mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into refactor/rename-get-logger
This commit is contained in:
commit
79084e9e20
@ -25,10 +25,10 @@ This method is recommended for experienced users and developers
|
||||
#### [Docker Installation](040_INSTALL_DOCKER.md)
|
||||
This method is recommended for those familiar with running Docker containers
|
||||
### Other Installation Guides
|
||||
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
|
||||
- [XFormers](installation/070_INSTALL_XFORMERS.md)
|
||||
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
|
||||
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
|
||||
- [PyPatchMatch](060_INSTALL_PATCHMATCH.md)
|
||||
- [XFormers](070_INSTALL_XFORMERS.md)
|
||||
- [CUDA and ROCm Drivers](030_INSTALL_CUDA_AND_ROCM.md)
|
||||
- [Installing New Models](050_INSTALLING_MODELS.md)
|
||||
|
||||
## :fontawesome-solid-computer: Hardware Requirements
|
||||
|
||||
|
@ -29,6 +29,7 @@ The abstract base class for this class is InvocationStatsServiceBase. An impleme
|
||||
writes to the system log is stored in InvocationServices.performance_statistics.
|
||||
"""
|
||||
|
||||
import psutil
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import AbstractContextManager
|
||||
@ -42,6 +43,11 @@ import invokeai.backend.util.logging as logger
|
||||
from ..invocations.baseinvocation import BaseInvocation
|
||||
from .graph import GraphExecutionState
|
||||
from .item_storage import ItemStorageABC
|
||||
from .model_manager_service import ModelManagerService
|
||||
from invokeai.backend.model_management.model_cache import CacheStats
|
||||
|
||||
# size of GIG in bytes
|
||||
GIG = 1073741824
|
||||
|
||||
|
||||
class InvocationStatsServiceBase(ABC):
|
||||
@ -89,6 +95,8 @@ class InvocationStatsServiceBase(ABC):
|
||||
invocation_type: str,
|
||||
time_used: float,
|
||||
vram_used: float,
|
||||
ram_used: float,
|
||||
ram_changed: float,
|
||||
):
|
||||
"""
|
||||
Add timing information on execution of a node. Usually
|
||||
@ -97,6 +105,8 @@ class InvocationStatsServiceBase(ABC):
|
||||
:param invocation_type: String literal type of the node
|
||||
:param time_used: Time used by node's exection (sec)
|
||||
:param vram_used: Maximum VRAM used during exection (GB)
|
||||
:param ram_used: Current RAM available (GB)
|
||||
:param ram_changed: Change in RAM usage over course of the run (GB)
|
||||
"""
|
||||
pass
|
||||
|
||||
@ -115,6 +125,9 @@ class NodeStats:
|
||||
calls: int = 0
|
||||
time_used: float = 0.0 # seconds
|
||||
max_vram: float = 0.0 # GB
|
||||
cache_hits: int = 0
|
||||
cache_misses: int = 0
|
||||
cache_high_watermark: int = 0
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -133,31 +146,62 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
self.graph_execution_manager = graph_execution_manager
|
||||
# {graph_id => NodeLog}
|
||||
self._stats: Dict[str, NodeLog] = {}
|
||||
self._cache_stats: Dict[str, CacheStats] = {}
|
||||
self.ram_used: float = 0.0
|
||||
self.ram_changed: float = 0.0
|
||||
|
||||
class StatsContext:
|
||||
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
|
||||
"""Context manager for collecting statistics."""
|
||||
|
||||
invocation: BaseInvocation = None
|
||||
collector: "InvocationStatsServiceBase" = None
|
||||
graph_id: str = None
|
||||
start_time: int = 0
|
||||
ram_used: int = 0
|
||||
model_manager: ModelManagerService = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
invocation: BaseInvocation,
|
||||
graph_id: str,
|
||||
model_manager: ModelManagerService,
|
||||
collector: "InvocationStatsServiceBase",
|
||||
):
|
||||
"""Initialize statistics for this run."""
|
||||
self.invocation = invocation
|
||||
self.collector = collector
|
||||
self.graph_id = graph_id
|
||||
self.start_time = 0
|
||||
self.ram_used = 0
|
||||
self.model_manager = model_manager
|
||||
|
||||
def __enter__(self):
|
||||
self.start_time = time.time()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
self.ram_used = psutil.Process().memory_info().rss
|
||||
if self.model_manager:
|
||||
self.model_manager.collect_cache_stats(self.collector._cache_stats[self.graph_id])
|
||||
|
||||
def __exit__(self, *args):
|
||||
"""Called on exit from the context."""
