diff --git a/invokeai/app/services/shared/sqlite_migrator/migrations/util/migrate_yaml_config_1.py b/invokeai/app/services/shared/sqlite_migrator/migrations/util/migrate_yaml_config_1.py index fed15a1db1..a52bb4f599 100644 --- a/invokeai/app/services/shared/sqlite_migrator/migrations/util/migrate_yaml_config_1.py +++ b/invokeai/app/services/shared/sqlite_migrator/migrations/util/migrate_yaml_config_1.py @@ -21,7 +21,7 @@ from invokeai.backend.model_manager.config import ( ModelConfigFactory, ModelType, ) -from invokeai.backend.model_manager.hash import FastModelHash +from invokeai.backend.model_manager.hash import ModelHash ModelsValidator = TypeAdapter(AnyModelConfig) @@ -72,7 +72,7 @@ class MigrateModelYamlToDb1: base_type, model_type, model_name = str(model_key).split("/") try: - hash = FastModelHash.hash(self.config.models_path / stanza.path) + hash = ModelHash.hash(self.config.models_path / stanza.path) except OSError: self.logger.warning(f"The model at {stanza.path} is not a valid file or directory. Skipping migration.") continue diff --git a/invokeai/backend/model_manager/hash.py b/invokeai/backend/model_manager/hash.py index eaf1020ffa..3144123761 100644 --- a/invokeai/backend/model_manager/hash.py +++ b/invokeai/backend/model_manager/hash.py @@ -7,53 +7,82 @@ from invokeai.backend.model_managre.model_hash import FastModelHash >>> FastModelHash.hash('/home/models/stable-diffusion-v1.5') 'a8e693a126ea5b831c96064dc569956f' """ -import cProfile +import hashlib import os -import pstats -import threading from pathlib import Path -from tempfile import TemporaryDirectory -from typing import Union +from typing import Literal, Union from blake3 import blake3 -from tqdm import tqdm + +MODEL_FILE_EXTENSIONS = (".ckpt", ".safetensors", ".bin", ".pt", ".pth") + +ALGORITHMS = Literal[ + "md5", + "sha1", + "sha1_fast", + "sha224", + "sha256", + "sha384", + "sha512", + "blake2b", + "blake2s", + "sha3_224", + "sha3_256", + "sha3_384", + "sha3_512", + "shake_128", + "shake_256", + "blake3", +] -class FastModelHash(object): - """FastModelHash obect provides one public class method, hash().""" +class ModelHash: + """ModelHash provides one public class method, hash().""" @classmethod - def hash(cls, model_location: Union[str, Path]) -> str: + def hash(cls, model_location: Union[str, Path], algorithm: ALGORITHMS = "blake3") -> str: """ Return hexdigest string for model located at model_location. + If model_location is a directory, the hash is computed by hashing the hashes of all model files in the + directory. The final composite hash is always computed using BLAKE3. + :param model_location: Path to the model + :param algorithm: Hashing algorithm to use """ model_location = Path(model_location) if model_location.is_file(): - return cls._hash_file(model_location) + return cls._hash_file(model_location, algorithm) elif model_location.is_dir(): - return cls._hash_dir(model_location) + return cls._hash_dir(model_location, algorithm) else: raise OSError(f"Not a valid file or directory: {model_location}") @classmethod - def _hash_file(cls, model_location: Union[str, Path]) -> str: + def _hash_file(cls, model_location: Union[str, Path], algorithm: ALGORITHMS) -> str: """ - Compute full BLAKE3 hash over a single file and return its hexdigest. + Compute the hash for a single file and return its hexdigest. :param model_location: Path to the model file + :param algorithm: Hashing algorithm to use """ - file_hasher = blake3(max_threads=blake3.AUTO) - file_hasher.update_mmap(model_location) - return file_hasher.hexdigest() + + if algorithm == "blake3": + return cls._blake3(model_location) + elif algorithm == "sha1_fast": + return cls._sha1_fast(model_location) + elif algorithm in hashlib.algorithms_available: + return cls._hashlib(model_location, algorithm) + else: + raise ValueError(f"Algorithm {algorithm} not available") @classmethod - def _hash_dir(cls, model_location: Union[str, Path]) -> str: + def _hash_dir(cls, model_location: Union[str, Path], algorithm: ALGORITHMS) -> str: """ - Compute full BLAKE3 hash over all files in a directory and return its hexdigest. + Compute the hash for all files in a directory and return a hexdigest. :param model_location: Path to the model directory + :param algorithm: Hashing algorithm to use """ components: list[str] = [] @@ -61,31 +90,42 @@ class FastModelHash(object): for file in files: # only tally tensor files because diffusers config files change slightly # depending on how the model was downloaded/converted. - if file.endswith((".ckpt", ".safetensors", ".bin", ".pt", ".pth")): - components.append((Path(root, file).resolve().as_posix())) + if file.endswith(MODEL_FILE_EXTENSIONS): + components.append((Path(root, file).as_posix())) component_hashes: list[str] = [] + for component in sorted(components): + component_hashes.append(cls._hash_file(component, algorithm)) - for component in tqdm(sorted(components), desc=f"Hashing model components for {model_location}"): - file_hasher = blake3(max_threads=blake3.AUTO) - file_hasher.update_mmap(component) - component_hashes.append(file_hasher.hexdigest()) + # BLAKE3 is cryptographically secure. We may as well fall back on a secure algorithm + # for the composite hash + composite_hasher = blake3() + for h in components: + composite_hasher.update(h.encode("utf-8")) + return composite_hasher.hexdigest() - return blake3(b"".join([bytes.fromhex(h) for h in component_hashes])).hexdigest() + @staticmethod + def _blake3(file_path: Union[str, Path]) -> str: + """Hashes a file using BLAKE3""" + file_hasher = blake3(max_threads=blake3.AUTO) + file_hasher.update_mmap(file_path) + return file_hasher.hexdigest() + @staticmethod + def _sha1_fast(file_path: Union[str, Path]) -> str: + """Hashes a file using SHA1, but with a block size of 2**16. The result is not a standard SHA1 hash due to the + # padding introduced by the block size. The algorithm is, however, very fast.""" + BLOCK_SIZE = 2**16 + file_hash = hashlib.sha1() + with open(file_path, "rb") as f: + data = f.read(BLOCK_SIZE) + file_hash.update(data) + return file_hash.hexdigest() -if __name__ == "__main__": - with TemporaryDirectory() as tempdir: - profile_path = Path(tempdir, "profile_results.pstats").as_posix() - profiler = cProfile.Profile() - profiler.enable() - t = threading.Thread( - target=FastModelHash.hash, args=("/media/rhino/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting",) - ) - t.start() - t.join() - profiler.disable() - stats = pstats.Stats(profiler).sort_stats(pstats.SortKey.TIME) - stats.dump_stats(profile_path) - - os.system(f"snakeviz {profile_path}") + @staticmethod + def _hashlib(file_path: Union[str, Path], algorithm: ALGORITHMS) -> str: + """Hashes a file using a hashlib algorithm""" + file_hasher = hashlib.new(algorithm) + with open(file_path, "rb") as f: + file_hasher.update(f.read()) + return file_hasher.hexdigest() diff --git a/invokeai/backend/model_manager/probe.py b/invokeai/backend/model_manager/probe.py index 11b8f46951..1611a76558 100644 --- a/invokeai/backend/model_manager/probe.py +++ b/invokeai/backend/model_manager/probe.py @@ -21,7 +21,7 @@ from .config import ( ModelVariantType, SchedulerPredictionType, ) -from .hash import FastModelHash +from .hash import ModelHash from .util.model_util import lora_token_vector_length, read_checkpoint_meta CkptType = Dict[str, Any] @@ -147,7 +147,7 @@ class ModelProbe(object): if not probe_class: raise InvalidModelConfigException(f"Unhandled combination of {format_type} and {model_type}") - hash = FastModelHash.hash(model_path) + hash = ModelHash.hash(model_path) probe = probe_class(model_path) fields["path"] = model_path.as_posix()