Merge branch 'main' into psyche/fix/ui/cl-listening-layers

This commit is contained in:
blessedcoolant 2024-05-13 04:05:35 +05:30 committed by GitHub
commit 6ec3dc0c0d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 360 additions and 362 deletions

View File

@ -586,13 +586,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:

View File

@ -4,5 +4,4 @@ Initialization file for invokeai.backend.image_util methods.
from .infill_methods.patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401

View File

@ -1,52 +0,0 @@
import torch.nn as nn
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on
the `seamless` and `seamless_axes` options.
"""
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
else:
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
if hasattr(m, "asymmetric_padding_mode"):
del m.asymmetric_padding_mode
if hasattr(m, "asymmetric_padding"):
del m.asymmetric_padding

View File

@ -1,89 +1,51 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import Callable, List, Union
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
if not seamless_axes:
yield
return
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
# Hard coded to skip down block layers, allowing for seamless tiling at the expense of prompt adherence
skipped_layers = 1
for m_name, m in model.named_modules():
if not isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
continue
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
if isinstance(model, UNet2DConditionModel) and m_name.startswith("down_blocks.") and ".resnets." in m_name:
# down_blocks.1.resnets.1.conv1
_, block_num, _, resnet_num, submodule_name = m_name.split(".")
block_num = int(block_num)
resnet_num = int(resnet_num)
conv_layers: List[torch.nn.Conv2d] = []
if block_num >= len(model.down_blocks) - skipped_layers:
continue
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
conv_layers.append(module)
# Skip the second resnet (could be configurable)
if resnet_num > 0:
continue
# Skip Conv2d layers (could be configurable)
if submodule_name == "conv2":
continue
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
to_restore.append((m, m._conv_forward))
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
for layer in conv_layers:
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for module, orig_conv_forward in to_restore:
module._conv_forward = orig_conv_forward
if hasattr(module, "asymmetric_padding_mode"):
del module.asymmetric_padding_mode
if hasattr(module, "asymmetric_padding"):
del module.asymmetric_padding
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@ -261,7 +261,6 @@
"queue": "Queue",
"queueFront": "Add to Front of Queue",
"queueBack": "Add to Queue",
"queueCountPrediction": "{{promptsCount}} prompts \u00d7 {{iterations}} iterations -> {{count}} generations",
"queueEmpty": "Queue Empty",
"enqueueing": "Queueing Batch",
"resume": "Resume",
@ -314,7 +313,13 @@
"batchFailedToQueue": "Failed to Queue Batch",
"graphQueued": "Graph queued",
"graphFailedToQueue": "Failed to queue graph",
"openQueue": "Open Queue"
"openQueue": "Open Queue",
"prompts_one": "Prompt",
"prompts_other": "Prompts",
"iterations_one": "Iteration",
"iterations_other": "Iterations",
"generations_one": "Generation",
"generations_other": "Generations"
},
"invocationCache": {
"invocationCache": "Invocation Cache",
@ -934,7 +939,20 @@
"noModelSelected": "No model selected",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
"systemDisconnected": "System disconnected"
"systemDisconnected": "System disconnected",
"layer": {
"initialImageNoImageSelected": "no initial image selected",
"controlAdapterNoModelSelected": "no Control Adapter model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"controlAdapterNoImageSelected": "no Control Adapter image selected",
"controlAdapterImageNotProcessed": "Control Adapter image not processed",
"t2iAdapterIncompatibleDimensions": "T2I Adapter requires image dimension to be multiples of 64",
"ipAdapterNoModelSelected": "no IP adapter selected",
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or IP Adapters",
"rgNoRegion": "no region selected"
}
},
"maskBlur": "Mask Blur",
"negativePromptPlaceholder": "Negative Prompt",
@ -945,8 +963,6 @@
"positivePromptPlaceholder": "Positive Prompt",
"globalPositivePromptPlaceholder": "Global Positive Prompt",
"iterations": "Iterations",
"iterationsWithCount_one": "{{count}} Iteration",
"iterationsWithCount_other": "{{count}} Iterations",
"scale": "Scale",
"scaleBeforeProcessing": "Scale Before Processing",
"scaledHeight": "Scaled H",

