diff --git a/ldm/invoke/globals.py b/ldm/invoke/globals.py index 5bd5597b78..538ff17703 100644 --- a/ldm/invoke/globals.py +++ b/ldm/invoke/globals.py @@ -29,6 +29,7 @@ else: # Where to look for the initialization file Globals.initfile = 'invokeai.init' +Globals.models_file = 'models.yaml' Globals.models_dir = 'models' Globals.config_dir = 'configs' Globals.autoscan_dir = 'weights' @@ -49,6 +50,9 @@ Globals.disable_xformers = False # whether we are forcing full precision Globals.full_precision = False +def global_config_file()->Path: + return Path(Globals.root, Globals.config_dir, Globals.models_file) + def global_config_dir()->Path: return Path(Globals.root, Globals.config_dir) diff --git a/ldm/invoke/merge_diffusers.py b/ldm/invoke/merge_diffusers.py new file mode 100644 index 0000000000..6a1d742aee --- /dev/null +++ b/ldm/invoke/merge_diffusers.py @@ -0,0 +1,59 @@ +''' +ldm.invoke.merge_diffusers exports a single function call merge_diffusion_models() +used to merge 2-3 models together and create a new InvokeAI-registered diffusion model. +''' +import os +from typing import List +from diffusers import DiffusionPipeline +from ldm.invoke.globals import global_config_file, global_models_dir, global_cache_dir +from ldm.invoke.model_manager import ModelManager +from omegaconf import OmegaConf + +def merge_diffusion_models(models:List['str'], + merged_model_name:str, + alpha:float=0.5, + interp:str=None, + force:bool=False, + **kwargs): + ''' + models - up to three models, designated by their InvokeAI models.yaml model name + merged_model_name = name for new model + alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha + would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2 + interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None. + Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. + force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False. + + **kwargs - the default DiffusionPipeline.get_config_dict kwargs: + cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map + ''' + config_file = global_config_file() + model_manager = ModelManager(OmegaConf.load(config_file)) + model_ids_or_paths = [model_manager.model_name_or_path(x) for x in models] + + pipe = DiffusionPipeline.from_pretrained(model_ids_or_paths[0], + cache_dir=kwargs.get('cache_dir',global_cache_dir()), + custom_pipeline='checkpoint_merger') + merged_pipe = pipe.merge(pretrained_model_name_or_path_list=model_ids_or_paths, + alpha=alpha, + interp=interp, + force=force, + **kwargs) + dump_path = global_models_dir() / 'merged_diffusers' + os.makedirs(dump_path,exist_ok=True) + dump_path = dump_path / merged_model_name + merged_pipe.save_pretrained ( + dump_path, + safe_serialization=1 + ) + model_manager.import_diffuser_model( + dump_path, + model_name = merged_model_name, + description = f'Merge of models {", ".join(models)}' + ) + print('REMINDER: When PR 2369 is merged, replace merge_diffusers.py line 56 with vae= argument to impormodel()') + if vae := model_manager.config[models[0]].get('vae',None): + print(f'>> Using configured VAE assigned to {models[0]}') + model_manager.config[merged_model_name]['vae'] = vae + + model_manager.commit(config_file) diff --git a/ldm/invoke/model_manager.py b/ldm/invoke/model_manager.py index a5f9a47d41..650a497ad5 100644 --- a/ldm/invoke/model_manager.py +++ b/ldm/invoke/model_manager.py @@ -37,7 +37,11 @@ from ldm.util import instantiate_from_config, ask_user DEFAULT_MAX_MODELS=2 class ModelManager(object): - def __init__(self, config:OmegaConf, device_type:str, precision:str, max_loaded_models=DEFAULT_MAX_MODELS): + def __init__(self, + config:OmegaConf, + device_type:str='cpu', + precision:str='float16', + max_loaded_models=DEFAULT_MAX_MODELS): ''' Initialize with the path to the models.yaml config file, the torch device type, and precision. The optional @@ -536,7 +540,7 @@ class ModelManager(object): format='diffusers', ) if isinstance(repo_or_path,Path) and repo_or_path.exists(): - new_config.update(path=repo_or_path) + new_config.update(path=str(repo_or_path)) else: new_config.update(repo_id=repo_or_path) diff --git a/scripts/load_models.py b/scripts/load_models.py old mode 100644 new mode 100755 diff --git a/scripts/merge_embeddings.py b/scripts/merge_embeddings.py old mode 100644 new mode 100755 diff --git a/scripts/merge_fe.py b/scripts/merge_fe.py index 4f24961a18..a15e4440e5 100755 --- a/scripts/merge_fe.py +++ b/scripts/merge_fe.py @@ -5,15 +5,12 @@ import os import sys import traceback import argparse -import safetensors.torch -from ldm.invoke.globals import Globals, global_set_root, global_cache_dir +from ldm.invoke.globals import Globals, global_set_root, global_cache_dir, global_config_file from ldm.invoke.model_manager import ModelManager from omegaconf import OmegaConf from pathlib import Path from typing import List -CONFIG_FILE = None - class FloatSlider(npyscreen.Slider): # this is supposed to adjust display precision, but doesn't def translate_value(self): @@ -120,16 +117,16 @@ class mergeModelsForm(npyscreen.FormMultiPageAction): self.merge_method.value=0 def on_ok(self): - if self.validate_field_values(): + if self.validate_field_values() and self.check_for_overwrite(): self.parentApp.setNextForm(None) self.editing = False self.parentApp.merge_arguments = self.marshall_arguments() npyscreen.notify('Starting the merge...') - import diffusers # this keeps the message up while diffusers loads + import ldm.invoke.merge_diffusers # this keeps the message up while diffusers loads else: self.editing = True - def ok_cancel(self): + def on_cancel(self): sys.exit(0) def marshall_arguments(self)->dict: @@ -141,18 +138,22 @@ class mergeModelsForm(npyscreen.FormMultiPageAction): if self.model3.value[0] > 0: models.append(model_names[self.model3.value[0]-1]) - models = [self.model_manager.model_name_or_path(x) for x in models] - args = dict( - pretrained_model_name_or_path_list=models, + models=models, alpha = self.alpha.value, interp = self.interpolations[self.merge_method.value[0]], force = self.force.value, - cache_dir = global_cache_dir('diffusers'), merged_model_name = self.merged_model_name.value, ) return args + def check_for_overwrite(self)->bool: + model_out = self.merged_model_name.value + if model_out not in self.model_names: + return True + else: + return npyscreen.notify_yes_no(f'The chosen merged model destination, {model_out}, is already in use. Overwrite?') + def validate_field_values(self)->bool: bad_fields = [] model_names = self.model_names @@ -178,7 +179,7 @@ class mergeModelsForm(npyscreen.FormMultiPageAction): class Mergeapp(npyscreen.NPSAppManaged): def __init__(self): super().__init__() - conf = OmegaConf.load(Path(Globals.root) / 'configs' / 'models.yaml') + conf = OmegaConf.load(global_config_file()) self.model_manager = ModelManager(conf,'cpu','float16') # precision doesn't really matter here def onStart(self): @@ -195,51 +196,22 @@ if __name__ == '__main__': ) args = parser.parse_args() global_set_root(args.root_dir) - - CONFIG_FILE = os.path.join(Globals.root,'configs/models.yaml') - os.environ['HF_HOME'] = str(global_cache_dir('diffusers')) + + cache_dir = str(global_cache_dir('diffusers')) # because not clear the merge pipeline is honoring cache_dir + os.environ['HF_HOME'] = cache_dir mergeapp = Mergeapp() mergeapp.run() - from diffusers import DiffusionPipeline - args = mergeapp.merge_arguments - merged_model_name = args['merged_model_name'] - merged_pipe = None - print(args) + + args = mergeapp.merge_arguments + args.update(cache_dir = cache_dir) + from ldm.invoke.merge_diffusers import merge_diffusion_models try: - print(f'DEBUG: {args["pretrained_model_name_or_path_list"][0]}') - pipe = DiffusionPipeline.from_pretrained(args['pretrained_model_name_or_path_list'][0], - custom_pipeline='checkpoint_merger' - ) - merged_pipe = pipe.merge(**args) - dump_path = Path(Globals.root) / 'models' / 'merged_diffusers' - os.makedirs(dump_path,exist_ok=True) - dump_path = dump_path / merged_model_name - merged_pipe.save_pretrained ( - dump_path, - safe_serialization=1 - ) + merge_diffusion_models(**args) + print(f'>> Models merged into new model: "{args["merged_model_name"]}".') except Exception as e: print(f'** An error occurred while merging the pipelines: {str(e)}') print('** DETAILS:') print(traceback.format_exc()) sys.exit(-1) - - print(f'>> Merged model is saved to {dump_path}') - response = input('Import this model into InvokeAI? [y]').strip() or 'y' - if response.startswith(('y','Y')): - try: - mergeapp.model_manager.import_diffuser_model( - dump_path, - model_name = merged_model_name, - description = f'Merge of models {args["pretrained_model_name_or_path_list"]}' - ) - mergeapp.model_manager.commit(CONFIG_FILE) - print('>> Merged model imported.') - except Exception as e: - print(f'** New model could not be committed to config.yaml: {str(e)}') - print('** DETAILS:') - print(traceback.format_exc()) - -