|
||||
ram_used = psutil.Process().memory_info().rss
|
||||
self.collector.update_mem_stats(
|
||||
ram_used=ram_used / GIG,
|
||||
ram_changed=(ram_used - self.ram_used) / GIG,
|
||||
)
|
||||
self.collector.update_invocation_stats(
|
||||
self.graph_id,
|
||||
self.invocation.type,
|
||||
time.time() - self.start_time,
|
||||
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
|
||||
graph_id=self.graph_id,
|
||||
invocation_type=self.invocation.type,
|
||||
time_used=time.time() - self.start_time,
|
||||
vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
|
||||
)
|
||||
|
||||
def collect_stats(
|
||||
self,
|
||||
invocation: BaseInvocation,
|
||||
graph_execution_state_id: str,
|
||||
model_manager: ModelManagerService,
|
||||
) -> StatsContext:
|
||||
"""
|
||||
Return a context object that will capture the statistics.
|
||||
@ -166,7 +210,8 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
"""
|
||||
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
|
||||
self._stats[graph_execution_state_id] = NodeLog()
|
||||
return self.StatsContext(invocation, graph_execution_state_id, self)
|
||||
self._cache_stats[graph_execution_state_id] = CacheStats()
|
||||
return self.StatsContext(invocation, graph_execution_state_id, model_manager, self)
|
||||
|
||||
def reset_all_stats(self):
|
||||
"""Zero all statistics"""
|
||||
@ -179,13 +224,36 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
except KeyError:
|
||||
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
|
||||
|
||||
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float):
|
||||
def update_mem_stats(
|
||||
self,
|
||||
ram_used: float,
|
||||
ram_changed: float,
|
||||
):
|
||||
"""
|
||||
Update the collector with RAM memory usage info.
|
||||
|
||||
:param ram_used: How much RAM is currently in use.
|
||||
:param ram_changed: How much RAM changed since last generation.
|
||||
"""
|
||||
self.ram_used = ram_used
|
||||
self.ram_changed = ram_changed
|
||||
|
||||
def update_invocation_stats(
|
||||
self,
|
||||
graph_id: str,
|
||||
invocation_type: str,
|
||||
time_used: float,
|
||||
vram_used: float,
|
||||
):
|
||||
"""
|
||||
Add timing information on execution of a node. Usually
|
||||
used internally.
|
||||
:param graph_id: ID of the graph that is currently executing
|
||||
:param invocation_type: String literal type of the node
|
||||
:param time_used: Floating point seconds used by node's exection
|
||||
:param time_used: Time used by node's exection (sec)
|
||||
:param vram_used: Maximum VRAM used during exection (GB)
|
||||
:param ram_used: Current RAM available (GB)
|
||||
:param ram_changed: Change in RAM usage over course of the run (GB)
|
||||
"""
|
||||
if not self._stats[graph_id].nodes.get(invocation_type):
|
||||
self._stats[graph_id].nodes[invocation_type] = NodeStats()
|
||||
@ -197,7 +265,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
def log_stats(self):
|
||||
"""
|
||||
Send the statistics to the system logger at the info level.
|
||||
Stats will only be printed if when the execution of the graph
|
||||
Stats will only be printed when the execution of the graph
|
||||
is complete.
|
||||
"""
|
||||
completed = set()
|
||||
@ -208,16 +276,30 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
|
||||
total_time = 0
|
||||
logger.info(f"Graph stats: {graph_id}")
|
||||
logger.info("Node Calls Seconds VRAM Used")
|
||||
logger.info(f"{'Node':>30} {'Calls':>7}{'Seconds':>9} {'VRAM Used':>10}")
|
||||
for node_type, stats in self._stats[graph_id].nodes.items():
|
||||
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:7.3f}s {stats.max_vram:4.2f}G")
|
||||
logger.info(f"{node_type:>30} {stats.calls:>4} {stats.time_used:7.3f}s {stats.max_vram:4.3f}G")
|
||||
total_time += stats.time_used
|
||||
|
||||
cache_stats = self._cache_stats[graph_id]
|
||||
hwm = cache_stats.high_watermark / GIG
|
||||
tot = cache_stats.cache_size / GIG
|
||||
loaded = sum([v for v in cache_stats.loaded_model_sizes.values()]) / GIG
|
||||
|
||||
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
|
||||
logger.info("RAM used by InvokeAI process: " + "%4.2fG" % self.ram_used + f" ({self.ram_changed:+5.3f}G)")
|
||||
logger.info(f"RAM used to load models: {loaded:4.2f}G")
|
||||
if torch.cuda.is_available():
|
||||
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
|
||||
logger.info("VRAM in use: " + "%4.3fG" % (torch.cuda.memory_allocated() / GIG))
|
||||
logger.info("RAM cache statistics:")
|
||||
logger.info(f" Model cache hits: {cache_stats.hits}")
|
||||
logger.info(f" Model cache misses: {cache_stats.misses}")
|
||||
logger.info(f" Models cached: {cache_stats.in_cache}")
|
||||
logger.info(f" Models cleared from cache: {cache_stats.cleared}")
|
||||
logger.info(f" Cache high water mark: {hwm:4.2f}/{tot:4.2f}G")
|
||||
|
||||
completed.add(graph_id)
|
||||
|
||||
for graph_id in completed:
|
||||
del self._stats[graph_id]
|
||||
del self._cache_stats[graph_id]
|
||||
|
@ -22,6 +22,7 @@ from invokeai.backend.model_management import (
|
||||
ModelNotFoundException,
|
||||
)
|
||||
from invokeai.backend.model_management.model_search import FindModels
|
||||
from invokeai.backend.model_management.model_cache import CacheStats
|
||||
|
||||
import torch
|
||||
from invokeai.app.models.exceptions import CanceledException
|
||||
@ -276,6 +277,13 @@ class ModelManagerServiceBase(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def collect_cache_stats(self, cache_stats: CacheStats):
|
||||
"""
|
||||
Reset model cache statistics for graph with graph_id.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def commit(self, conf_file: Optional[Path] = None) -> None:
|
||||
"""
|
||||
@ -500,6 +508,12 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
self.logger.debug(f"convert model {model_name}")
|
||||
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
|
||||
|
||||
def collect_cache_stats(self, cache_stats: CacheStats):
|
||||
"""
|
||||
Reset model cache statistics for graph with graph_id.