View File

@ -1,13 +1,14 @@
import { isAnyOf } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { AppDispatch } from 'app/store/store';
import { parseify } from 'common/util/serialize';
import {
caLayerImageChanged,
caLayerIsProcessingImageChanged,
caLayerModelChanged,
caLayerProcessedImageChanged,
caLayerProcessorConfigChanged,
caLayerProcessorPendingBatchIdChanged,
caLayerRecalled,
isControlAdapterLayer,
} from 'features/controlLayers/store/controlLayersSlice';
@ -15,47 +16,39 @@ import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import { isImageOutput } from 'features/nodes/types/common';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { isEqual } from 'lodash-es';
import { imagesApi } from 'services/api/endpoints/images';
import { getImageDTO } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig, ImageDTO } from 'services/api/types';
import type { BatchConfig } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { assert } from 'tsafe';
const matcher = isAnyOf(caLayerImageChanged, caLayerProcessorConfigChanged, caLayerModelChanged, caLayerRecalled);
const DEBOUNCE_MS = 300;
const log = logger('session');
/**
* Simple helper to cancel a batch and reset the pending batch ID
*/
const cancelProcessorBatch = async (dispatch: AppDispatch, layerId: string, batchId: string) => {
const req = dispatch(queueApi.endpoints.cancelByBatchIds.initiate({ batch_ids: [batchId] }));
log.trace({ batchId }, 'Cancelling existing preprocessor batch');
try {
await req.unwrap();
} catch {
// no-op
} finally {
req.reset();
// Always reset the pending batch ID - the cancel req could fail if the batch doesn't exist
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
}
};
export const addControlAdapterPreprocessor = (startAppListening: AppStartListening) => {
startAppListening({
matcher,
effect: async (action, { dispatch, getState, getOriginalState, cancelActiveListeners, delay, take }) => {
effect: async (action, { dispatch, getState, cancelActiveListeners, delay, take, signal }) => {
const layerId = caLayerRecalled.match(action) ? action.payload.id : action.payload.layerId;
const precheckLayerOriginal = getOriginalState()
.controlLayers.present.layers.filter(isControlAdapterLayer)
.find((l) => l.id === layerId);
const precheckLayer = getState()
.controlLayers.present.layers.filter(isControlAdapterLayer)
.find((l) => l.id === layerId);
// Conditions to bail
const layerDoesNotExist = !precheckLayer;
const layerHasNoImage = !precheckLayer?.controlAdapter.image;
const layerHasNoProcessorConfig = !precheckLayer?.controlAdapter.processorConfig;
const layerIsAlreadyProcessingImage = precheckLayer?.controlAdapter.isProcessingImage;
const areImageAndProcessorUnchanged =
isEqual(precheckLayer?.controlAdapter.image, precheckLayerOriginal?.controlAdapter.image) &&
isEqual(precheckLayer?.controlAdapter.processorConfig, precheckLayerOriginal?.controlAdapter.processorConfig);
if (
layerDoesNotExist ||
layerHasNoImage ||
layerHasNoProcessorConfig ||
areImageAndProcessorUnchanged ||
layerIsAlreadyProcessingImage
) {
return;
}
// Cancel any in-progress instances of this listener
cancelActiveListeners();
@ -63,19 +56,31 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
// Delay before starting actual work
await delay(DEBOUNCE_MS);
dispatch(caLayerIsProcessingImageChanged({ layerId, isProcessingImage: true }));
// Double-check that we are still eligible for processing
const state = getState();
const layer = state.controlLayers.present.layers.filter(isControlAdapterLayer).find((l) => l.id === layerId);
const image = layer?.controlAdapter.image;
const config = layer?.controlAdapter.processorConfig;
// If we have no image or there is no processor config, bail
if (!layer || !image || !config) {
if (!layer) {
return;
}
const image = layer.controlAdapter.image;
const config = layer.controlAdapter.processorConfig;
if (!image || !config) {
// The user has reset the image or config, so we should clear the processed image
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO: null }));
}
// At this point, the user has stopped fiddling with the processor settings and there is a processor selected.
// If there is a pending processor batch, cancel it.
if (layer.controlAdapter.processorPendingBatchId) {
cancelProcessorBatch(dispatch, layerId, layer.controlAdapter.processorPendingBatchId);
}
// @ts-expect-error: TS isn't able to narrow the typing of buildNode and `config` will error...
const processorNode = CA_PROCESSOR_DATA[config.type].buildNode(image, config);
const enqueueBatchArg: BatchConfig = {
@ -83,7 +88,11 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
batch: {
graph: {
nodes: {
[processorNode.id]: { ...processorNode, is_intermediate: true },
[processorNode.id]: {
...processorNode,
// Control images are always intermediate - do not save to gallery
is_intermediate: true,
},
},
edges: [],
},
@ -91,16 +100,21 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
},
};
try {
// Kick off the processor batch
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
fixedCacheKey: 'enqueueBatch',
})
);
try {
const enqueueResult = await req.unwrap();
req.reset();
// TODO(psyche): Update the pydantic models, pretty sure we will _always_ have a batch_id here, but the model says it's optional
assert(enqueueResult.batch.batch_id, 'Batch ID not returned from queue');
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: enqueueResult.batch.batch_id }));
log.debug({ enqueueResult: parseify(enqueueResult) }, t('queue.graphQueued'));
// Wait for the processor node to complete
const [invocationCompleteAction] = await take(
(action): action is ReturnType<typeof socketInvocationComplete> =>
socketInvocationComplete.match(action) &&
@ -109,31 +123,33 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
);
// We still have to check the output type
if (isImageOutput(invocationCompleteAction.payload.data.result)) {
assert(
isImageOutput(invocationCompleteAction.payload.data.result),
`Processor did not return an image output, got: ${invocationCompleteAction.payload.data.result}`
);
const { image_name } = invocationCompleteAction.payload.data.result.image;
// Wait for the ImageDTO to be received
const [{ payload }] = await take(
(action) =>
imagesApi.endpoints.getImageDTO.matchFulfilled(action) && action.payload.image_name === image_name
);
const imageDTO = payload as ImageDTO;
const imageDTO = await getImageDTO(image_name);
assert(imageDTO, "Failed to fetch processor output's image DTO");
// Whew! We made it. Update the layer with the processed image
log.debug({ layerId, imageDTO }, 'ControlNet image processed');
// Update the processed image in the store
dispatch(
caLayerProcessedImageChanged({
layerId,
imageDTO,
})
);
dispatch(caLayerIsProcessingImageChanged({ layerId, isProcessingImage: false }));
}
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO }));
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
} catch (error) {
if (signal.aborted) {
// The listener was canceled - we need to cancel the pending processor batch, if there is one (could have changed by now).
const pendingBatchId = getState()
.controlLayers.present.layers.filter(isControlAdapterLayer)
.find((l) => l.id === layerId)?.controlAdapter.processorPendingBatchId;
if (pendingBatchId) {
cancelProcessorBatch(dispatch, layerId, pendingBatchId);
}
log.trace('Control Adapter preprocessor cancelled');
} else {
// Some other error condition...
console.log(error);
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
dispatch(caLayerIsProcessingImageChanged({ layerId, isProcessingImage: false }));
if (error instanceof Object) {
if ('data' in error && 'status' in error) {
@ -151,6 +167,9 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
})
);
}
} finally {
req.reset();
}
},
});
};

