mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into pr/4352
This commit is contained in:
commit
6fdeeb8ce8
@ -34,6 +34,7 @@ from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.seamless import set_seamless
|
||||
from ...backend.model_management.models import BaseModelType
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
@ -456,7 +457,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
|
||||
unet_info.context.model, _lora_loader()
|
||||
), unet_info as unet:
|
||||
), set_seamless(unet_info.context.model, self.unet.seamless_axes), unet_info as unet:
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
@ -549,7 +550,7 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
context=context,
|
||||
)
|
||||
|
||||
with vae_info as vae:
|
||||
with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
|
||||
latents = latents.to(vae.device)
|
||||
if self.fp32:
|
||||
vae.to(dtype=torch.float32)
|
||||
|
@ -8,8 +8,8 @@ from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
Input,
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
@ -33,6 +33,7 @@ class UNetField(BaseModel):
|
||||
unet: ModelInfo = Field(description="Info to load unet submodel")
|
||||
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
|
||||
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
|
||||
|
||||
class ClipField(BaseModel):
|
||||
@ -45,6 +46,7 @@ class ClipField(BaseModel):
|
||||
class VaeField(BaseModel):
|
||||
# TODO: better naming?
|
||||
vae: ModelInfo = Field(description="Info to load vae submodel")
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
|
||||
|
||||
class ModelLoaderOutput(BaseInvocationOutput):
|
||||
@ -388,3 +390,50 @@ class VaeLoaderInvocation(BaseInvocation):
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class SeamlessModeOutput(BaseInvocationOutput):
|
||||
"""Modified Seamless Model output"""
|
||||
|
||||
type: Literal["seamless_output"] = "seamless_output"
|
||||
|
||||
# Outputs
|
||||
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@title("Seamless")
|
||||
@tags("seamless", "model")
|
||||
class SeamlessModeInvocation(BaseInvocation):
|
||||
"""Applies the seamless transformation to the Model UNet and VAE."""
|
||||
|
||||
type: Literal["seamless"] = "seamless"
|
||||
|
||||
# Inputs
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
|
||||
)
|
||||
vae: Optional[VaeField] = InputField(
|
||||
default=None, description=FieldDescriptions.vae_model, input=Input.Connection, title="VAE"
|
||||
)
|
||||
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
|
||||
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SeamlessModeOutput:
|
||||
# Conditionally append 'x' and 'y' based on seamless_x and seamless_y
|
||||
unet = copy.deepcopy(self.unet)
|
||||
vae = copy.deepcopy(self.vae)
|
||||
|
||||
seamless_axes_list = []
|
||||
|
||||
if self.seamless_x:
|
||||
seamless_axes_list.append("x")
|
||||
if self.seamless_y:
|
||||
seamless_axes_list.append("y")
|
||||
|
||||
if unet is not None:
|
||||
unet.seamless_axes = seamless_axes_list
|
||||
if vae is not None:
|
||||
vae.seamless_axes = seamless_axes_list
|
||||
|
||||
return SeamlessModeOutput(unet=unet, vae=vae)
|
||||
|
@ -20,7 +20,8 @@ def _conv_forward_asymmetric(self, input, weight, bias):
|
||||
|
||||
def configure_model_padding(model, seamless, seamless_axes):
|
||||
"""
|
||||
Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options.
|
||||
Modifies the 2D convolution layers to use a circular padding mode based on
|
||||
the `seamless` and `seamless_axes` options.