|
||||
"""
|
||||
self.mgr.cache.stats = cache_stats
|
||||
|
||||
def commit(self, conf_file: Optional[Path] = None):
|
||||
"""
|
||||
Write current configuration out to the indicated file.
|
||||
|
@ -86,7 +86,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
|
||||
# Invoke
|
||||
try:
|
||||
with statistics.collect_stats(invocation, graph_execution_state.id):
|
||||
graph_id = graph_execution_state.id
|
||||
model_manager = self.__invoker.services.model_manager
|
||||
with statistics.collect_stats(invocation, graph_id, model_manager):
|
||||
# use the internal invoke_internal(), which wraps the node's invoke() method in
|
||||
# this accomodates nodes which require a value, but get it only from a
|
||||
# connection
|
||||
|
@ -21,12 +21,12 @@ import os
|
||||
import sys
|
||||
import hashlib
|
||||
from contextlib import suppress
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Dict, Union, types, Optional, Type, Any
|
||||
|
||||
import torch
|
||||
|
||||
import logging
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .models import BaseModelType, ModelType, SubModelType, ModelBase
|
||||
|
||||
@ -41,6 +41,18 @@ DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
|
||||
GIG = 1073741824
|
||||
|
||||
|
||||
@dataclass
|
||||
class CacheStats(object):
|
||||
hits: int = 0 # cache hits
|
||||
misses: int = 0 # cache misses
|
||||
high_watermark: int = 0 # amount of cache used
|
||||
in_cache: int = 0 # number of models in cache
|
||||
cleared: int = 0 # number of models cleared to make space
|
||||
cache_size: int = 0 # total size of cache
|
||||
# {submodel_key => size}
|
||||
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
|
||||
|
||||
|
||||
class ModelLocker(object):
|
||||
"Forward declaration"
|
||||
pass
|
||||
@ -115,6 +127,9 @@ class ModelCache(object):
|
||||
self.sha_chunksize = sha_chunksize
|
||||
self.logger = logger
|
||||
|
||||
# used for stats collection
|
||||
self.stats = None
|
||||
|
||||
self._cached_models = dict()
|
||||
self._cache_stack = list()
|
||||
|
||||
@ -181,13 +196,14 @@ class ModelCache(object):
|
||||
model_type=model_type,
|
||||
submodel_type=submodel,
|
||||
)
|
||||
|
||||
# TODO: lock for no copies on simultaneous calls?
|
||||
cache_entry = self._cached_models.get(key, None)
|
||||
if cache_entry is None:
|
||||
self.logger.info(
|
||||
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
|
||||
)
|
||||
if self.stats:
|
||||
self.stats.misses += 1
|
||||
|
||||
# this will remove older cached models until
|
||||
# there is sufficient room to load the requested model
|
||||
@ -201,6 +217,17 @@ class ModelCache(object):
|
||||
|
||||
cache_entry = _CacheRecord(self, model, mem_used)
|
||||
self._cached_models[key] = cache_entry
|
||||
else:
|
||||
if self.stats:
|
||||
self.stats.hits += 1
|
||||
|
||||
if self.stats:
|
||||
self.stats.cache_size = self.max_cache_size * GIG
|
||||
self.stats.high_watermark = max(self.stats.high_watermark, self._cache_size())
|
||||
self.stats.in_cache = len(self._cached_models)
|
||||
self.stats.loaded_model_sizes[key] = max(
|
||||
self.stats.loaded_model_sizes.get(key, 0), model_info.get_size(submodel)
|
||||
)
|
||||
|
||||
with suppress(Exception):
|
||||
self._cache_stack.remove(key)
|
||||
@ -280,14 +307,14 @@ class ModelCache(object):
|
||||
"""
|
||||
Given the HF repo id or path to a model on disk, returns a unique
|
||||
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
|
||||
|
||||
:param model_path: Path to model file/directory on disk.
