mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into bugfix/restore-pytorch-lightning
This commit is contained in:
commit
76212d1cca
@ -99,6 +99,7 @@ class Generator:
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct,
|
||||
attention_maps_callback=attention_maps_callback,
|
||||
seed=seed,
|
||||
**kwargs,
|
||||
)
|
||||
results = []
|
||||
@ -289,9 +290,7 @@ class Generator:
|
||||
if self.variation_amount > 0:
|
||||
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
||||
seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
return (seed, initial_noise)
|
||||
else:
|
||||
return (seed, None)
|
||||
return (seed, initial_noise)
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self, width, height):
|
||||
|
@ -1,8 +1,10 @@
|
||||
"""
|
||||
invokeai.backend.generator.img2img descends from .generator
|
||||
"""
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers import logging
|
||||
|
||||
from ..stable_diffusion import (
|
||||
@ -35,6 +37,7 @@ class Img2Img(Generator):
|
||||
h_symmetry_time_pct=None,
|
||||
v_symmetry_time_pct=None,
|
||||
attention_maps_callback=None,
|
||||
seed=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@ -65,6 +68,7 @@ class Img2Img(Generator):
|
||||
# FIXME: use x_T for initial seeded noise
|
||||
# We're not at the moment because the pipeline automatically resizes init_image if
|
||||
# necessary, which the x_T input might not match.
|
||||
# In the meantime, reset the seed prior to generating pipeline output so we at least get the same result.
|
||||
logging.set_verbosity_error() # quench safety check warnings
|
||||
pipeline_output = pipeline.img2img_from_embeddings(
|
||||
init_image,
|
||||
@ -73,6 +77,7 @@ class Img2Img(Generator):
|
||||
conditioning_data,
|
||||
noise_func=self.get_noise_like,
|
||||
callback=step_callback,
|
||||
seed=seed
|
||||
)
|
||||
if (
|
||||
pipeline_output.attention_map_saver is not None
|
||||
@ -83,7 +88,9 @@ class Img2Img(Generator):
|
||||
|
||||
return make_image
|
||||
|
||||
def get_noise_like(self, like: torch.Tensor):
|
||||
def get_noise_like(self, like: torch.Tensor, seed: Optional[int]):
|
||||
if seed is not None:
|
||||
set_seed(seed)
|
||||
device = like.device
|
||||
if device.type == "mps":
|
||||
x = torch.randn_like(like, device="cpu").to(device)
|
||||
|
@ -223,6 +223,7 @@ class Inpaint(Img2Img):
|
||||
inpaint_height=None,
|
||||
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
|
||||
attention_maps_callback=None,
|
||||
seed=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@ -319,6 +320,7 @@ class Inpaint(Img2Img):
|
||||
conditioning_data=conditioning_data,
|
||||
noise_func=self.get_noise_like,
|
||||
callback=step_callback,
|
||||
seed=seed
|
||||
)
|
||||
|
||||
if (
|
||||
|
@ -690,6 +690,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
run_id=None,
|
||||
noise_func=None,
|
||||
seed=None,
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
init_image = image_resized_to_grid_as_tensor(init_image.convert("RGB"))
|
||||
@ -703,7 +704,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
device=self._model_group.device_for(self.unet),
|
||||
dtype=self.unet.dtype,
|
||||
)
|
||||
noise = noise_func(initial_latents)
|
||||
noise = noise_func(initial_latents, seed)
|
||||
|
||||
return self.img2img_from_latents_and_embeddings(
|
||||
initial_latents,
|
||||
@ -731,9 +732,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
device=self._model_group.device_for(self.unet),
|
||||
)
|
||||
result_latents, result_attention_maps = self.latents_from_embeddings(
|
||||
initial_latents,
|
||||
num_inference_steps,
|
||||
conditioning_data,
|
||||
latents=initial_latents if strength < 1.0 else torch.zeros_like(
|
||||
initial_latents, device=initial_latents.device, dtype=initial_latents.dtype
|
||||
),
|
||||
num_inference_steps=num_inference_steps,
|
||||
conditioning_data=conditioning_data,
|
||||
timesteps=timesteps,
|
||||
noise=noise,
|
||||
run_id=run_id,
|
||||
@ -779,6 +782,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
run_id=None,
|
||||
noise_func=None,
|
||||
seed=None,
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
device = self._model_group.device_for(self.unet)
|
||||
latents_dtype = self.unet.dtype
|
||||
@ -802,7 +806,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
init_image_latents = self.non_noised_latents_from_image(
|
||||
init_image, device=device, dtype=latents_dtype
|
||||
)
|
||||
noise = noise_func(init_image_latents)
|
||||
noise = noise_func(init_image_latents, seed)
|
||||
|
||||
if mask.dim() == 3:
|
||||
mask = mask.unsqueeze(0)
|
||||
@ -831,9 +835,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
try:
|
||||
result_latents, result_attention_maps = self.latents_from_embeddings(
|
||||
init_image_latents,
|
||||
num_inference_steps,
|
||||
conditioning_data,
|
||||
latents=init_image_latents if strength < 1.0 else torch.zeros_like(
|
||||
init_image_latents, device=init_image_latents.device, dtype=init_image_latents.dtype
|
||||
),
|
||||
num_inference_steps=num_inference_steps,
|
||||
conditioning_data=conditioning_data,
|
||||
noise=noise,
|
||||
timesteps=timesteps,
|
||||
additional_guidance=guidance,
|
||||
|
Loading…
Reference in New Issue
Block a user