|
||||
"""
|
||||
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
|
||||
for m in model.modules():
|
||||
|
103
invokeai/backend/model_management/seamless.py
Normal file
103
invokeai/backend/model_management/seamless.py
Normal file
@ -0,0 +1,103 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import List, Union
|
||||
|
||||
import torch.nn as nn
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
|
||||
|
||||
def _conv_forward_asymmetric(self, input, weight, bias):
|
||||
"""
|
||||
Patch for Conv2d._conv_forward that supports asymmetric padding
|
||||
"""
|
||||
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
|
||||
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
|
||||
return nn.functional.conv2d(
|
||||
working,
|
||||
weight,
|
||||
bias,
|
||||
self.stride,
|
||||
nn.modules.utils._pair(0),
|
||||
self.dilation,
|
||||
self.groups,
|
||||
)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axes: List[str]):
|
||||
try:
|
||||
to_restore = []
|
||||
|
||||
for m_name, m in model.named_modules():
|
||||
if isinstance(model, UNet2DConditionModel):
|
||||
if ".attentions." in m_name:
|
||||
continue
|
||||
|
||||
if ".resnets." in m_name:
|
||||
if ".conv2" in m_name:
|
||||
continue
|
||||
if ".conv_shortcut" in m_name:
|
||||
continue
|
||||
|
||||
"""
|
||||
if isinstance(model, UNet2DConditionModel):
|
||||
if False and ".upsamplers." in m_name:
|
||||
continue
|
||||
|
||||
if False and ".downsamplers." in m_name:
|
||||
continue
|
||||
|
||||
if True and ".resnets." in m_name:
|
||||
if True and ".conv1" in m_name:
|
||||
if False and "down_blocks" in m_name:
|
||||
continue
|
||||
if False and "mid_block" in m_name:
|
||||
continue
|
||||
if False and "up_blocks" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".conv2" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".conv_shortcut" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".attentions." in m_name:
|
||||
continue
|
||||
|
||||
if False and m_name in ["conv_in", "conv_out"]:
|
||||
continue
|
||||
"""
|
||||
|
||||
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||||
print(f"applied - {m_name}")
|
||||
m.asymmetric_padding_mode = {}
|
||||
m.asymmetric_padding = {}
|
||||
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["x"] = (
|
||||
m._reversed_padding_repeated_twice[0],
|
||||
m._reversed_padding_repeated_twice[1],
|
||||
0,
|
||||
0,
|
||||
)
|
||||
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["y"] = (
|
||||
0,
|
||||
0,
|
||||
m._reversed_padding_repeated_twice[2],
|
||||
m._reversed_padding_repeated_twice[3],
|
||||
)
|
||||
|
||||
to_restore.append((m, m._conv_forward))
|
||||
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
for module, orig_conv_forward in to_restore:
|
||||
module._conv_forward = orig_conv_forward
|
||||
if hasattr(m, "asymmetric_padding_mode"):
|
||||
del m.asymmetric_padding_mode
|
||||
if hasattr(m, "asymmetric_padding"):
|
||||
del m.asymmetric_padding
|
@ -761,3 +761,18 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
|
||||
diffusers.ControlNetModel = ControlNetModel
|
||||
diffusers.models.controlnet.ControlNetModel = ControlNetModel
|
||||
|
||||
|
||||
# patch LoRACompatibleConv to use original Conv2D forward function
|
||||
# this needed to make work seamless patch
|
||||
# NOTE: with this patch, torch.compile crashes on 2.0 torch(already fixed in nightly)
|
||||
# https://github.com/huggingface/diffusers/pull/4315
|
||||
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/lora.py#L96C18-L96C18
|
||||
def new_LoRACompatibleConv_forward(self, x):
|
||||
if self.lora_layer is None:
|
||||
return super(diffusers.models.lora.LoRACompatibleConv, self).forward(x)
|
||||
else:
|
||||
return super(diffusers.models.lora.LoRACompatibleConv, self).forward(x) + self.lora_layer(x)
|
||||
|
||||
|
||||
diffusers.models.lora.LoRACompatibleConv.forward = new_LoRACompatibleConv_forward
|
||||
|
@ -14,6 +14,7 @@ import i18n from 'i18n';
|
||||
import { size } from 'lodash-es';
|
||||
import { ReactNode, memo, useCallback, useEffect } from 'react';
|
||||
import { ErrorBoundary } from 'react-error-boundary';
|
||||
import { usePreselectedImage } from '../../features/parameters/hooks/usePreselectedImage';
|
||||
import AppErrorBoundaryFallback from './AppErrorBoundaryFallback';
|
||||
import GlobalHotkeys from './GlobalHotkeys';
|
||||
import Toaster from './Toaster';
|
||||
@ -23,13 +24,22 @@ const DEFAULT_CONFIG = {};
|
||||
interface Props {
|
||||
config?: PartialAppConfig;
|
||||
headerComponent?: ReactNode;
|
||||
selectedImage?: {
|
||||
imageName: string;
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
}
|
||||
|
||||
const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
|
||||
const App = ({
|
||||
config = DEFAULT_CONFIG,
|
||||
headerComponent,
|
||||
selectedImage,
|
||||
}: Props) => {
|
||||
const language = useAppSelector(languageSelector);
|
||||
|
||||
const logger = useLogger('system');
|
||||
const dispatch = useAppDispatch();
|
||||
const { handlePreselectedImage } = usePreselectedImage();
|
||||
const handleReset = useCallback(() => {
|
||||
localStorage.clear();
|
||||
location.reload();
|
||||
@ -51,6 +61,10 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
|
||||
dispatch(appStarted());
|
||||