|
||||
"""
|
||||
return self._local_model_hash(model_path)
|
||||
|
||||
def cache_size(self) -> float:
|
||||
"Return the current size of the cache, in GB"
|
||||
current_cache_size = sum([m.size for m in self._cached_models.values()])
|
||||
return current_cache_size / GIG
|
||||
"""Return the current size of the cache, in GB."""
|
||||
return self._cache_size() / GIG
|
||||
|
||||
def _has_cuda(self) -> bool:
|
||||
return self.execution_device.type == "cuda"
|
||||
@ -310,12 +337,15 @@ class ModelCache(object):
|
||||
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
|
||||
)
|
||||
|
||||
def _cache_size(self) -> int:
|
||||
return sum([m.size for m in self._cached_models.values()])
|
||||
|
||||
def _make_cache_room(self, model_size):
|
||||
# calculate how much memory this model will require
|
||||
# multiplier = 2 if self.precision==torch.float32 else 1
|
||||
bytes_needed = model_size
|
||||
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
|
||||
current_size = sum([m.size for m in self._cached_models.values()])
|
||||
current_size = self._cache_size()
|
||||
|
||||
if current_size + bytes_needed > maximum_size:
|
||||
self.logger.debug(
|
||||
@ -364,6 +394,8 @@ class ModelCache(object):
|
||||
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
|
||||
)
|
||||
current_size -= cache_entry.size
|
||||
if self.stats:
|
||||
self.stats.cleared += 1
|
||||
del self._cache_stack[pos]
|
||||
del self._cached_models[model_key]
|
||||
del cache_entry
|
||||
|
@ -240,6 +240,7 @@ class InvokeAIDiffuserComponent:
|
||||
controlnet_cond=control_datum.image_tensor,
|
||||
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
|
||||
return_dict=False,
|
||||
)
|
||||
|
@ -4,8 +4,15 @@ import torch
|
||||
from torch import nn
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.loaders import FromOriginalControlnetMixin
|
||||
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
||||
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
||||
from diffusers.models.embeddings import (
|
||||
TextImageProjection,
|
||||
TextImageTimeEmbedding,
|
||||
TextTimeEmbedding,
|
||||
TimestepEmbedding,
|
||||
Timesteps,
|
||||
)
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from diffusers.models.unet_2d_blocks import (
|
||||
CrossAttnDownBlock2D,
|
||||
@ -18,10 +25,11 @@ from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||
import diffusers
|
||||
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
|
||||
|
||||
# TODO: create PR to diffusers
|
||||
# Modified ControlNetModel with encoder_attention_mask argument added
|
||||
|
||||
|
||||
class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
"""
|
||||
A ControlNet model.
|
||||
|
||||
@ -52,12 +60,25 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
The epsilon to use for the normalization.
|
||||
cross_attention_dim (`int`, defaults to 1280):
|
||||
The dimension of the cross attention features.
|
||||
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
||||
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
||||
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
||||
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
||||
encoder_hid_dim (`int`, *optional*, defaults to None):
|
||||
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
||||
dimension to `cross_attention_dim`.
|
||||
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
||||
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
||||
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
||||
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
||||
The dimension of the attention heads.
|
||||
use_linear_projection (`bool`, defaults to `False`):
|
||||
class_embed_type (`str`, *optional*, defaults to `None`):
|
||||
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
||||
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
||||
addition_embed_type (`str`, *optional*, defaults to `None`):
|
||||
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
||||
"text". "text" will use the `TextTimeEmbedding` layer.
|
||||
num_class_embeds (`int`, *optional*, defaults to 0):
|
||||
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
||||
class conditioning with `class_embed_type` equal to `None`.
