mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'invoke-ai:main' into main
This commit is contained in:
commit
6b4a06c3fc
@ -1 +1 @@
|
||||
__version__='2.3.0-rc5'
|
||||
__version__='2.3.0-rc6'
|
||||
|
@ -10,6 +10,7 @@ print("Loading Python libraries...\n")
|
||||
import argparse
|
||||
import io
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import traceback
|
||||
@ -320,7 +321,7 @@ You may re-run the configuration script again in the future if you do not wish t
|
||||
while again:
|
||||
try:
|
||||
access_token = getpass_asterisk.getpass_asterisk(prompt="HF Token ❯ ")
|
||||
if access_token is None or len(access_token)==0:
|
||||
if access_token is None or len(access_token) == 0:
|
||||
raise EOFError
|
||||
HfLogin(access_token)
|
||||
access_token = HfFolder.get_token()
|
||||
@ -379,7 +380,7 @@ def download_weight_datasets(
|
||||
migrate_models_ckpt()
|
||||
successful = dict()
|
||||
for mod in models.keys():
|
||||
print(f"{mod}...", file=sys.stderr, end="")
|
||||
print(f"Downloading {mod}:")
|
||||
successful[mod] = _download_repo_or_file(
|
||||
Datasets[mod], access_token, precision=precision
|
||||
)
|
||||
@ -532,7 +533,7 @@ def update_config_file(successfully_downloaded: dict, opt: dict):
|
||||
configs_dest = Default_config_file.parent
|
||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||
|
||||
yaml = new_config_file_contents(successfully_downloaded, config_file)
|
||||
yaml = new_config_file_contents(successfully_downloaded, config_file, opt)
|
||||
|
||||
try:
|
||||
backup = None
|
||||
@ -568,7 +569,7 @@ def update_config_file(successfully_downloaded: dict, opt: dict):
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def new_config_file_contents(successfully_downloaded: dict, config_file: Path) -> str:
|
||||
def new_config_file_contents(successfully_downloaded: dict, config_file: Path, opt: dict) -> str:
|
||||
if config_file.exists():
|
||||
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
||||
else:
|
||||
@ -576,7 +577,14 @@ def new_config_file_contents(successfully_downloaded: dict, config_file: Path) -
|
||||
|
||||
default_selected = None
|
||||
for model in successfully_downloaded:
|
||||
stanza = conf[model] if model in conf else {}
|
||||
|
||||
# a bit hacky - what we are doing here is seeing whether a checkpoint
|
||||
# version of the model was previously defined, and whether the current
|
||||
# model is a diffusers (indicated with a path)
|
||||
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
|
||||
offer_to_delete_weights(model, conf[model], opt.yes_to_all)
|
||||
|
||||
stanza = {}
|
||||
mod = Datasets[model]
|
||||
stanza["description"] = mod["description"]
|
||||
stanza["repo_id"] = mod["repo_id"]
|
||||
@ -599,8 +607,8 @@ def new_config_file_contents(successfully_downloaded: dict, config_file: Path) -
|
||||
)
|
||||
else:
|
||||
stanza["vae"] = mod["vae"]
|
||||
if mod.get('default',False):
|
||||
stanza['default'] = True
|
||||
if mod.get("default", False):
|
||||
stanza["default"] = True
|
||||
default_selected = True
|
||||
|
||||
conf[model] = stanza
|
||||
@ -612,7 +620,22 @@ def new_config_file_contents(successfully_downloaded: dict, config_file: Path) -
|
||||
|
||||
return OmegaConf.to_yaml(conf)
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def offer_to_delete_weights(model_name: str, conf_stanza: dict, yes_to_all: bool):
|
||||
if not (weights := conf_stanza.get('weights')):
|
||||
return
|
||||
if re.match('/VAE/',conf_stanza.get('config')):
|
||||
return
|
||||
if yes_to_all or \
|
||||
yes_or_no(f'\n** The checkpoint version of {model_name} is superseded by the diffusers version. Delete the original file {weights}?', default_yes=False):
|
||||
weights = Path(weights)
|
||||
if not weights.is_absolute():
|
||||
weights = Path(Globals.root) / weights
|
||||
try:
|
||||
weights.unlink()
|
||||
except OSError as e:
|
||||
print(str(e))
|
||||
|
||||
# ---------------------------------------------
|
||||
# this will preload the Bert tokenizer fles
|
||||
def download_bert():
|
||||
@ -641,7 +664,8 @@ def download_from_hf(
|
||||
resume_download=True,
|
||||
**kwargs,
|
||||
)
|
||||
return path if model else None
|
||||
model_name = '--'.join(('models',*model_name.split('/')))
|
||||
return path / model_name if model else None
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
|
@ -317,7 +317,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# fix is in https://github.com/kulinseth/pytorch/pull/222 but no idea when it will get merged to pytorch mainline.
|
||||
pass
|
||||
else:
|
||||
self.enable_attention_slicing(slice_size='auto')
|
||||
self.enable_attention_slicing(slice_size='max')
|
||||
|
||||
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
|
||||
conditioning_data: ConditioningData,
|
||||
|
Loading…
Reference in New Issue
Block a user