}, [dispatch]);
|
||||
|
||||
useEffect(() => {
|
||||
handlePreselectedImage(selectedImage);
|
||||
}, [handlePreselectedImage, selectedImage]);
|
||||
|
||||
return (
|
||||
<ErrorBoundary
|
||||
onReset={handleReset}
|
||||
|
@ -26,6 +26,10 @@ interface Props extends PropsWithChildren {
|
||||
headerComponent?: ReactNode;
|
||||
middleware?: Middleware[];
|
||||
projectId?: string;
|
||||
selectedImage?: {
|
||||
imageName: string;
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
}
|
||||
|
||||
const InvokeAIUI = ({
|
||||
@ -35,6 +39,7 @@ const InvokeAIUI = ({
|
||||
headerComponent,
|
||||
middleware,
|
||||
projectId,
|
||||
selectedImage,
|
||||
}: Props) => {
|
||||
useEffect(() => {
|
||||
// configure API client token
|
||||
@ -81,7 +86,11 @@ const InvokeAIUI = ({
|
||||
<React.Suspense fallback={<Loading />}>
|
||||
<ThemeLocaleProvider>
|
||||
<AppDndContext>
|
||||
<App config={config} headerComponent={headerComponent} />
|
||||
<App
|
||||
config={config}
|
||||
headerComponent={headerComponent}
|
||||
selectedImage={selectedImage}
|
||||
/>
|
||||
</AppDndContext>
|
||||
</ThemeLocaleProvider>
|
||||
</React.Suspense>
|
||||
|
@ -8,7 +8,7 @@ import {
|
||||
ImageDraggableData,
|
||||
TypesafeDraggableData,
|
||||
} from 'features/dnd/types';
|
||||
import { useMultiselect } from 'features/gallery/hooks/useMultiselect.ts';
|
||||
import { useMultiselect } from 'features/gallery/hooks/useMultiselect';
|
||||
import { MouseEvent, memo, useCallback, useMemo, useState } from 'react';
|
||||
import { FaTrash } from 'react-icons/fa';
|
||||
import { MdStar, MdStarBorder } from 'react-icons/md';
|
||||
|
@ -63,7 +63,7 @@ export const addDynamicPromptsToGraph = (
|
||||
{
|
||||
source: {
|
||||
node_id: DYNAMIC_PROMPT,
|
||||
field: 'prompt_collection',
|
||||
field: 'collection',
|
||||
},
|
||||
destination: {
|
||||
node_id: ITERATE,
|
||||
|
@ -11,9 +11,11 @@ import {
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_INPAINT_GRAPH,
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
SDXL_MODEL_LOADER,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
export const addSDXLLoRAsToGraph = (
|
||||
@ -36,20 +38,25 @@ export const addSDXLLoRAsToGraph = (
|
||||
| MetadataAccumulatorInvocation
|
||||
| undefined;
|
||||
|
||||
// Handle Seamless Plugs
|
||||
const unetLoaderId = modelLoaderNodeId;
|
||||
let clipLoaderId = modelLoaderNodeId;
|
||||
if ([SEAMLESS, REFINER_SEAMLESS].includes(modelLoaderNodeId)) {
|
||||
clipLoaderId = SDXL_MODEL_LOADER;
|
||||
}
|
||||
|
||||
if (loraCount > 0) {
|
||||
// Remove modelLoaderNodeId unet/clip/clip2 connections to feed it to LoRAs
|
||||
graph.edges = graph.edges.filter(
|
||||
(e) =>
|
||||
!(
|
||||
e.source.node_id === modelLoaderNodeId &&
|
||||
['unet'].includes(e.source.field)
|
||||
e.source.node_id === unetLoaderId && ['unet'].includes(e.source.field)
|
||||
) &&
|
||||
!(
|
||||
e.source.node_id === modelLoaderNodeId &&
|
||||
['clip'].includes(e.source.field)
|
||||
e.source.node_id === clipLoaderId && ['clip'].includes(e.source.field)
|
||||
) &&
|
||||
!(
|
||||
e.source.node_id === modelLoaderNodeId &&
|
||||
e.source.node_id === clipLoaderId &&
|
||||
['clip2'].includes(e.source.field)
|
||||
)
|
||||
);
|
||||
@ -88,7 +95,7 @@ export const addSDXLLoRAsToGraph = (
|
||||
// first lora = start the lora chain, attach directly to model loader
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
node_id: unetLoaderId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -99,7 +106,7 @@ export const addSDXLLoRAsToGraph = (
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
node_id: clipLoaderId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -110,7 +117,7 @@ export const addSDXLLoRAsToGraph = (
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
node_id: clipLoaderId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
|
@ -1,11 +1,15 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { MetadataAccumulatorInvocation } from 'services/api/types';
|
||||
import {
|
||||
MetadataAccumulatorInvocation,
|
||||
SeamlessModeInvocation,
|
||||
} from 'services/api/types';
|
||||
import { NonNullableGraph } from '../../types/types';
|
||||
import {
|
||||
CANVAS_OUTPUT,
|
||||
LATENTS_TO_IMAGE,
|
||||
MASK_BLUR,
|
||||
METADATA_ACCUMULATOR,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_CANVAS_INPAINT_GRAPH,
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
@ -21,7 +25,8 @@ import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
export const addSDXLRefinerToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string
|
||||
baseNodeId: string,
|
||||
modelLoaderNodeId?: string
|
||||
): void => {
|
||||
const {
|
||||
refinerModel,
|
||||
@ -33,6 +38,8 @@ export const addSDXLRefinerToGraph = (
|
||||
refinerStart,
|
||||
} = state.sdxl;
|
||||
|
||||
const { seamlessXAxis, seamlessYAxis } = state.generation;
|
||||
|
||||
if (!refinerModel) {
|
||||
return;
|
||||
}
|
||||
@ -53,6 +60,10 @@ export const addSDXLRefinerToGraph = (
|
||||
metadataAccumulator.refiner_steps = refinerSteps;
|
||||
}
|
||||
|
||||
const modelLoaderId = modelLoaderNodeId
|
||||
? modelLoaderNodeId
|
||||
: SDXL_MODEL_LOADER;
|
||||
|
||||
// Construct Style Prompt
|
||||
const { craftedPositiveStylePrompt, craftedNegativeStylePrompt } =