|
||||
@ -98,10 +119,15 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
norm_num_groups: Optional[int] = 32,
|
||||
norm_eps: float = 1e-5,
|
||||
cross_attention_dim: int = 1280,
|
||||
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
||||
encoder_hid_dim: Optional[int] = None,
|
||||
encoder_hid_dim_type: Optional[str] = None,
|
||||
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||||
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
||||
use_linear_projection: bool = False,
|
||||
class_embed_type: Optional[str] = None,
|
||||
addition_embed_type: Optional[str] = None,
|
||||
addition_time_embed_dim: Optional[int] = None,
|
||||
num_class_embeds: Optional[int] = None,
|
||||
upcast_attention: bool = False,
|
||||
resnet_time_scale_shift: str = "default",
|
||||
@ -109,6 +135,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
controlnet_conditioning_channel_order: str = "rgb",
|
||||
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
||||
global_pool_conditions: bool = False,
|
||||
addition_embed_type_num_heads=64,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -136,6 +163,9 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if isinstance(transformer_layers_per_block, int):
|
||||
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
||||
|
||||
# input
|
||||
conv_in_kernel = 3
|
||||
conv_in_padding = (conv_in_kernel - 1) // 2
|
||||
@ -145,16 +175,43 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
|
||||
# time
|
||||
time_embed_dim = block_out_channels[0] * 4
|
||||
|
||||
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
||||
timestep_input_dim = block_out_channels[0]
|
||||
|
||||
self.time_embedding = TimestepEmbedding(
|
||||
timestep_input_dim,
|
||||
time_embed_dim,
|
||||
act_fn=act_fn,
|
||||
)
|
||||
|
||||
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
||||
encoder_hid_dim_type = "text_proj"
|
||||
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
||||
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
||||
|
||||
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
||||
raise ValueError(
|
||||
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
||||
)
|
||||
|
||||
if encoder_hid_dim_type == "text_proj":
|
||||
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
||||
elif encoder_hid_dim_type == "text_image_proj":
|
||||
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||||
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||||
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
||||
self.encoder_hid_proj = TextImageProjection(
|
||||
text_embed_dim=encoder_hid_dim,
|
||||
image_embed_dim=cross_attention_dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
)
|
||||
|
||||
elif encoder_hid_dim_type is not None:
|
||||
raise ValueError(
|
||||
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
||||
)
|
||||
else:
|
||||
self.encoder_hid_proj = None
|
||||
|
||||
# class embedding
|
||||
if class_embed_type is None and num_class_embeds is not None:
|
||||
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
||||
@ -178,6 +235,29 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
else:
|
||||
self.class_embedding = None
|
||||
|
||||
if addition_embed_type == "text":
|
||||
if encoder_hid_dim is not None:
|
||||
text_time_embedding_from_dim = encoder_hid_dim
|
||||
else:
|
||||
text_time_embedding_from_dim = cross_attention_dim
|
||||
|
||||
self.add_embedding = TextTimeEmbedding(
|
||||
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
||||
)
|
||||
elif addition_embed_type == "text_image":
|
||||
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||||
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||||
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
||||
self.add_embedding = TextImageTimeEmbedding(
|
||||
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
||||
)
|
||||
elif addition_embed_type == "text_time":
|
||||
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
||||
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||||
|
||||
elif addition_embed_type is not None:
|
||||
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
||||
|
||||
# control net conditioning embedding
|
||||
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
||||
conditioning_embedding_channels=block_out_channels[0],
|
||||
@ -212,6 +292,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
down_block = get_down_block(
|
||||
down_block_type,
|
||||
num_layers=layers_per_block,
|
||||
transformer_layers_per_block=transformer_layers_per_block[i],
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
@ -248,6 +329,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
self.controlnet_mid_block = controlnet_block
|
||||
|
||||
self.mid_block = UNetMidBlock2DCrossAttn(
|
||||
transformer_layers_per_block=transformer_layers_per_block[-1],
|
||||
in_channels=mid_block_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
resnet_eps=norm_eps,
|
||||
@ -277,7 +359,22 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
||||
where applicable.
|
||||
"""
|
||||
transformer_layers_per_block = (
|
||||
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
||||
)
|
||||
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
||||
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
||||
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
||||
addition_time_embed_dim = (
|
||||
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
||||
)
|
||||
|
||||
controlnet = cls(
|
||||
encoder_hid_dim=encoder_hid_dim,
|
||||
encoder_hid_dim_type=encoder_hid_dim_type,
|
||||
addition_embed_type=addition_embed_type,
|
||||
addition_time_embed_dim=addition_time_embed_dim,
|
||||
transformer_layers_per_block=transformer_layers_per_block,
|
||||
in_channels=unet.config.in_channels,
|
||||
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
||||
freq_shift=unet.config.freq_shift,
|
||||
@ -463,6 +560,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
class_labels: Optional[torch.Tensor] = None,
|
||||
timestep_cond: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
guess_mode: bool = False,
|
||||
@ -486,7 +584,9 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||||
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
||||
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||||
cross_attention_kwargs(`dict[str]`, *optional*, defaults to `None`):
|
||||
added_cond_kwargs (`dict`):
|
||||
Additional conditions for the Stable Diffusion XL UNet.