View File

@ -13,6 +13,7 @@ type UseGroupedModelComboboxArg<T extends AnyModelConfig> = {
onChange: (value: T | null) => void;
getIsDisabled?: (model: T) => boolean;
isLoading?: boolean;
groupByType?: boolean;
};
type UseGroupedModelComboboxReturn = {
@ -23,17 +24,21 @@ type UseGroupedModelComboboxReturn = {
noOptionsMessage: () => string;
};
const groupByBaseFunc = <T extends AnyModelConfig>(model: T) => model.base.toUpperCase();
const groupByBaseAndTypeFunc = <T extends AnyModelConfig>(model: T) =>
`${model.base.toUpperCase()} / ${model.type.replaceAll('_', ' ').toUpperCase()}`;
export const useGroupedModelCombobox = <T extends AnyModelConfig>(
arg: UseGroupedModelComboboxArg<T>
): UseGroupedModelComboboxReturn => {
const { t } = useTranslation();
const base_model = useAppSelector((s) => s.generation.model?.base ?? 'sdxl');
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading } = arg;
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading, groupByType = false } = arg;
const options = useMemo<GroupBase<ComboboxOption>[]>(() => {
if (!modelConfigs) {
return [];
}
const groupedModels = groupBy(modelConfigs, 'base');
const groupedModels = groupBy(modelConfigs, groupByType ? groupByBaseAndTypeFunc : groupByBaseFunc);
const _options = reduce(
groupedModels,
(acc, val, label) => {
@ -49,9 +54,9 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
},
[] as GroupBase<ComboboxOption>[]
);
_options.sort((a) => (a.label === base_model ? -1 : 1));
_options.sort((a) => (a.label?.split('/')[0]?.toLowerCase().includes(base_model) ? -1 : 1));
return _options;
}, [getIsDisabled, modelConfigs, base_model]);
}, [modelConfigs, groupByType, getIsDisabled, base_model]);
const value = useMemo(
() =>