|
||||
craftSDXLStylePrompt(state, true);
|
||||
@ -65,10 +76,7 @@ export const addSDXLRefinerToGraph = (
|
||||
|
||||
graph.edges = graph.edges.filter(
|
||||
(e) =>
|
||||
!(
|
||||
e.source.node_id === SDXL_MODEL_LOADER &&
|
||||
['vae'].includes(e.source.field)
|
||||
)
|
||||
!(e.source.node_id === modelLoaderId && ['vae'].includes(e.source.field))
|
||||
);
|
||||
|
||||
graph.nodes[SDXL_REFINER_MODEL_LOADER] = {
|
||||
@ -98,8 +106,39 @@ export const addSDXLRefinerToGraph = (
|
||||
denoising_end: 1,
|
||||
};
|
||||
|
||||
graph.edges.push(
|
||||
{
|
||||
// Add Seamless To Refiner
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
graph.nodes[REFINER_SEAMLESS] = {
|
||||
id: REFINER_SEAMLESS,
|
||||
type: 'seamless',
|
||||
seamless_x: seamlessXAxis,
|
||||
seamless_y: seamlessYAxis,
|
||||
} as SeamlessModeInvocation;
|
||||
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: REFINER_SEAMLESS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: REFINER_SEAMLESS,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_DENOISE_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
}
|
||||
);
|
||||
} else {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
field: 'unet',
|
||||
@ -108,7 +147,10 @@ export const addSDXLRefinerToGraph = (
|
||||
node_id: SDXL_REFINER_DENOISE_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
|
@ -0,0 +1,109 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { SeamlessModeInvocation } from 'services/api/types';
|
||||
import { NonNullableGraph } from '../../types/types';
|
||||
import {
|
||||
CANVAS_COHERENCE_DENOISE_LATENTS,
|
||||
CANVAS_INPAINT_GRAPH,
|
||||
CANVAS_OUTPAINT_GRAPH,
|
||||
DENOISE_LATENTS,
|
||||
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_CANVAS_INPAINT_GRAPH,
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
SDXL_CANVAS_TEXT_TO_IMAGE_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_TEXT_TO_IMAGE_GRAPH,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
export const addSeamlessToLinearGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
modelLoaderNodeId: string
|
||||
): void => {
|
||||
// Remove Existing UNet Connections
|
||||
const { seamlessXAxis, seamlessYAxis } = state.generation;
|
||||
|
||||
graph.nodes[SEAMLESS] = {
|
||||
id: SEAMLESS,
|
||||
type: 'seamless',
|
||||
seamless_x: seamlessXAxis,
|
||||
seamless_y: seamlessYAxis,
|
||||
} as SeamlessModeInvocation;
|
||||
|
||||
let denoisingNodeId = DENOISE_LATENTS;
|
||||
|
||||
if (
|
||||
graph.id === SDXL_TEXT_TO_IMAGE_GRAPH ||
|
||||
graph.id === SDXL_IMAGE_TO_IMAGE_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_TEXT_TO_IMAGE_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_INPAINT_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_OUTPAINT_GRAPH
|
||||
) {
|
||||
denoisingNodeId = SDXL_DENOISE_LATENTS;
|
||||
}
|
||||
|
||||
graph.edges = graph.edges.filter(
|
||||
(e) =>
|
||||
!(
|
||||
e.source.node_id === modelLoaderNodeId &&
|
||||
['unet'].includes(e.source.field)
|
||||
) &&
|
||||
!(
|
||||
e.source.node_id === modelLoaderNodeId &&
|
||||
['vae'].includes(e.source.field)
|
||||
)
|
||||
);
|
||||
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAMLESS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAMLESS,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SEAMLESS,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: denoisingNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
if (
|
||||
graph.id == CANVAS_INPAINT_GRAPH ||
|
||||
graph.id === CANVAS_OUTPAINT_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_INPAINT_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_OUTPAINT_GRAPH
|
||||
) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: SEAMLESS,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: CANVAS_COHERENCE_DENOISE_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
});
|
||||
}
|
||||
};
|
@ -7,6 +7,7 @@ import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -22,6 +23,7 @@ import {
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -44,6 +46,8 @@ export const buildCanvasImageToImageGraph = (
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
@ -64,6 +68,8 @@ export const buildCanvasImageToImageGraph = (
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
let modelLoaderNodeId = MAIN_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
@ -81,9 +87,9 @@ export const buildCanvasImageToImageGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: CANVAS_IMAGE_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
is_intermediate: true,
|
||||
model,
|
||||
},
|
||||
@ -142,7 +148,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
// Connect Model Loader to CLIP Skip and UNet
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -152,7 +158,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -340,11 +346,17 @@ export const buildCanvasImageToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, DENOISE_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, MAIN_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
@ -13,6 +13,7 @@ import {
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -38,6 +39,7 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -68,6 +70,8 @@ export const buildCanvasInpaintGraph = (
|
||||
canvasCoherenceSteps,
|
||||
canvasCoherenceStrength,