|
||||
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
||||
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
||||
encoder_attention_mask (`torch.Tensor`):
|
||||
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
||||
@ -549,6 +649,7 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
t_emb = t_emb.to(dtype=sample.dtype)
|
||||
|
||||
emb = self.time_embedding(t_emb, timestep_cond)
|
||||
aug_emb = None
|
||||
|
||||
if self.class_embedding is not None:
|
||||
if class_labels is None:
|
||||
@ -560,11 +661,34 @@ class ControlNetModel(ModelMixin, ConfigMixin):
|
||||
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||||
emb = emb + class_emb
|
||||
|
||||
if "addition_embed_type" in self.config:
|
||||
if self.config.addition_embed_type == "text":
|
||||
aug_emb = self.add_embedding(encoder_hidden_states)
|
||||
|
||||
elif self.config.addition_embed_type == "text_time":
|
||||
if "text_embeds" not in added_cond_kwargs:
|
||||
raise ValueError(
|
||||
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
||||
)
|
||||
text_embeds = added_cond_kwargs.get("text_embeds")
|
||||
if "time_ids" not in added_cond_kwargs:
|
||||
raise ValueError(
|
||||
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
||||
)
|
||||
time_ids = added_cond_kwargs.get("time_ids")
|
||||
time_embeds = self.add_time_proj(time_ids.flatten())
|
||||
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
||||
|
||||
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
||||
add_embeds = add_embeds.to(emb.dtype)
|
||||
aug_emb = self.add_embedding(add_embeds)
|
||||
|
||||
emb = emb + aug_emb if aug_emb is not None else emb
|
||||
|
||||
# 2. pre-process
|
||||
sample = self.conv_in(sample)
|
||||
|
||||
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
||||
|
||||
sample = sample + controlnet_cond
|
||||
|
||||
# 3. down
|
||||
|
@ -506,10 +506,14 @@
|
||||
"maskAdjustmentsHeader": "Mask Adjustments",
|
||||
"maskBlur": "Mask Blur",
|
||||
"maskBlurMethod": "Mask Blur Method",
|
||||
"seamPaintingHeader": "Seam Painting",
|
||||
"seamSize": "Seam Size",
|
||||
"seamBlur": "Seam Blur",
|
||||
"seamStrength": "Seam Strength",
|
||||
"seamSteps": "Seam Steps",
|
||||
"seamStrength": "Seam Strength",
|
||||
"seamThreshold": "Seam Threshold",
|
||||
"seamLowThreshold": "Low",
|
||||
"seamHighThreshold": "High",
|
||||
"scaleBeforeProcessing": "Scale Before Processing",
|
||||
"scaledWidth": "Scaled W",
|
||||
"scaledHeight": "Scaled H",
|
||||
|
@ -121,7 +121,7 @@ export const addRequestedMultipleImageDeletionListener = () => {
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const { imageDTOs, imagesUsage } = action.payload;
|
||||
|
||||
if (imageDTOs.length < 1 || imagesUsage.length < 1) {
|
||||
if (imageDTOs.length <= 1 || imagesUsage.length <= 1) {
|
||||
// handle singles in separate listener
|
||||
return;
|
||||
}
|
||||
|
@ -32,6 +32,7 @@ import {
|
||||
MAIN_MODEL_LOADER,
|
||||
MASK_BLUR,
|
||||
MASK_COMBINE,
|
||||
MASK_EDGE,
|
||||
MASK_FROM_ALPHA,
|
||||
MASK_RESIZE_DOWN,
|
||||
MASK_RESIZE_UP,
|
||||
@ -40,6 +41,10 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
SEAM_FIX_DENOISE_LATENTS,
|
||||
SEAM_MASK_COMBINE,
|
||||
SEAM_MASK_RESIZE_DOWN,
|
||||
SEAM_MASK_RESIZE_UP,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -67,6 +72,12 @@ export const buildCanvasOutpaintGraph = (
|
||||
shouldUseCpuNoise,
|
||||
maskBlur,
|
||||
maskBlurMethod,
|
||||
seamSize,
|
||||
seamBlur,
|
||||
seamSteps,
|
||||
seamStrength,
|
||||
seamLowThreshold,
|
||||
seamHighThreshold,
|
||||
tileSize,
|
||||
infillMethod,
|
||||
clipSkip,
|
||||
@ -130,6 +141,11 @@ export const buildCanvasOutpaintGraph = (
|
||||
is_intermediate: true,
|
||||
mask2: canvasMaskImage,
|
||||
},
|
||||
[SEAM_MASK_COMBINE]: {
|
||||
type: 'mask_combine',
|
||||
id: MASK_COMBINE,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[MASK_BLUR]: {
|
||||
type: 'img_blur',
|
||||
id: MASK_BLUR,
|
||||
@ -165,6 +181,25 @@ export const buildCanvasOutpaintGraph = (
|
||||
denoising_start: 1 - strength,
|
||||
denoising_end: 1,
|
||||
},
|
||||
[MASK_EDGE]: {
|
||||
type: 'mask_edge',
|
||||
id: MASK_EDGE,
|
||||
is_intermediate: true,
|
||||
edge_size: seamSize,
|
||||
edge_blur: seamBlur,
|
||||
low_threshold: seamLowThreshold,
|
||||
high_threshold: seamHighThreshold,
|
||||
},
|
||||
[SEAM_FIX_DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
id: SEAM_FIX_DENOISE_LATENTS,
|
||||
is_intermediate: true,
|
||||
steps: seamSteps,
|
||||
cfg_scale: cfg_scale,
|
||||
scheduler: scheduler,
|
||||
denoising_start: 1 - seamStrength,
