fix: Black linting

This commit is contained in:
blessedcoolant 2023-07-29 17:34:43 +12:00
parent 6ed1bf7084
commit 6d82a1019a
3 changed files with 327 additions and 321 deletions

View File

@ -6,8 +6,7 @@ from pydantic import Field
from invokeai.app.invocations.prompt import PromptOutput
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .math import FloatOutput, IntOutput
# Pass-through parameter nodes - used by subgraphs
@ -68,6 +67,7 @@ class ParamStringInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text)
class ParamPromptInvocation(BaseInvocation):
"""A prompt input parameter"""

View File

@ -40,7 +40,7 @@
},
"outputs": [],
"source": [
"#@title 1. Check current GPU assigned\n",
"# @title 1. Check current GPU assigned\n",
"!nvidia-smi -L\n",
"!nvidia-smi"
]
@ -54,7 +54,7 @@
},
"outputs": [],
"source": [
"#@title 2. Download stable-diffusion Repository\n",
"# @title 2. Download stable-diffusion Repository\n",
"from os.path import exists\n",
"\n",
"!git clone --quiet https://github.com/invoke-ai/InvokeAI.git # Original repo\n",
@ -71,7 +71,7 @@
},
"outputs": [],
"source": [
"#@title 3. Install dependencies\n",
"# @title 3. Install dependencies\n",
"import gc\n",
"\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-base.txt\n",
@ -92,7 +92,7 @@
},
"outputs": [],
"source": [
"#@title 4. Restart Runtime\n",
"# @title 4. Restart Runtime\n",
"exit()"
]
},
@ -105,8 +105,9 @@
},
"outputs": [],
"source": [
"#@title 5. Load small ML models required\n",
"# @title 5. Load small ML models required\n",
"import gc\n",
"\n",
"%cd /content/InvokeAI/\n",
"!python scripts/preload_models.py\n",
"gc.collect()"
@ -130,9 +131,10 @@
},
"outputs": [],
"source": [
"#@title 6. Mount google Drive\n",
"# @title 6. Mount google Drive\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')"
"\n",
"drive.mount(\"/content/drive\")"
]
},
{
@ -144,16 +146,16 @@
},
"outputs": [],
"source": [
"#@title 7. Drive Path to model\n",
"#@markdown Path should start with /content/drive/path-to-your-file <br>\n",
"#@markdown <font color=\"red\">Note:</font> Model should be downloaded from https://huggingface.co <br>\n",
"#@markdown Lastest release: [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)\n",
"# @title 7. Drive Path to model\n",
"# @markdown Path should start with /content/drive/path-to-your-file <br>\n",
"# @markdown <font color=\"red\">Note:</font> Model should be downloaded from https://huggingface.co <br>\n",
"# @markdown Lastest release: [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)\n",
"from os.path import exists\n",
"\n",
"model_path = \"\" #@param {type:\"string\"}\n",
"model_path = \"\" # @param {type:\"string\"}\n",
"if exists(model_path):\n",
" print(\"✅ Valid directory\")\n",
"else: \n",
"else:\n",
" print(\"❌ File doesn't exist\")"
]
},
@ -166,10 +168,10 @@
},
"outputs": [],
"source": [
"#@title 8. Symlink to model\n",
"# @title 8. Symlink to model\n",
"\n",
"from os.path import exists\n",
"import os \n",
"import os\n",
"\n",
"# Folder creation if it doesn't exist\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1\"):\n",
@ -181,10 +183,10 @@
"# Symbolic link if it doesn't exist\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
" print(\"❗ Symlink already created\")\n",
"else: \n",
"else:\n",
" src = model_path\n",
" dst = '/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt'\n",
" os.symlink(src, dst) \n",
" dst = \"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"\n",
" os.symlink(src, dst)\n",
" print(\"✅ Symbolic link created successfully\")"
]
},
@ -206,12 +208,12 @@
},
"outputs": [],
"source": [
"#@title 9. Run Terminal and Execute Dream bot\n",
"#@markdown <font color=\"blue\">Steps:</font> <br>\n",
"#@markdown 1. Execute command `python scripts/invoke.py` to run InvokeAI.<br>\n",
"#@markdown 2. After initialized you'll see `Dream>` line.<br>\n",
"#@markdown 3. Example text: `Astronaut floating in a distant galaxy` <br>\n",
"#@markdown 4. To quit Dream bot use: `q` command.<br>\n",
"# @title 9. Run Terminal and Execute Dream bot\n",
"# @markdown <font color=\"blue\">Steps:</font> <br>\n",
"# @markdown 1. Execute command `python scripts/invoke.py` to run InvokeAI.<br>\n",
"# @markdown 2. After initialized you'll see `Dream>` line.<br>\n",
"# @markdown 3. Example text: `Astronaut floating in a distant galaxy` <br>\n",
"# @markdown 4. To quit Dream bot use: `q` command.<br>\n",
"\n",
"%load_ext colabxterm\n",
"%xterm\n",