|
||||
clipSkip,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
if (!model) {
|
||||
@ -85,6 +89,8 @@ export const buildCanvasInpaintGraph = (
|
||||
shouldAutoSave,
|
||||
} = state.canvas;
|
||||
|
||||
let modelLoaderNodeId = MAIN_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: shouldUseCpuNoise;
|
||||
@ -92,9 +98,9 @@ export const buildCanvasInpaintGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: CANVAS_INPAINT_GRAPH,
|
||||
nodes: {
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
is_intermediate: true,
|
||||
model,
|
||||
},
|
||||
@ -204,7 +210,7 @@ export const buildCanvasInpaintGraph = (
|
||||
// Connect Model Loader to CLIP Skip and UNet
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -214,7 +220,7 @@ export const buildCanvasInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -349,7 +355,7 @@ export const buildCanvasInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -595,11 +601,17 @@ export const buildCanvasInpaintGraph = (
|
||||
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
|
||||
}
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(state, graph, MAIN_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, DENOISE_LATENTS, MAIN_MODEL_LOADER);
|
||||
addLoRAsToGraph(state, graph, DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, DENOISE_LATENTS);
|
||||
|
@ -14,6 +14,7 @@ import {
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -43,6 +44,7 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -75,6 +77,8 @@ export const buildCanvasOutpaintGraph = (
|
||||
tileSize,
|
||||
infillMethod,
|
||||
clipSkip,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
if (!model) {
|
||||
@ -92,6 +96,8 @@ export const buildCanvasOutpaintGraph = (
|
||||
shouldAutoSave,
|
||||
} = state.canvas;
|
||||
|
||||
let modelLoaderNodeId = MAIN_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: shouldUseCpuNoise;
|
||||
@ -99,9 +105,9 @@ export const buildCanvasOutpaintGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: CANVAS_OUTPAINT_GRAPH,
|
||||
nodes: {
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
is_intermediate: true,
|
||||
model,
|
||||
},
|
||||
@ -222,7 +228,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
// Connect Model Loader To UNet & Clip Skip
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -232,7 +238,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -389,7 +395,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -732,11 +738,17 @@ export const buildCanvasOutpaintGraph = (
|
||||
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
|
||||
}
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(state, graph, MAIN_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, DENOISE_LATENTS, MAIN_MODEL_LOADER);
|
||||
addLoRAsToGraph(state, graph, DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, DENOISE_LATENTS);
|
||||
|
@ -8,6 +8,7 @@ import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -19,9 +20,11 @@ import {
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -44,6 +47,8 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
@ -71,6 +76,9 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
// Model Loader ID
|
||||
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
@ -92,9 +100,9 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[SDXL_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
model,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
@ -144,7 +152,7 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
// Connect Model Loader To UNet & CLIP
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -154,7 +162,7 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -164,7 +172,7 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -174,7 +182,7 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -184,7 +192,7 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -351,16 +359,23 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, SDXL_MODEL_LOADER);
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, SDXL_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add LoRA support
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
@ -14,6 +14,7 @@ import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -35,9 +36,11 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_INPAINT_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -67,6 +70,8 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
maskBlurMethod,
|
||||
canvasCoherenceSteps,
|
||||
canvasCoherenceStrength,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
@ -91,6 +96,8 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
shouldAutoSave,
|
||||
} = state.canvas;
|
||||
|
||||
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: shouldUseCpuNoise;
|
||||
@ -102,9 +109,9 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_CANVAS_INPAINT_GRAPH,
|
||||
nodes: {
|
||||
[SDXL_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
model,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
@ -209,7 +216,7 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
// Connect Model Loader to UNet and CLIP