|
||||
denoising_end: 1,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
@ -333,12 +368,63 @@ export const buildCanvasOutpaintGraph = (
|
||||
field: 'seed',
|
||||
},
|
||||
},
|
||||
// Decode the result from Inpaint
|
||||
// Seam Paint
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
// Decode the result from Inpaint
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'latents',
|
||||
@ -348,7 +434,6 @@ export const buildCanvasOutpaintGraph = (
|
||||
};
|
||||
|
||||
// Add Infill Nodes
|
||||
|
||||
if (infillMethod === 'patchmatch') {
|
||||
graph.nodes[INPAINT_INFILL] = {
|
||||
type: 'infill_patchmatch',
|
||||
@ -378,6 +463,13 @@ export const buildCanvasOutpaintGraph = (
|
||||
width: scaledWidth,
|
||||
height: scaledHeight,
|
||||
};
|
||||
graph.nodes[SEAM_MASK_RESIZE_UP] = {
|
||||
type: 'img_resize',
|
||||
id: SEAM_MASK_RESIZE_UP,
|
||||
is_intermediate: true,
|
||||
width: scaledWidth,
|
||||
height: scaledHeight,
|
||||
};
|
||||
graph.nodes[INPAINT_IMAGE_RESIZE_DOWN] = {
|
||||
type: 'img_resize',
|
||||
id: INPAINT_IMAGE_RESIZE_DOWN,
|
||||
@ -399,6 +491,13 @@ export const buildCanvasOutpaintGraph = (
|
||||
width: width,
|
||||
height: height,
|
||||
};
|
||||
graph.nodes[SEAM_MASK_RESIZE_DOWN] = {
|
||||
type: 'img_resize',
|
||||
id: SEAM_MASK_RESIZE_DOWN,
|
||||
is_intermediate: true,
|
||||
width: width,
|
||||
height: height,
|
||||
};
|
||||
|
||||
graph.nodes[NOISE] = {
|
||||
...(graph.nodes[NOISE] as NoiseInvocation),
|
||||
@ -440,6 +539,57 @@ export const buildCanvasOutpaintGraph = (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Seam Paint Mask
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_FROM_ALPHA,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'mask',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask1',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask2',
|
||||
},
|
||||
},
|
||||
// Resize Results Down
|
||||
{
|
||||
source: {
|
||||
@ -453,7 +603,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
node_id: MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -461,6 +611,16 @@ export const buildCanvasOutpaintGraph = (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: INPAINT_INFILL,
|
||||
@ -494,7 +654,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_RESIZE_DOWN,
|
||||
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -525,7 +685,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_RESIZE_DOWN,
|
||||
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -553,7 +713,6 @@ export const buildCanvasOutpaintGraph = (
|
||||
};
|
||||
graph.nodes[MASK_BLUR] = {
|
||||
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
|
||||
image: canvasMaskImage,
|
||||
};
|
||||
|
||||
graph.edges.push(
|
||||
@ -568,6 +727,47 @@ export const buildCanvasOutpaintGraph = (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Seam Paint Mask
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_FROM_ALPHA,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'mask',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_FROM_ALPHA,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask1',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask2',
|
||||
},
|
||||
},
|
||||
// Color Correct The Inpainted Result
|
||||
{
|
||||
source: {
|
||||
@ -591,7 +791,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -622,7 +822,7 @@ export const buildCanvasOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
|
@ -29,6 +29,7 @@ import {
|
||||
LATENTS_TO_IMAGE,
|
||||
MASK_BLUR,
|
||||
MASK_COMBINE,
|
||||
MASK_EDGE,
|
||||
MASK_FROM_ALPHA,
|
||||
MASK_RESIZE_DOWN,
|
||||
MASK_RESIZE_UP,
|
||||
@ -40,6 +41,10 @@ import {
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SEAM_FIX_DENOISE_LATENTS,
|
||||
SEAM_MASK_COMBINE,
|
||||
SEAM_MASK_RESIZE_DOWN,
|
||||
SEAM_MASK_RESIZE_UP,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -67,6 +72,12 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
shouldUseCpuNoise,
|
||||
maskBlur,
|
||||
maskBlurMethod,
|
||||
seamSize,
|
||||
seamBlur,
|
||||
seamSteps,
|
||||
seamStrength,
|
||||
seamLowThreshold,
|
||||
seamHighThreshold,
|
||||
tileSize,
|
||||
infillMethod,
|
||||
} = state.generation;
|
||||
@ -133,6 +144,11 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
is_intermediate: true,
|
||||
mask2: canvasMaskImage,
|
||||
},
|
||||
[SEAM_MASK_COMBINE]: {
|
||||
type: 'mask_combine',
|
||||
id: MASK_COMBINE,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[MASK_BLUR]: {
|
||||
type: 'img_blur',
|
||||
id: MASK_BLUR,
|
||||
@ -170,6 +186,25 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