View File

@ -6,6 +6,7 @@ import {
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
import { selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
import type { Layer } from 'features/controlLayers/store/types';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { selectNodesSlice } from 'features/nodes/store/nodesSlice';
@ -14,9 +15,16 @@ import { selectGenerationSlice } from 'features/parameters/store/generationSlice
import { selectSystemSlice } from 'features/system/store/systemSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import i18n from 'i18next';
import { forEach } from 'lodash-es';
import { forEach, upperFirst } from 'lodash-es';
import { getConnectedEdges } from 'reactflow';
const LAYER_TYPE_TO_TKEY: Record<Layer['type'], string> = {
initial_image_layer: 'controlLayers.globalInitialImage',
control_adapter_layer: 'controlLayers.globalControlAdapter',
ip_adapter_layer: 'controlLayers.globalIPAdapter',
regional_guidance_layer: 'controlLayers.regionalGuidance',
};
const selector = createMemoizedSelector(
[
selectControlAdaptersSlice,
@ -29,21 +37,22 @@ const selector = createMemoizedSelector(
],
(controlAdapters, generation, system, nodes, dynamicPrompts, controlLayers, activeTabName) => {
const { model } = generation;
const { size } = controlLayers.present;
const { positivePrompt } = controlLayers.present;
const { isConnected } = system;
const reasons: string[] = [];
const reasons: { prefix?: string; content: string }[] = [];
// Cannot generate if not connected
if (!isConnected) {
reasons.push(i18n.t('parameters.invoke.systemDisconnected'));
reasons.push({ content: i18n.t('parameters.invoke.systemDisconnected') });
}
if (activeTabName === 'workflows') {
if (nodes.shouldValidateGraph) {
if (!nodes.nodes.length) {
reasons.push(i18n.t('parameters.invoke.noNodesInGraph'));
reasons.push({ content: i18n.t('parameters.invoke.noNodesInGraph') });
}
nodes.nodes.forEach((node) => {
@ -55,7 +64,7 @@ const selector = createMemoizedSelector(
if (!nodeTemplate) {
// Node type not found
reasons.push(i18n.t('parameters.invoke.missingNodeTemplate'));
reasons.push({ content: i18n.t('parameters.invoke.missingNodeTemplate') });
return;
}
@ -68,17 +77,17 @@ const selector = createMemoizedSelector(
);
if (!fieldTemplate) {
reasons.push(i18n.t('parameters.invoke.missingFieldTemplate'));
reasons.push({ content: i18n.t('parameters.invoke.missingFieldTemplate') });
return;
}
if (fieldTemplate.required && field.value === undefined && !hasConnection) {
reasons.push(
i18n.t('parameters.invoke.missingInputForField', {
reasons.push({
content: i18n.t('parameters.invoke.missingInputForField', {
nodeLabel: node.data.label || nodeTemplate.title,
fieldLabel: field.label || fieldTemplate.title,
})
);
}),
});
return;
}
});
@ -86,62 +95,94 @@ const selector = createMemoizedSelector(
}
} else {
if (dynamicPrompts.prompts.length === 0 && getShouldProcessPrompt(positivePrompt)) {
reasons.push(i18n.t('parameters.invoke.noPrompts'));
reasons.push({ content: i18n.t('parameters.invoke.noPrompts') });
}
if (!model) {
reasons.push(i18n.t('parameters.invoke.noModelSelected'));
reasons.push({ content: i18n.t('parameters.invoke.noModelSelected') });
}
if (activeTabName === 'generation') {
// Handling for generation tab
controlLayers.present.layers
.filter((l) => l.isEnabled)
.flatMap((l) => {
.forEach((l, i) => {
const layerLiteral = i18n.t('controlLayers.layers_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[l.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
if (l.type === 'control_adapter_layer') {
return l.controlAdapter;
} else if (l.type === 'ip_adapter_layer') {
return l.ipAdapter;
} else if (l.type === 'regional_guidance_layer') {
return l.ipAdapters;
// Must have model
if (!l.controlAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoModelSelected'));
}
// Model base must match
if (l.controlAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterIncompatibleBaseModel'));
}
// Must have a control image OR, if it has a processor, it must have a processed image
if (!l.controlAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoImageSelected'));
} else if (l.controlAdapter.processorConfig && !l.controlAdapter.processedImage) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterImageNotProcessed'));
}
// T2I Adapters require images have dimensions that are multiples of 64
if (l.controlAdapter.type === 't2i_adapter' && (size.width % 64 !== 0 || size.height % 64 !== 0)) {
problems.push(i18n.t('parameters.invoke.layer.t2iAdapterIncompatibleDimensions'));
}
}
return [];
})
.forEach((ca, i) => {
const hasNoModel = !ca.model;
const mismatchedModelBase = ca.model?.base !== model?.base;
const hasNoImage = !ca.image;
const imageNotProcessed =
(ca.type === 'controlnet' || ca.type === 't2i_adapter') && !ca.processedImage && ca.processorConfig;
if (hasNoModel) {
reasons.push(
i18n.t('parameters.invoke.noModelForControlAdapter', {
number: i + 1,
})
);
if (l.type === 'ip_adapter_layer') {
// Must have model
if (!l.ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
if (mismatchedModelBase) {
// This should never happen, just a sanity check
reasons.push(
i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', {
number: i + 1,
})
);
// Model base must match
if (l.ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
if (hasNoImage) {
reasons.push(
i18n.t('parameters.invoke.noControlImageForControlAdapter', {
number: i + 1,
})
);
// Must have an image
if (!l.ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
if (imageNotProcessed) {
reasons.push(
i18n.t('parameters.invoke.imageNotProcessedForControlAdapter', {
number: i + 1,
})
);
}
if (l.type === 'initial_image_layer') {
// Must have an image
if (!l.image) {
problems.push(i18n.t('parameters.invoke.layer.initialImageNoImageSelected'));
}
}
if (l.type === 'regional_guidance_layer') {
// Must have a region
if (l.maskObjects.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoRegion'));
}
// Must have at least 1 prompt or IP Adapter
if (l.positivePrompt === null && l.negativePrompt === null && l.ipAdapters.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoPromptsOrIPAdapters'));
}
l.ipAdapters.forEach((ipAdapter) => {
// Must have model
if (!ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
});
}
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });
}
});
} else {
@ -154,29 +195,19 @@ const selector = createMemoizedSelector(
}
if (!ca.model) {
reasons.push(
i18n.t('parameters.invoke.noModelForControlAdapter', {
number: i + 1,
})
);
reasons.push({ content: i18n.t('parameters.invoke.noModelForControlAdapter', { number: i + 1 }) });
} else if (ca.model.base !== model?.base) {
// This should never happen, just a sanity check
reasons.push(
i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', {
number: i + 1,
})
);
reasons.push({
content: i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', { number: i + 1 }),
});
}
if (
!ca.controlImage ||
(isControlNetOrT2IAdapter(ca) && !ca.processedControlImage && ca.processorType !== 'none')
) {
reasons.push(
i18n.t('parameters.invoke.noControlImageForControlAdapter', {
number: i + 1,
})
);
reasons.push({ content: i18n.t('parameters.invoke.noControlImageForControlAdapter', { number: i + 1 }) });
}
});
}
@ -187,6 +218,6 @@ const selector = createMemoizedSelector(
);
export const useIsReadyToEnqueue = () => {
const { isReady, reasons } = useAppSelector(selector);
return { isReady, reasons };
const value = useAppSelector(selector);
return value;
};