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -219,7 +226,7 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -229,7 +236,7 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -239,7 +246,7 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -249,7 +256,7 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -363,7 +370,7 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -609,16 +616,28 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
|
||||
}
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, CANVAS_COHERENCE_DENOISE_LATENTS);
|
||||
addSDXLRefinerToGraph(
|
||||
state,
|
||||
graph,
|
||||
CANVAS_COHERENCE_DENOISE_LATENTS,
|
||||
modelLoaderNodeId
|
||||
);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, SDXL_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add LoRA support
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, SDXL_MODEL_LOADER);
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
|
@ -15,6 +15,7 @@ import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -40,9 +41,11 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -74,6 +77,8 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
canvasCoherenceStrength,
|
||||
tileSize,
|
||||
infillMethod,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
@ -98,6 +103,8 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
shouldAutoSave,
|
||||
} = state.canvas;
|
||||
|
||||
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: shouldUseCpuNoise;
|
||||
@ -747,16 +754,28 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
|
||||
}
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, CANVAS_COHERENCE_DENOISE_LATENTS);
|
||||
addSDXLRefinerToGraph(
|
||||
state,
|
||||
graph,
|
||||
CANVAS_COHERENCE_DENOISE_LATENTS,
|
||||
modelLoaderNodeId
|
||||
);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, SDXL_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add LoRA support
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, SDXL_MODEL_LOADER);
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
|
@ -11,6 +11,7 @@ import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -21,9 +22,11 @@ import {
|
||||
NOISE,
|
||||
ONNX_MODEL_LOADER,
|
||||
POSITIVE_CONDITIONING,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_TEXT_TO_IMAGE_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -45,6 +48,8 @@ export const buildCanvasSDXLTextToImageGraph = (
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
@ -74,7 +79,7 @@ export const buildCanvasSDXLTextToImageGraph = (
|
||||
|
||||
const isUsingOnnxModel = model.model_type === 'onnx';
|
||||
|
||||
const modelLoaderNodeId = isUsingOnnxModel
|
||||
let modelLoaderNodeId = isUsingOnnxModel
|
||||
? ONNX_MODEL_LOADER
|
||||
: SDXL_MODEL_LOADER;
|
||||
|
||||
@ -334,9 +339,16 @@ export const buildCanvasSDXLTextToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
}
|
||||
|
||||
// add LoRA support
|
||||
|
@ -10,6 +10,7 @@ import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -24,6 +25,7 @@ import {
|
||||
NOISE,
|
||||
ONNX_MODEL_LOADER,
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -44,6 +46,8 @@ export const buildCanvasTextToImageGraph = (
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
@ -70,7 +74,7 @@ export const buildCanvasTextToImageGraph = (
|
||||
|
||||
const isUsingOnnxModel = model.model_type === 'onnx';
|
||||
|
||||
const modelLoaderNodeId = isUsingOnnxModel
|
||||
let modelLoaderNodeId = isUsingOnnxModel
|
||||
? ONNX_MODEL_LOADER
|
||||
: MAIN_MODEL_LOADER;
|
||||
|
||||
@ -321,6 +325,12 @@ export const buildCanvasTextToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
|
@ -10,6 +10,7 @@ import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -24,6 +25,7 @@ import {
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
RESIZE,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -49,6 +51,8 @@ export const buildLinearImageToImageGraph = (
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
// TODO: add batch functionality
|
||||
@ -80,6 +84,8 @@ export const buildLinearImageToImageGraph = (
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
let modelLoaderNodeId = MAIN_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
@ -88,9 +94,9 @@ export const buildLinearImageToImageGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: IMAGE_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
model,
|
||||
},
|
||||
[CLIP_SKIP]: {
|
||||
@ -141,7 +147,7 @@ export const buildLinearImageToImageGraph = (
|
||||
// Connect Model Loader to UNet and CLIP Skip
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -151,7 +157,7 @@ export const buildLinearImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -338,11 +344,17 @@ export const buildLinearImageToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, MAIN_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, DENOISE_LATENTS);
|
||||
addLoRAsToGraph(state, graph, DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
@ -11,6 +11,7 @@ import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -20,10 +21,12 @@ import {
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
REFINER_SEAMLESS,
|
||||
RESIZE,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_MODEL_LOADER,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -49,6 +52,8 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
@ -79,6 +84,9 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
// Model Loader ID
|
||||
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
