wip: Initial Implementation IP Adapter Style & Comp Modes

This commit is contained in:
blessedcoolant 2024-04-13 11:09:45 +05:30
parent 24f2cde862
commit 6ea183f0d4
8 changed files with 352 additions and 94 deletions

View File

@ -4,20 +4,8 @@ from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
OutputField,
TensorField,
UIType,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, TensorField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
@ -36,6 +24,7 @@ class IPAdapterField(BaseModel):
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.")
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the IP-Adapter.")
target_blocks: List[str] = Field(default=[], description="The IP Adapter blocks to apply")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@ -90,6 +79,9 @@ class IPAdapterInvocation(BaseInvocation):
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
method: Literal["full", "style", "composition"] = InputField(
default="full", description="The method to apply the IP-Adapter"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@ -124,12 +116,19 @@ class IPAdapterInvocation(BaseInvocation):
image_encoder_model = self._get_image_encoder(context, image_encoder_model_name)
target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"]
if self.method == "style":
target_blocks = ["up_blocks.0.attentions.1"]
elif self.method == "composition":
target_blocks = ["down_blocks.2.attentions.1"]
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=ModelIdentifierField.from_config(image_encoder_model),
weight=self.weight,
target_blocks=target_blocks,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
mask=self.mask,

View File

@ -15,12 +15,10 @@ from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import T2IAdapter
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.attention_processor import (AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler
@ -29,22 +27,17 @@ from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
LatentsField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.constants import (LATENT_SCALE_FACTOR,
SCHEDULER_NAME_VALUES)
from invokeai.app.invocations.fields import (ConditioningField,
DenoiseMaskField,
FieldDescriptions, ImageField,
Input, InputField, LatentsField,
OutputField, UIType, WithBoard,
WithMetadata)
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.primitives import DenoiseMaskOutput, ImageOutput, LatentsOutput
from invokeai.app.invocations.primitives import (DenoiseMaskOutput,
ImageOutput, LatentsOutput)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
@ -52,28 +45,21 @@ from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion import (PipelineIntermediateState,
set_seamless)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
IPAdapterData,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
BasicConditioningInfo, IPAdapterConditioningInfo, IPAdapterData, Range,
SDXLConditioningInfo, TextConditioningData, TextConditioningRegions)
from invokeai.backend.util.mask import to_standard_float_mask
from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
ControlNetData, StableDiffusionGeneratorPipeline, T2IAdapterData,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, invocation,
invocation_output)
from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField, VAEField
@ -682,6 +668,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
target_blocks=single_ip_adapter.target_blocks,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),

View File

@ -21,12 +21,9 @@ from pydantic import Field
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
IPAdapterData,
TextConditioningData,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import normalize_device
@ -394,8 +391,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
unet_attention_patcher = None
self.use_ip_adapter = use_ip_adapter
attn_ctx = nullcontext()
if use_ip_adapter or use_regional_prompting:
ip_adapters = [ipa.ip_adapter_model for ipa in ip_adapter_data] if use_ip_adapter else None
ip_adapters: Optional[List[UNetIPAdapterData]] = (
[{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks} for ipa in ip_adapter_data]
if use_ip_adapter
else None
)
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)

View File

@ -53,6 +53,7 @@ class IPAdapterData:
ip_adapter_model: IPAdapter
ip_adapter_conditioning: IPAdapterConditioningInfo
mask: torch.Tensor
target_blocks: List[str]
# Either a single weight applied to all steps, or a list of weights for each step.
weight: Union[float, List[float]] = 1.0

