docs: add vscode setup instructions

- using vscode python debugger
- automatic python environment activation
- remote dev
This commit is contained in:
psychedelicious 2023-07-18 10:11:45 +10:00 committed by Kent Keirsey
parent 47b1a85e70
commit 6d688ca87d

View File

@ -81,3 +81,193 @@ pytest --cov; open ./coverage/html/index.html
<!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.-->
--8<-- "invokeai/frontend/web/README.md"
## Developing InvokeAI in VSCode
VSCode offers some nice tools:
- python debugger
- automatic `venv` activation
- remote dev (e.g. run InvokeAI on a beefy linux desktop while you type in
comfort on your macbook)
### Setup
You'll need the
[Python](https://marketplace.visualstudio.com/items?itemName=ms-python.python)
and
[Pylance](https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance)
extensions installed first.
It's also really handy to install the `Jupyter` extensions:
- [Jupyter](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter)
- [Jupyter Cell Tags](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-jupyter-cell-tags)
- [Jupyter Notebook Renderers](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter-renderers)
- [Jupyter Slide Show](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-jupyter-slideshow)
#### InvokeAI workspace
Creating a VSCode workspace for working on InvokeAI is highly recommended. It
can hold InvokeAI-specific settings and configs.
To make a workspace:
- Open the InvokeAI repo dir in VSCode
- `File` > `Save Workspace As` > save it _outside_ the repo
#### Default python interpreter (i.e. automatic virtual environment activation)
- Use command palette to run command
`Preferences: Open Workspace Settings (JSON)`
- Add `python.defaultInterpreterPath` to `settings`, pointing to your `venv`'s
python
Should look something like this:
```json
{
// I like to have all InvokeAI-related folders in my workspace
"folders": [
{
// repo root
"path": "InvokeAI"
},
{
// InvokeAI root dir, where `invokeai.yaml` lives
"path": "/path/to/invokeai_root"
}
],
"settings": {
// Where your InvokeAI `venv`'s python executable lives
"python.defaultInterpreterPath": "/path/to/invokeai_root/.venv/bin/python"
}
}
```
Now when you open the VSCode integrated terminal, or do anything that needs to
run python, it will automatically be in your InvokeAI virtual environment.
Bonus: When you create a Jupyter notebook, when you run it, you'll be prompted
for the python interpreter to run in. This will default to your `venv` python,
and so you'll have access to the same python environment as the InvokeAI app.
This is _super_ handy.
#### Debugging configs with `launch.json`
Debugging configs are managed in a `launch.json` file. Like most VSCode configs,
these can be scoped to a workspace or folder.
Follow the [official guide](https://code.visualstudio.com/docs/python/debugging)
to set up your `launch.json` and try it out.
Now we can create the InvokeAI debugging configs:
```json
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
// Run the InvokeAI backend & serve the pre-built UI
"name": "InvokeAI Web",
"type": "python",
"request": "launch",
"program": "scripts/invokeai-web.py",
"args": [
// Your InvokeAI root dir (where `invokeai.yaml` lives)
"--root",
"/path/to/invokeai_root",
// Access the app from anywhere on your local network
"--host",
"0.0.0.0"
],
"justMyCode": true
},
{
// Run the nodes-based CLI
"name": "InvokeAI CLI",
"type": "python",
"request": "launch",
"program": "scripts/invokeai-cli.py",
"justMyCode": true
},
{
// Run tests
"name": "InvokeAI Test",
"type": "python",
"request": "launch",
"module": "pytest",
"args": ["--capture=no"],
"justMyCode": true
},
{
// Run a single test
"name": "InvokeAI Single Test",
"type": "python",
"request": "launch",
"module": "pytest",
"args": [
// Change this to point to the specific test you are working on
"tests/nodes/test_invoker.py"
],
"justMyCode": true
},
{
// This is the default, useful to just run a single file
"name": "Python: File",
"type": "python",
"request": "launch",
"program": "${file}",
"justMyCode": true
}
]
}
```
You'll see these configs in the debugging configs drop down. Running them will
start InvokeAI with attached debugger, in the correct environment, and work just
like the normal app.
Enjoy debugging InvokeAI with ease (not that we have any bugs of course).
#### Remote dev
This is very easy to set up and provides the same very smooth experience as
local development. Environments and debugging, as set up above, just work,
though you'd need to recreate the workspace and debugging configs on the remote.
Consult the
[official guide](https://code.visualstudio.com/docs/remote/remote-overview) to
get it set up.
Suggest using VSCode's included settings sync so that your remote dev host has
all the same app settings and extensions automagically.
##### One remote dev gotcha
I've found the automatic port forwarding to be very flakey. You can disable it
in `Preferences: Open Remote Settings (ssh: hostname)`. Search for
`remote.autoForwardPorts` and untick the box.
To forward ports very reliably, use SSH on the remote dev client (e.g. your
macbook). Here's how to forward both backend API port (`9090`) and the frontend
live dev server port (`5173`):
```bash
ssh \
-L 9090:localhost:9090 \
-L 5173:localhost:5173 \
user@remote-dev-host
```
The forwarding stops when you close the terminal window, so suggest to do this
_outside_ the VSCode integrated terminal in case you need to restart VSCode for
an extension update or something
Now, on your remote dev client, you can open `localhost:9090` and access the UI,
now served from the remote dev host, just the same as if it was running on the
client.