View File

@ -21,7 +21,6 @@ import {
setShouldShowBoundingBox,
} from 'features/canvas/store/canvasSlice';
import type { CanvasLayer } from 'features/canvas/store/canvasTypes';
import { LAYER_NAMES_DICT } from 'features/canvas/store/canvasTypes';
import { memo, useCallback, useMemo } from 'react';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
@ -216,13 +215,20 @@ const IAICanvasToolbar = () => {
[dispatch, isMaskEnabled]
);
const value = useMemo(() => LAYER_NAMES_DICT.filter((o) => o.value === layer)[0], [layer]);
const layerOptions = useMemo<{ label: string; value: CanvasLayer }[]>(
() => [
{ label: t('unifiedCanvas.base'), value: 'base' },
{ label: t('unifiedCanvas.mask'), value: 'mask' },
],
[t]
);
const layerValue = useMemo(() => layerOptions.filter((o) => o.value === layer)[0] ?? null, [layer, layerOptions]);
return (
<Flex alignItems="center" gap={2} flexWrap="wrap">
<Tooltip label={`${t('unifiedCanvas.layer')} (Q)`}>
<FormControl isDisabled={isStaging} w="5rem">
<Combobox value={value} options={LAYER_NAMES_DICT} onChange={handleChangeLayer} />
<Combobox value={layerValue} options={layerOptions} onChange={handleChangeLayer} />
</FormControl>
</Tooltip>