View File

@ -1,4 +1,4 @@
from typing import Optional
from typing import List, Optional, TypedDict
import torch
import torch.nn.functional as F
@ -9,6 +9,11 @@ from invokeai.backend.stable_diffusion.diffusion.regional_ip_data import Regiona
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
class IPAdapterAttentionWeights(TypedDict):
ip_adapter_weights: List[IPAttentionProcessorWeights]
skip: bool
class CustomAttnProcessor2_0(AttnProcessor2_0):
"""A custom implementation of AttnProcessor2_0 that supports additional Invoke features.
This implementation is based on
@ -20,7 +25,7 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
def __init__(
self,
ip_adapter_weights: Optional[list[IPAttentionProcessorWeights]] = None,
ip_adapter_attention_weights: Optional[IPAdapterAttentionWeights] = None,
):
"""Initialize a CustomAttnProcessor2_0.
Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are
@ -30,10 +35,7 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
for the i'th IP-Adapter.
"""
super().__init__()
self._ip_adapter_weights = ip_adapter_weights
def _is_ip_adapter_enabled(self) -> bool:
return self._ip_adapter_weights is not None
self._ip_adapter_attention_weights = ip_adapter_attention_weights
def __call__(
self,
@ -130,17 +132,17 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# Apply IP-Adapter conditioning.
if is_cross_attention:
if self._is_ip_adapter_enabled():
if self._ip_adapter_attention_weights:
assert regional_ip_data is not None
ip_masks = regional_ip_data.get_masks(query_seq_len=query_seq_len)
assert (
len(regional_ip_data.image_prompt_embeds)
== len(self._ip_adapter_weights)
== len(self._ip_adapter_attention_weights["ip_adapter_weights"])
== len(regional_ip_data.scales)
== ip_masks.shape[1]
)
for ipa_index, ipa_embed in enumerate(regional_ip_data.image_prompt_embeds):
ipa_weights = self._ip_adapter_weights[ipa_index]
ipa_weights = self._ip_adapter_attention_weights["ip_adapter_weights"][ipa_index]
ipa_scale = regional_ip_data.scales[ipa_index]
ip_mask = ip_masks[0, ipa_index, ...]
@ -153,29 +155,33 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
if self._ip_adapter_attention_weights["skip"]:
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + ipa_scale * ip_hidden_states * ip_mask
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + ipa_scale * ip_hidden_states * ip_mask
else:
# If IP-Adapter is not enabled, then regional_ip_data should not be passed in.
assert regional_ip_data is None

View File

@ -1,17 +1,25 @@
from contextlib import contextmanager
from typing import Optional
from typing import List, Optional, TypedDict
from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import (
CustomAttnProcessor2_0,
IPAdapterAttentionWeights,
)
class UNetIPAdapterData(TypedDict):
ip_adapter: IPAdapter
target_blocks: List[str]
class UNetAttentionPatcher:
"""A class for patching a UNet with CustomAttnProcessor2_0 attention layers."""
def __init__(self, ip_adapters: Optional[list[IPAdapter]]):
self._ip_adapters = ip_adapters
def __init__(self, ip_adapter_data: Optional[List[UNetIPAdapterData]]):
self._ip_adapters = ip_adapter_data
def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
@ -25,10 +33,23 @@ class UNetAttentionPatcher:
# "attn1" processors do not use IP-Adapters.
attn_procs[name] = CustomAttnProcessor2_0()
else:
ip_adapter_attention_weights: IPAdapterAttentionWeights = {"ip_adapter_weights": [], "skip": False}
for ip_adapter in self._ip_adapters:
ip_adapter_weight = ip_adapter["ip_adapter"].attn_weights.get_attention_processor_weights(idx)
skip = False
for block in ip_adapter["target_blocks"]:
if block in name:
skip = True
break
ip_adapter_attention_weights.update({"ip_adapter_weights": [ip_adapter_weight], "skip": skip})
# Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = CustomAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters],
)
attn_procs[name] = CustomAttnProcessor2_0(ip_adapter_attention_weights)
return attn_procs
@contextmanager

View File

@ -57,6 +57,7 @@ export const addIPAdapterToLinearGraph = async (
type: 'ip_adapter',
is_intermediate: true,
weight: weight,
method: 'composition',
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginStepPct,

File diff suppressed because one or more lines are too long