View File

@ -52,17 +52,17 @@
"name": "stdout",
"text": [
"Cloning into 'latent-diffusion'...\n",
"remote: Enumerating objects: 992, done.\u001B[K\n",
"remote: Counting objects: 100% (695/695), done.\u001B[K\n",
"remote: Compressing objects: 100% (397/397), done.\u001B[K\n",
"remote: Total 992 (delta 375), reused 564 (delta 253), pack-reused 297\u001B[K\n",
"remote: Enumerating objects: 992, done.\u001b[K\n",
"remote: Counting objects: 100% (695/695), done.\u001b[K\n",
"remote: Compressing objects: 100% (397/397), done.\u001b[K\n",
"remote: Total 992 (delta 375), reused 564 (delta 253), pack-reused 297\u001b[K\n",
"Receiving objects: 100% (992/992), 30.78 MiB | 29.43 MiB/s, done.\n",
"Resolving deltas: 100% (510/510), done.\n",
"Cloning into 'taming-transformers'...\n",
"remote: Enumerating objects: 1335, done.\u001B[K\n",
"remote: Counting objects: 100% (525/525), done.\u001B[K\n",
"remote: Compressing objects: 100% (493/493), done.\u001B[K\n",
"remote: Total 1335 (delta 58), reused 481 (delta 30), pack-reused 810\u001B[K\n",
"remote: Enumerating objects: 1335, done.\u001b[K\n",
"remote: Counting objects: 100% (525/525), done.\u001b[K\n",
"remote: Compressing objects: 100% (493/493), done.\u001b[K\n",
"remote: Total 1335 (delta 58), reused 481 (delta 30), pack-reused 810\u001b[K\n",
"Receiving objects: 100% (1335/1335), 412.35 MiB | 30.53 MiB/s, done.\n",
"Resolving deltas: 100% (267/267), done.\n",
"Obtaining file:///content/taming-transformers\n",
@ -73,23 +73,24 @@
"Installing collected packages: taming-transformers\n",
" Running setup.py develop for taming-transformers\n",
"Successfully installed taming-transformers-0.0.1\n",
"\u001B[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"tensorflow 2.8.0 requires tf-estimator-nightly==2.8.0.dev2021122109, which is not installed.\n",
"arviz 0.11.4 requires typing-extensions<4,>=3.7.4.3, but you have typing-extensions 4.1.1 which is incompatible.\u001B[0m\n"
"arviz 0.11.4 requires typing-extensions<4,>=3.7.4.3, but you have typing-extensions 4.1.1 which is incompatible.\u001b[0m\n"
]
}
],
"source": [
"#@title Installation\n",
"# @title Installation\n",
"!git clone https://github.com/CompVis/latent-diffusion.git\n",
"!git clone https://github.com/CompVis/taming-transformers\n",
"!pip install -e ./taming-transformers\n",
"!pip install omegaconf>=2.0.0 pytorch-lightning>=1.0.8 torch-fidelity einops\n",
"\n",
"import sys\n",
"\n",
"sys.path.append(\".\")\n",
"sys.path.append('./taming-transformers')\n",
"from taming.models import vqgan "
"sys.path.append(\"./taming-transformers\")\n",
"from taming.models import vqgan"
]
},
{
@ -104,11 +105,11 @@
{
"cell_type": "code",
"source": [
"#@title Download\n",
"%cd latent-diffusion/ \n",
"# @title Download\n",
"%cd latent-diffusion/\n",
"\n",
"!mkdir -p models/ldm/cin256-v2/\n",
"!wget -O models/ldm/cin256-v2/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt "
"!wget -O models/ldm/cin256-v2/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt"
],
"metadata": {