View File

@ -5,11 +5,6 @@ import { z } from 'zod';
export type CanvasLayer = 'base' | 'mask';
export const LAYER_NAMES_DICT: { label: string; value: CanvasLayer }[] = [
{ label: 'Base', value: 'base' },
{ label: 'Mask', value: 'mask' },
];
const zBoundingBoxScaleMethod = z.enum(['none', 'auto', 'manual']);
export type BoundingBoxScaleMethod = z.infer<typeof zBoundingBoxScaleMethod>;
export const isBoundingBoxScaleMethod = (v: unknown): v is BoundingBoxScaleMethod =>

View File

@ -124,7 +124,7 @@ export const ControlAdapterImagePreview = memo(
controlImage &&
processedControlImage &&
!isMouseOverImage &&
!controlAdapter.isProcessingImage &&
!controlAdapter.processorPendingBatchId &&
controlAdapter.processorConfig !== null;
useEffect(() => {
@ -190,7 +190,7 @@ export const ControlAdapterImagePreview = memo(
/>
</>
{controlAdapter.isProcessingImage && (
{controlAdapter.processorPendingBatchId !== null && (
<Flex
position="absolute"
top={0}

View File

@ -42,6 +42,7 @@ export const ControlAdapterModelCombobox = memo(({ modelKey, onChange: onChangeM
selectedModel,
getIsDisabled,
isLoading,
groupByType: true,
});
return (

View File

@ -2,14 +2,13 @@ import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { DepthAnythingModelSize, DepthAnythingProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { CA_PROCESSOR_DATA, isDepthAnythingModelSize } from 'features/controlLayers/util/controlAdapters';
import { isDepthAnythingModelSize } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<DepthAnythingProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['depth_anything_image_processor'].buildDefaults();
export const DepthAnythingProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
@ -38,12 +37,7 @@ export const DepthAnythingProcessor = memo(({ onChange, config }: Props) => {
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.modelSize')}</FormLabel>
<Combobox
value={value}
defaultInputValue={DEFAULTS.model_size}
options={options}
onChange={handleModelSizeChange}
/>
<Combobox value={value} options={options} onChange={handleModelSizeChange} isSearchable={false} />
</FormControl>
</ProcessorWrapper>
);

View File

@ -27,7 +27,7 @@ import { modelChanged } from 'features/parameters/store/generationSlice';
import type { ParameterAutoNegative } from 'features/parameters/types/parameterSchemas';
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import type { IRect, Vector2d } from 'konva/lib/types';
import { isEqual, partition } from 'lodash-es';
import { isEqual, partition, unset } from 'lodash-es';
import { atom } from 'nanostores';
import type { RgbColor } from 'react-colorful';
import type { UndoableOptions } from 'redux-undo';
@ -49,7 +49,7 @@ import type {
} from './types';
export const initialControlLayersState: ControlLayersState = {
_version: 2,
_version: 3,
selectedLayerId: null,
brushSize: 100,
layers: [],
@ -334,13 +334,13 @@ export const controlLayersSlice = createSlice({
const layer = selectCALayerOrThrow(state, layerId);
layer.opacity = opacity;
},
caLayerIsProcessingImageChanged: (
caLayerProcessorPendingBatchIdChanged: (
state,
action: PayloadAction<{ layerId: string; isProcessingImage: boolean }>
action: PayloadAction<{ layerId: string; batchId: string | null }>
) => {
const { layerId, isProcessingImage } = action.payload;
const { layerId, batchId } = action.payload;
const layer = selectCALayerOrThrow(state, layerId);
layer.controlAdapter.isProcessingImage = isProcessingImage;
layer.controlAdapter.processorPendingBatchId = batchId;
},
//#endregion
@ -800,7 +800,7 @@ export const {
caLayerProcessorConfigChanged,
caLayerIsFilterEnabledChanged,
caLayerOpacityChanged,
caLayerIsProcessingImageChanged,
caLayerProcessorPendingBatchIdChanged,
// IPA Layers
ipaLayerAdded,
ipaLayerRecalled,
@ -857,7 +857,16 @@ export const selectControlLayersSlice = (state: RootState) => state.controlLayer
const migrateControlLayersState = (state: any): any => {
if (state._version === 1) {
// Reset state for users on v1 (e.g. beta users), some changes could cause
return deepClone(initialControlLayersState);
state = deepClone(initialControlLayersState);
}
if (state._version === 2) {
// The CA `isProcessingImage` flag was replaced with a `processorPendingBatchId` property, fix up CA layers
for (const layer of (state as ControlLayersState).layers) {
if (layer.type === 'control_adapter_layer') {
layer.controlAdapter.processorPendingBatchId = null;
unset(layer.controlAdapter, 'isProcessingImage');
}
}
}
return state;
};

