diff --git a/invokeai/backend/model_manager/load/model_cache/model_cache_default.py b/invokeai/backend/model_manager/load/model_cache/model_cache_default.py index 63e2cbf358..4b0ebbd40e 100644 --- a/invokeai/backend/model_manager/load/model_cache/model_cache_default.py +++ b/invokeai/backend/model_manager/load/model_cache/model_cache_default.py @@ -25,7 +25,7 @@ from invokeai.backend.util.devices import TorchDevice from invokeai.backend.util.logging import InvokeAILogger # Size of a GB in bytes. -GIG = 2**30 +GB = 2**30 # Size of a MB in bytes. MB = 2**20 @@ -196,7 +196,7 @@ class ModelCache(ModelCacheBase[AnyModel]): # more stats if self.stats: stats_name = stats_name or key - self.stats.cache_size = int(self._max_cache_size * GIG) + self.stats.cache_size = int(self._max_cache_size * GB) self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size()) self.stats.in_cache = len(self._cached_models) self.stats.loaded_model_sizes[stats_name] = max( @@ -228,9 +228,9 @@ class ModelCache(ModelCacheBase[AnyModel]): :param size_required: The amount of space to clear in the execution_device cache, in bytes. """ - reserved = self._max_vram_cache_size * GIG + reserved = self._max_vram_cache_size * GB vram_in_use = torch.cuda.memory_allocated() + size_required - self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM needed for models; max allowed={(reserved/GIG):.2f}GB") + self.logger.debug(f"{(vram_in_use/GB):.2f}GB VRAM needed for models; max allowed={(reserved/GB):.2f}GB") for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size): if vram_in_use <= reserved: break @@ -241,7 +241,7 @@ class ModelCache(ModelCacheBase[AnyModel]): cache_entry.loaded = False vram_in_use = torch.cuda.memory_allocated() + size_required self.logger.debug( - f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB" + f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GB):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GB):.2f}GB" ) TorchDevice.empty_cache() @@ -299,7 +299,7 @@ class ModelCache(ModelCacheBase[AnyModel]): self.logger.debug( f"Moved model '{cache_entry.key}' from {source_device} to" f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s." - f"Estimated model size: {(cache_entry.size/GIG):.3f} GB." + f"Estimated model size: {(cache_entry.size/GB):.3f} GB." f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}" ) @@ -322,14 +322,14 @@ class ModelCache(ModelCacheBase[AnyModel]): f"Moving model '{cache_entry.key}' from {source_device} to" f" {target_device} caused an unexpected change in VRAM usage. The model's" " estimated size may be incorrect. Estimated model size:" - f" {(cache_entry.size/GIG):.3f} GB.\n" + f" {(cache_entry.size/GB):.3f} GB.\n" f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}" ) def print_cuda_stats(self) -> None: """Log CUDA diagnostics.""" - vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG) - ram = "%4.2fG" % (self.cache_size() / GIG) + vram = "%4.2fG" % (torch.cuda.memory_allocated() / GB) + ram = "%4.2fG" % (self.cache_size() / GB) in_ram_models = 0 in_vram_models = 0 @@ -356,13 +356,13 @@ class ModelCache(ModelCacheBase[AnyModel]): garbage-collected. """ bytes_needed = size - maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes + maximum_size = self.max_cache_size * GB # stored in GB, convert to bytes current_size = self.cache_size() if current_size + bytes_needed > maximum_size: self.logger.debug( - f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional" - f" {(bytes_needed/GIG):.2f} GB" + f"Max cache size exceeded: {(current_size/GB):.2f}/{self.max_cache_size:.2f} GB, need an additional" + f" {(bytes_needed/GB):.2f} GB" ) self.logger.debug(f"Before making_room: cached_models={len(self._cached_models)}") @@ -379,7 +379,7 @@ class ModelCache(ModelCacheBase[AnyModel]): if not cache_entry.locked: self.logger.debug( - f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)" + f"Removing {model_key} from RAM cache to free at least {(size/GB):.2f} GB (-{(cache_entry.size/GB):.2f} GB)" ) current_size -= cache_entry.size models_cleared += 1 diff --git a/invokeai/backend/util/__init__.py b/invokeai/backend/util/__init__.py index 101215640a..f24b6db3e1 100644 --- a/invokeai/backend/util/__init__.py +++ b/invokeai/backend/util/__init__.py @@ -3,10 +3,9 @@ Initialization file for invokeai.backend.util """ from invokeai.backend.util.logging import InvokeAILogger -from invokeai.backend.util.util import GIG, Chdir, directory_size +from invokeai.backend.util.util import Chdir, directory_size __all__ = [ - "GIG", "directory_size", "Chdir", "InvokeAILogger", diff --git a/invokeai/backend/util/util.py b/invokeai/backend/util/util.py index b3466ddba9..cc654e4d39 100644 --- a/invokeai/backend/util/util.py +++ b/invokeai/backend/util/util.py @@ -7,9 +7,6 @@ from pathlib import Path from PIL import Image -# actual size of a gig -GIG = 1073741824 - def slugify(value: str, allow_unicode: bool = False) -> str: """