"colab": {
@ -203,7 +204,7 @@
{
"cell_type": "code",
"source": [
"#@title loading utils\n",
"# @title loading utils\n",
"import torch\n",
"from omegaconf import OmegaConf\n",
"\n",
@ -212,7 +213,7 @@
"\n",
"def load_model_from_config(config, ckpt):\n",
" print(f\"Loading model from {ckpt}\")\n",
" pl_sd = torch.load(ckpt)#, map_location=\"cpu\")\n",
" pl_sd = torch.load(ckpt) # , map_location=\"cpu\")\n",
" sd = pl_sd[\"state_dict\"]\n",
" model = instantiate_from_config(config.model)\n",
" m, u = model.load_state_dict(sd, strict=False)\n",
@ -222,7 +223,7 @@
"\n",
"\n",
"def get_model():\n",
" config = OmegaConf.load(\"configs/latent-diffusion/cin256-v2.yaml\") \n",
" config = OmegaConf.load(\"configs/latent-diffusion/cin256-v2.yaml\")\n",
" model = load_model_from_config(config, \"models/ldm/cin256-v2/model.ckpt\")\n",
" return model"
],
@ -276,7 +277,7 @@
{
"cell_type": "code",
"source": [
"import numpy as np \n",
"import numpy as np\n",
"from PIL import Image\n",
"from einops import rearrange\n",
"from torchvision.utils import make_grid\n",
@ -295,36 +296,39 @@
"with torch.no_grad():\n",
" with model.ema_scope():\n",
" uc = model.get_learned_conditioning(\n",
" {model.cond_stage_key: torch.tensor(n_samples_per_class*[1000]).to(model.device)}\n",
" {model.cond_stage_key: torch.tensor(n_samples_per_class * [1000]).to(model.device)}\n",
" )\n",
" \n",
"\n",
" for class_label in classes:\n",
" print(f\"rendering {n_samples_per_class} examples of class '{class_label}' in {ddim_steps} steps and using s={scale:.2f}.\")\n",
" xc = torch.tensor(n_samples_per_class*[class_label])\n",
" print(\n",
" f\"rendering {n_samples_per_class} examples of class '{class_label}' in {ddim_steps} steps and using s={scale:.2f}.\"\n",
" )\n",
" xc = torch.tensor(n_samples_per_class * [class_label])\n",
" c = model.get_learned_conditioning({model.cond_stage_key: xc.to(model.device)})\n",
" \n",
" samples_ddim, _ = sampler.sample(S=ddim_steps,\n",
"\n",
" samples_ddim, _ = sampler.sample(\n",
" S=ddim_steps,\n",
" conditioning=c,\n",
" batch_size=n_samples_per_class,\n",
" shape=[3, 64, 64],\n",
" verbose=False,\n",
" unconditional_guidance_scale=scale,\n",
" unconditional_conditioning=uc, \n",
" eta=ddim_eta)\n",
" unconditional_conditioning=uc,\n",
" eta=ddim_eta,\n",
" )\n",
"\n",
" x_samples_ddim = model.decode_first_stage(samples_ddim)\n",
" x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, \n",
" min=0.0, max=1.0)\n",
" x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)\n",
" all_samples.append(x_samples_ddim)\n",
"\n",
"\n",
"# display as grid\n",
"grid = torch.stack(all_samples, 0)\n",
"grid = rearrange(grid, 'n b c h w -> (n b) c h w')\n",
"grid = rearrange(grid, \"n b c h w -> (n b) c h w\")\n",
"grid = make_grid(grid, nrow=n_samples_per_class)\n",
"\n",
"# to image\n",
"grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()\n",
"grid = 255.0 * rearrange(grid, \"c h w -> h w c\").cpu().numpy()\n",
"Image.fromarray(grid.astype(np.uint8))"
],
"metadata": {