@ -91,9 +99,9 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_IMAGE_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[SDXL_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
model,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
@ -143,7 +151,7 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
// Connect Model Loader to UNet, CLIP & VAE
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -153,7 +161,7 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -163,7 +171,7 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -173,7 +181,7 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -183,7 +191,7 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -351,15 +359,23 @@ export const buildLinearSDXLImageToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, SDXL_MODEL_LOADER);
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, SDXL_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// Add LoRA Support
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
|
@ -7,6 +7,7 @@ import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -15,9 +16,11 @@ import {
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_TEXT_TO_IMAGE_GRAPH,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -38,6 +41,8 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
@ -61,6 +66,9 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
const { craftedPositiveStylePrompt, craftedNegativeStylePrompt } =
|
||||
craftSDXLStylePrompt(state, shouldConcatSDXLStylePrompt);
|
||||
|
||||
// Model Loader ID
|
||||
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@ -74,9 +82,9 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_TEXT_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[SDXL_MODEL_LOADER]: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
id: modelLoaderNodeId,
|
||||
model,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
@ -117,7 +125,7 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
// Connect Model Loader to UNet, VAE & CLIP
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -127,7 +135,7 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -137,7 +145,7 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -147,7 +155,7 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@ -157,7 +165,7 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
@ -244,16 +252,23 @@ export const buildLinearSDXLTextToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, SDXL_MODEL_LOADER);
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// add LoRA support
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, SDXL_MODEL_LOADER);
|
||||
addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
|
@ -10,6 +10,7 @@ import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
@ -22,6 +23,7 @@ import {
|
||||
NOISE,
|
||||
ONNX_MODEL_LOADER,
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
TEXT_TO_IMAGE_GRAPH,
|
||||
} from './constants';
|
||||
|
||||
@ -42,6 +44,8 @@ export const buildLinearTextToImageGraph = (
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
@ -55,7 +59,7 @@ export const buildLinearTextToImageGraph = (
|
||||
|
||||
const isUsingOnnxModel = model.model_type === 'onnx';
|
||||
|
||||
const modelLoaderNodeId = isUsingOnnxModel
|
||||
let modelLoaderNodeId = isUsingOnnxModel
|
||||
? ONNX_MODEL_LOADER
|
||||
: MAIN_MODEL_LOADER;
|
||||
|
||||
@ -258,6 +262,12 @@ export const buildLinearTextToImageGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
|
@ -56,6 +56,8 @@ export const SDXL_REFINER_POSITIVE_CONDITIONING =
|
||||
export const SDXL_REFINER_NEGATIVE_CONDITIONING =
|
||||
'sdxl_refiner_negative_conditioning';
|
||||
export const SDXL_REFINER_DENOISE_LATENTS = 'sdxl_refiner_denoise_latents';
|
||||
export const SEAMLESS = 'seamless';
|
||||
export const REFINER_SEAMLESS = 'refiner_seamless';
|
||||
|
||||
// friendly graph ids
|
||||
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';
|
||||
|
@ -0,0 +1,81 @@
|
||||
import { skipToken } from '@reduxjs/toolkit/dist/query';
|
||||
import { t } from 'i18next';
|
||||
import { useCallback, useState } from 'react';
|
||||
import { useAppToaster } from '../../../app/components/Toaster';
|
||||
import { useAppDispatch } from '../../../app/store/storeHooks';
|
||||
import {
|
||||
useGetImageDTOQuery,
|
||||
useGetImageMetadataQuery,
|
||||
} from '../../../services/api/endpoints/images';
|
||||
import { setInitialCanvasImage } from '../../canvas/store/canvasSlice';
|
||||
import { setActiveTab } from '../../ui/store/uiSlice';
|
||||
import { initialImageSelected } from '../store/actions';
|
||||
import { useRecallParameters } from './useRecallParameters';
|
||||
|
||||
type SelectedImage = {
|
||||
imageName: string;
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
|
||||
export const usePreselectedImage = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const [imageNameForDto, setImageNameForDto] = useState<string | undefined>();
|
||||
const [imageNameForMetadata, setImageNameForMetadata] = useState<
|
||||
string | undefined
|
||||
>();
|
||||
const { recallAllParameters } = useRecallParameters();
|
||||
const toaster = useAppToaster();
|
||||
|
||||
const { currentData: selectedImageDto } = useGetImageDTOQuery(
|
||||
imageNameForDto ?? skipToken
|
||||
);
|
||||
|
||||
