mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add VTO invocation.
This commit is contained in:
parent
09046e811f
commit
6fc3c959e0
46
invokeai/app/invocations/vto_workflow.py
Normal file
46
invokeai/app/invocations/vto_workflow.py
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||||
|
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||||||
|
from invokeai.app.invocations.primitives import ImageOutput
|
||||||
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
|
from invokeai.backend.vto_workflow.extract_channel import ImageChannel, extract_channel
|
||||||
|
from invokeai.backend.vto_workflow.overlay_pattern import multiply_images
|
||||||
|
from invokeai.backend.vto_workflow.seamless_mapping import map_seamless_tiles
|
||||||
|
|
||||||
|
|
||||||
|
@invocation("vto", title="Virtual Try-On", tags=["vto"], category="vto", version="1.0.0")
|
||||||
|
class VTOInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||||
|
"""Virtual try-on."""
|
||||||
|
|
||||||
|
original_image: ImageField = InputField(description="The input image")
|
||||||
|
clothing_mask: ImageField = InputField(description="Clothing mask.")
|
||||||
|
pattern_image: ImageField = InputField(description="Pattern image.")
|
||||||
|
pattern_vertical_repeats: int = InputField(description="Number of vertical repeats for the pattern.", default=1)
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
|
# TODO(ryand): Avoid all the unnecessary flip-flopping between PIL and numpy.
|
||||||
|
original_image = context.images.get_pil(self.original_image.image_name)
|
||||||
|
clothing_mask = context.images.get_pil(self.clothing_mask.image_name)
|
||||||
|
pattern_image = context.images.get_pil(self.pattern_image.image_name)
|
||||||
|
|
||||||
|
shadows = extract_channel(np.array(original_image), ImageChannel.LAB_L)
|
||||||
|
|
||||||
|
expanded_pattern = map_seamless_tiles(
|
||||||
|
seamless_tile=pattern_image,
|
||||||
|
target_hw=(original_image.height, original_image.width),
|
||||||
|
num_repeats_h=self.pattern_vertical_repeats,
|
||||||
|
)
|
||||||
|
|
||||||
|
pattern_with_shadows = multiply_images(expanded_pattern, Image.fromarray(shadows))
|
||||||
|
|
||||||
|
# Merge the pattern with the model image.
|
||||||
|
pattern_with_shadows_np = np.array(pattern_with_shadows)
|
||||||
|
clothing_mask_np = np.array(clothing_mask)
|
||||||
|
original_image_np = np.array(original_image)
|
||||||
|
merged_image = np.where(clothing_mask_np[:, :, None], pattern_with_shadows_np, original_image_np)
|
||||||
|
merged_image = Image.fromarray(merged_image)
|
||||||
|
|
||||||
|
image_dto = context.images.save(image=merged_image)
|
||||||
|
return ImageOutput.build(image_dto)
|
Loading…
Reference in New Issue
Block a user