View File

@ -113,7 +113,7 @@ export const zLayer = z.discriminatedUnion('type', [
export type Layer = z.infer<typeof zLayer>;
export type ControlLayersState = {
_version: 2;
_version: 3;
selectedLayerId: string | null;
layers: Layer[];
brushSize: number;

View File

@ -198,8 +198,8 @@ const zControlAdapterBase = z.object({
weight: z.number().gte(0).lte(1),
image: zImageWithDims.nullable(),
processedImage: zImageWithDims.nullable(),
isProcessingImage: z.boolean(),
processorConfig: zProcessorConfig.nullable(),
processorPendingBatchId: z.string().nullable().default(null),
beginEndStepPct: zBeginEndStepPct,
});
@ -521,8 +521,8 @@ export const initialControlNetV2: Omit<ControlNetConfigV2, 'id'> = {
controlMode: 'balanced',
image: null,
processedImage: null,
isProcessingImage: false,
processorConfig: CA_PROCESSOR_DATA.canny_image_processor.buildDefaults(),
processorPendingBatchId: null,
};
export const initialT2IAdapterV2: Omit<T2IAdapterConfigV2, 'id'> = {
@ -532,8 +532,8 @@ export const initialT2IAdapterV2: Omit<T2IAdapterConfigV2, 'id'> = {
beginEndStepPct: [0, 1],
image: null,
processedImage: null,
isProcessingImage: false,
processorConfig: CA_PROCESSOR_DATA.canny_image_processor.buildDefaults(),
processorPendingBatchId: null,
};
export const initialIPAdapterV2: Omit<IPAdapterConfigV2, 'id'> = {

View File

@ -587,7 +587,7 @@ const parseControlNetToControlAdapterLayer: MetadataParseFunc<ControlAdapterLaye
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
processedImage: processedImageDTO ? imageDTOToImageWithDims(processedImageDTO) : null,
processorConfig,
isProcessingImage: false,
processorPendingBatchId: null,
},
};
@ -651,7 +651,7 @@ const parseT2IAdapterToControlAdapterLayer: MetadataParseFunc<ControlAdapterLaye
image: imageDTO ? imageDTOToImageWithDims(imageDTO) : null,
processedImage: processedImageDTO ? imageDTOToImageWithDims(processedImageDTO) : null,
processorConfig,
isProcessingImage: false,
processorPendingBatchId: null,
},
};

View File

@ -16,13 +16,13 @@ export const InvokeQueueBackButton = memo(() => {
return (
<Flex pos="relative" flexGrow={1} minW="240px">
<QueueIterationsNumberInput />
<QueueButtonTooltip>
<Button
onClick={queueBack}
isLoading={isLoading || isLoadingDynamicPrompts}
loadingText={invoke}
isDisabled={isDisabled}
rightIcon={<RiSparkling2Fill />}
tooltip={<QueueButtonTooltip />}
variant="solid"
zIndex={1}
colorScheme="invokeYellow"
@ -35,6 +35,7 @@ export const InvokeQueueBackButton = memo(() => {
<span>{invoke}</span>
<Spacer />
</Button>
</QueueButtonTooltip>
</Flex>
);
});