const { currentData: selectedImageMetadata } = useGetImageMetadataQuery(
|
||||
imageNameForMetadata ?? skipToken
|
||||
);
|
||||
|
||||
const handlePreselectedImage = useCallback(
|
||||
(selectedImage?: SelectedImage) => {
|
||||
if (!selectedImage) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (selectedImage.action === 'sendToCanvas') {
|
||||
setImageNameForDto(selectedImage?.imageName);
|
||||
if (selectedImageDto) {
|
||||
dispatch(setInitialCanvasImage(selectedImageDto));
|
||||
dispatch(setActiveTab('unifiedCanvas'));
|
||||
toaster({
|
||||
title: t('toast.sentToUnifiedCanvas'),
|
||||
status: 'info',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
if (selectedImage.action === 'sendToImg2Img') {
|
||||
setImageNameForDto(selectedImage?.imageName);
|
||||
if (selectedImageDto) {
|
||||
dispatch(initialImageSelected(selectedImageDto));
|
||||
}
|
||||
}
|
||||
|
||||
if (selectedImage.action === 'useAllParameters') {
|
||||
setImageNameForMetadata(selectedImage?.imageName);
|
||||
if (selectedImageMetadata) {
|
||||
recallAllParameters(selectedImageMetadata.metadata);
|
||||
}
|
||||
}
|
||||
},
|
||||
[
|
||||
dispatch,
|
||||
selectedImageDto,
|
||||
selectedImageMetadata,
|
||||
recallAllParameters,
|
||||
toaster,
|
||||
]
|
||||
);
|
||||
|
||||
return { handlePreselectedImage };
|
||||
};
|
@ -2,6 +2,7 @@ import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/Para
|
||||
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
|
||||
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
|
||||
import { memo } from 'react';
|
||||
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
|
||||
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
||||
@ -17,6 +18,7 @@ const SDXLImageToImageTabParameters = () => {
|
||||
<ParamLoraCollapse />
|
||||
<ParamDynamicPromptsCollapse />
|
||||
<ParamNoiseCollapse />
|
||||
<ParamSeamlessCollapse />
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
@ -2,6 +2,7 @@ import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/Para
|
||||
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
|
||||
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
|
||||
import TextToImageTabCoreParameters from 'features/ui/components/tabs/TextToImage/TextToImageTabCoreParameters';
|
||||
import { memo } from 'react';
|
||||
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
|
||||
@ -17,6 +18,7 @@ const SDXLTextToImageTabParameters = () => {
|
||||
<ParamLoraCollapse />
|
||||
<ParamDynamicPromptsCollapse />
|
||||
<ParamNoiseCollapse />
|
||||
<ParamSeamlessCollapse />
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
@ -5,6 +5,7 @@ import ParamMaskAdjustmentCollapse from 'features/parameters/components/Paramete
|
||||
import ParamCanvasCoherencePassCollapse from 'features/parameters/components/Parameters/Canvas/SeamPainting/ParamCanvasCoherencePassCollapse';
|
||||
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
|
||||
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
|
||||
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
||||
import SDXLUnifiedCanvasTabCoreParameters from './SDXLUnifiedCanvasTabCoreParameters';
|
||||
@ -22,6 +23,7 @@ export default function SDXLUnifiedCanvasTabParameters() {
|
||||
<ParamMaskAdjustmentCollapse />
|
||||
<ParamInfillAndScalingCollapse />
|
||||
<ParamCanvasCoherencePassCollapse />
|
||||
<ParamSeamlessCollapse />
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
@ -9,7 +9,6 @@ export const initialConfigState: AppConfig = {
|
||||
disabledFeatures: ['lightbox', 'faceRestore', 'batches'],
|
||||
disabledSDFeatures: [
|
||||
'variation',
|
||||
'seamless',
|
||||
'symmetry',
|
||||
'hires',
|
||||
'perlinNoise',
|
||||
|
@ -6,6 +6,7 @@ import ParamMaskAdjustmentCollapse from 'features/parameters/components/Paramete
|
||||
import ParamCanvasCoherencePassCollapse from 'features/parameters/components/Parameters/Canvas/SeamPainting/ParamCanvasCoherencePassCollapse';
|
||||
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
||||
import ParamPromptArea from 'features/parameters/components/Parameters/Prompt/ParamPromptArea';
|
||||
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
|
||||
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
|
||||
import { memo } from 'react';
|
||||
import UnifiedCanvasCoreParameters from './UnifiedCanvasCoreParameters';
|
||||
@ -22,6 +23,7 @@ const UnifiedCanvasParameters = () => {
|
||||
<ParamMaskAdjustmentCollapse />
|
||||
<ParamInfillAndScalingCollapse />
|
||||
<ParamCanvasCoherencePassCollapse />
|
||||
<ParamSeamlessCollapse />
|
||||
<ParamAdvancedCollapse />
|
||||
</>
|
||||
);
|
||||
|
109
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
109
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
File diff suppressed because one or more lines are too long
@ -130,6 +130,7 @@ export type ESRGANInvocation = s['ESRGANInvocation'];
|
||||
export type DivideInvocation = s['DivideInvocation'];
|
||||
export type ImageNSFWBlurInvocation = s['ImageNSFWBlurInvocation'];
|
||||
export type ImageWatermarkInvocation = s['ImageWatermarkInvocation'];
|
||||
export type SeamlessModeInvocation = s['SeamlessModeInvocation'];
|
||||
|
||||
// ControlNet Nodes
|
||||
export type ControlNetInvocation = s['ControlNetInvocation'];
|
||||
|
Loading…
Reference in New Issue
Block a user