mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(nodes): add realesrgan node
This commit is contained in:
parent
32e7e52d69
commit
74ca87ac9e
@ -1,48 +1,112 @@
|
|||||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
||||||
|
from pathlib import Path
|
||||||
from typing import Literal, Optional
|
from typing import Literal, Union, cast
|
||||||
|
|
||||||
|
import cv2 as cv
|
||||||
|
import numpy as np
|
||||||
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||||
|
from PIL import Image
|
||||||
from pydantic import Field
|
from pydantic import Field
|
||||||
|
from realesrgan import RealESRGANer
|
||||||
|
|
||||||
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
|
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
|
||||||
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
|
|
||||||
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
from .image import ImageOutput
|
from .image import ImageOutput
|
||||||
|
|
||||||
|
# TODO: Populate this from disk?
|
||||||
|
# TODO: Use model manager to load?
|
||||||
|
REALESRGAN_MODELS = Literal[
|
||||||
|
"RealESRGAN_x4plus.pth",
|
||||||
|
"RealESRGAN_x4plus_anime_6B.pth",
|
||||||
|
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
||||||
|
]
|
||||||
|
|
||||||
class UpscaleInvocation(BaseInvocation):
|
|
||||||
"""Upscales an image."""
|
|
||||||
|
|
||||||
# fmt: off
|
class RealESRGANInvocation(BaseInvocation):
|
||||||
type: Literal["upscale"] = "upscale"
|
"""Upscales an image using RealESRGAN."""
|
||||||
|
|
||||||
# Inputs
|
type: Literal["realesrgan"] = "realesrgan"
|
||||||
image: Optional[ImageField] = Field(description="The input image", default=None)
|
image: Union[ImageField, None] = Field(default=None, description="The input image")
|
||||||
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
|
model_name: REALESRGAN_MODELS = Field(
|
||||||
level: Literal[2, 4] = Field(default=2, description="The upscale level")
|
default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use"
|
||||||
# fmt: on
|
)
|
||||||
|
|
||||||
# Schema customisation
|
|
||||||
class Config(InvocationConfig):
|
|
||||||
schema_extra = {
|
|
||||||
"ui": {
|
|
||||||
"tags": ["upscaling", "image"],
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
image = context.services.images.get_pil_image(self.image.image_name)
|
image = context.services.images.get_pil_image(self.image.image_name) # type: ignore
|
||||||
results = context.services.restoration.upscale_and_reconstruct(
|
models_dir = cast(Path, context.services.configuration.root_dir) / Path("models/") # type: ignore
|
||||||
image_list=[[image, 0]],
|
|
||||||
upscale=(self.level, self.strength),
|
rrdbnet_model = None
|
||||||
strength=0.0, # GFPGAN strength
|
netscale = None
|
||||||
save_original=False,
|
model_path = None
|
||||||
image_callback=None,
|
|
||||||
|
if self.model_name in [
|
||||||
|
"RealESRGAN_x4plus.pth",
|
||||||
|
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
||||||
|
]:
|
||||||
|
# x4 RRDBNet model
|
||||||
|
rrdbnet_model = RRDBNet(
|
||||||
|
num_in_ch=3,
|
||||||
|
num_out_ch=3,
|
||||||
|
num_feat=64,
|
||||||
|
num_block=23,
|
||||||
|
num_grow_ch=32,
|
||||||
|
scale=4,
|
||||||
|
)
|
||||||
|
netscale = 4
|
||||||
|
elif self.model_name == "RealESRGAN_x4plus_anime_6B.pth":
|
||||||
|
# x4 RRDBNet model, 6 blocks
|
||||||
|
rrdbnet_model = RRDBNet(
|
||||||
|
num_in_ch=3,
|
||||||
|
num_out_ch=3,
|
||||||
|
num_feat=64,
|
||||||
|
num_block=6, # 6 blocks
|
||||||
|
num_grow_ch=32,
|
||||||
|
scale=4,
|
||||||
|
)
|
||||||
|
netscale = 4
|
||||||
|
# TODO: add x2 models handling?
|
||||||
|
# elif self.model_name in ["RealESRGAN_x2plus"]:
|
||||||
|
# # x2 RRDBNet model
|
||||||
|
# model = RRDBNet(
|
||||||
|
# num_in_ch=3,
|
||||||
|
# num_out_ch=3,
|
||||||
|
# num_feat=64,
|
||||||
|
# num_block=23,
|
||||||
|
# num_grow_ch=32,
|
||||||
|
# scale=2,
|
||||||
|
# )
|
||||||
|
# model_path = Path()
|
||||||
|
# netscale = 2
|
||||||
|
else:
|
||||||
|
msg = f"Invalid RealESRGAN model: {self.model_name}"
|
||||||
|
context.services.logger.error(msg)
|
||||||
|
raise ValueError(msg)
|
||||||
|
|
||||||
|
model_path = Path(f"core/upscaling/realesrgan/{self.model_name}")
|
||||||
|
|
||||||
|
upsampler = RealESRGANer(
|
||||||
|
scale=netscale,
|
||||||
|
model_path=str(models_dir / model_path),
|
||||||
|
model=rrdbnet_model,
|
||||||
|
half=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Results are image and seed, unwrap for now
|
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
|
||||||
# TODO: can this return multiple results?
|
cv_image = cv.cvtColor(np.array(image.convert("RGB")), cv.COLOR_RGB2BGR)
|
||||||
|
|
||||||
|
# We can pass an `outscale` value here, but it just resizes the image by that factor after
|
||||||
|
# upscaling, so it's kinda pointless for our purposes. If you want something other than 4x
|
||||||
|
# upscaling, you'll need to add a resize node after this one.
|
||||||
|
upscaled_image, img_mode = upsampler.enhance(cv_image)
|
||||||
|
|
||||||
|
# back to PIL
|
||||||
|
pil_image = Image.fromarray(
|
||||||
|
cv.cvtColor(upscaled_image, cv.COLOR_BGR2RGB)
|
||||||
|
).convert("RGBA")
|
||||||
|
|
||||||
image_dto = context.services.images.create(
|
image_dto = context.services.images.create(
|
||||||
image=results[0][0],
|
image=pil_image,
|
||||||
image_origin=ResourceOrigin.INTERNAL,
|
image_origin=ResourceOrigin.INTERNAL,
|
||||||
image_category=ImageCategory.GENERAL,
|
image_category=ImageCategory.GENERAL,
|
||||||
node_id=self.id,
|
node_id=self.id,
|
||||||
|
Loading…
Reference in New Issue
Block a user