View File

@ -1,10 +1,11 @@
import { Divider, Flex, ListItem, Text, UnorderedList } from '@invoke-ai/ui-library';
import { Divider, Flex, ListItem, Text, Tooltip, UnorderedList } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { useIsReadyToEnqueue } from 'common/hooks/useIsReadyToEnqueue';
import { selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import type { PropsWithChildren } from 'react';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useEnqueueBatchMutation } from 'services/api/endpoints/queue';
@ -21,17 +22,32 @@ type Props = {
prepend?: boolean;
};
export const QueueButtonTooltip = memo(({ prepend = false }: Props) => {
export const QueueButtonTooltip = (props: PropsWithChildren<Props>) => {
return (
<Tooltip label={<TooltipContent prepend={props.prepend} />} maxW={512}>
{props.children}
</Tooltip>
);
};
const TooltipContent = memo(({ prepend = false }: Props) => {
const { t } = useTranslation();
const { isReady, reasons } = useIsReadyToEnqueue();
const isLoadingDynamicPrompts = useAppSelector((s) => s.dynamicPrompts.isLoading);
const promptsCount = useAppSelector(selectPromptsCount);
const iterations = useAppSelector((s) => s.generation.iterations);
const iterationsCount = useAppSelector((s) => s.generation.iterations);
const autoAddBoardId = useAppSelector((s) => s.gallery.autoAddBoardId);
const autoAddBoardName = useBoardName(autoAddBoardId);
const [_, { isLoading }] = useEnqueueBatchMutation({
fixedCacheKey: 'enqueueBatch',
});
const queueCountPredictionLabel = useMemo(() => {
const generationCount = Math.min(promptsCount * iterationsCount, 10000);
const prompts = t('queue.prompts', { count: promptsCount });
const iterations = t('queue.iterations', { count: iterationsCount });
const generations = t('queue.generations', { count: generationCount });
return `${promptsCount} ${prompts} \u00d7 ${iterationsCount} ${iterations} -> ${generationCount} ${generations}`.toLowerCase();
}, [iterationsCount, promptsCount, t]);
const label = useMemo(() => {
if (isLoading) {
@ -52,20 +68,21 @@ export const QueueButtonTooltip = memo(({ prepend = false }: Props) => {
return (
<Flex flexDir="column" gap={1}>
<Text fontWeight="semibold">{label}</Text>
<Text>
{t('queue.queueCountPrediction', {
promptsCount,
iterations,
count: Math.min(promptsCount * iterations, 10000),
})}
</Text>
<Text>{queueCountPredictionLabel}</Text>
{reasons.length > 0 && (
<>
<Divider opacity={0.2} borderColor="base.900" />
<UnorderedList>
{reasons.map((reason, i) => (
<ListItem key={`${reason}.${i}`}>
<Text>{reason}</Text>
<ListItem key={`${reason.content}.${i}`}>
<span>
{reason.prefix && (
<Text as="span" fontWeight="semibold">
{reason.prefix}:{' '}
</Text>
)}
<Text as="span">{reason.content}</Text>
</span>
</ListItem>
))}
</UnorderedList>
@ -82,4 +99,4 @@ export const QueueButtonTooltip = memo(({ prepend = false }: Props) => {
);
});
QueueButtonTooltip.displayName = 'QueueButtonTooltip';
TooltipContent.displayName = 'QueueButtonTooltipContent';

View File

@ -10,15 +10,16 @@ const QueueFrontButton = () => {
const { t } = useTranslation();
const { queueFront, isLoading, isDisabled } = useQueueFront();
return (
<QueueButtonTooltip prepend>
<IconButton
aria-label={t('queue.queueFront')}
isDisabled={isDisabled}
isLoading={isLoading}
onClick={queueFront}
tooltip={<QueueButtonTooltip prepend />}
icon={<AiFillThunderbolt />}
size="lg"
/>
</QueueButtonTooltip>
);
};

View File

@ -63,6 +63,7 @@ const FloatingSidePanelButtons = (props: Props) => {
sx={floatingButtonStyles}
icon={<PiSlidersHorizontalBold size="16px" />}
/>
<QueueButtonTooltip>
<IconButton
aria-label={t('queue.queueBack')}
onClick={queueBack}
@ -70,9 +71,9 @@ const FloatingSidePanelButtons = (props: Props) => {
isDisabled={isDisabled}
icon={queueButtonIcon}
colorScheme="invokeYellow"
tooltip={<QueueButtonTooltip />}
sx={floatingButtonStyles}
/>
</QueueButtonTooltip>
<CancelCurrentQueueItemIconButton sx={floatingButtonStyles} />
</ButtonGroup>
<ClearAllQueueIconButton sx={floatingButtonStyles} onOpen={disclosure.onOpen} />