocking operations - we should not use non-blocking when moving _to_ MPS.
When moving _from_ MPS, we can use non-blocking operations.
See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28
"""
return False if to_device.type == "mps" else True