: 1 - strength,
|
||||
denoising_end: shouldUseSDXLRefiner ? refinerStart : 1,
|
||||
},
|
||||
[MASK_EDGE]: {
|
||||
type: 'mask_edge',
|
||||
id: MASK_EDGE,
|
||||
is_intermediate: true,
|
||||
edge_size: seamSize,
|
||||
edge_blur: seamBlur,
|
||||
low_threshold: seamLowThreshold,
|
||||
high_threshold: seamHighThreshold,
|
||||
},
|
||||
[SEAM_FIX_DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
id: SEAM_FIX_DENOISE_LATENTS,
|
||||
is_intermediate: true,
|
||||
steps: seamSteps,
|
||||
cfg_scale: cfg_scale,
|
||||
scheduler: scheduler,
|
||||
denoising_start: 1 - seamStrength,
|
||||
denoising_end: 1,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
@ -347,12 +382,63 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
field: 'seed',
|
||||
},
|
||||
},
|
||||
// Decode inpainted latents to image
|
||||
// Seam Paint
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
// Decode inpainted latents to image
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'latents',
|
||||
@ -392,6 +478,13 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
width: scaledWidth,
|
||||
height: scaledHeight,
|
||||
};
|
||||
graph.nodes[SEAM_MASK_RESIZE_UP] = {
|
||||
type: 'img_resize',
|
||||
id: SEAM_MASK_RESIZE_UP,
|
||||
is_intermediate: true,
|
||||
width: scaledWidth,
|
||||
height: scaledHeight,
|
||||
};
|
||||
graph.nodes[INPAINT_IMAGE_RESIZE_DOWN] = {
|
||||
type: 'img_resize',
|
||||
id: INPAINT_IMAGE_RESIZE_DOWN,
|
||||
@ -413,6 +506,13 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
width: width,
|
||||
height: height,
|
||||
};
|
||||
graph.nodes[SEAM_MASK_RESIZE_DOWN] = {
|
||||
type: 'img_resize',
|
||||
id: SEAM_MASK_RESIZE_DOWN,
|
||||
is_intermediate: true,
|
||||
width: width,
|
||||
height: height,
|
||||
};
|
||||
|
||||
graph.nodes[NOISE] = {
|
||||
...(graph.nodes[NOISE] as NoiseInvocation),
|
||||
@ -454,6 +554,57 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Seam Paint Mask
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_FROM_ALPHA,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'mask',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask1',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask2',
|
||||
},
|
||||
},
|
||||
// Resize Results Down
|
||||
{
|
||||
source: {
|
||||
@ -467,7 +618,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
node_id: MASK_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -475,6 +626,16 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: INPAINT_INFILL,
|
||||
@ -508,7 +669,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_RESIZE_DOWN,
|
||||
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -539,7 +700,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_RESIZE_DOWN,
|
||||
node_id: SEAM_MASK_RESIZE_DOWN,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -567,7 +728,6 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
};
|
||||
graph.nodes[MASK_BLUR] = {
|
||||
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
|
||||
image: canvasMaskImage,
|
||||
};
|
||||
|
||||
graph.edges.push(
|
||||
@ -582,6 +742,47 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Seam Paint Mask
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_FROM_ALPHA,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_FIX_DENOISE_LATENTS,
|
||||
field: 'mask',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_FROM_ALPHA,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask1',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_EDGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'mask2',
|
||||
},
|
||||
},
|
||||
// Color Correct The Inpainted Result
|
||||
{
|
||||
source: {
|
||||
@ -605,7 +806,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -636,7 +837,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
node_id: SEAM_MASK_COMBINE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
@ -669,7 +870,7 @@ export const buildCanvasSDXLOutpaintGraph = (
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
addSDXLRefinerToGraph(state, graph, SEAM_FIX_DENOISE_LATENTS);
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
|
@ -18,8 +18,6 @@ export const IMAGE_TO_LATENTS = 'image_to_latents';
|
||||
export const LATENTS_TO_LATENTS = 'latents_to_latents';
|
||||
export const RESIZE = 'resize_image';
|
||||
export const CANVAS_OUTPUT = 'canvas_output';
|
||||
export const INPAINT = 'inpaint';
|
||||
export const INPAINT_SEAM_FIX = 'inpaint_seam_fix';
|
||||
export const INPAINT_IMAGE = 'inpaint_image';
|
||||
export const SCALED_INPAINT_IMAGE = 'scaled_inpaint_image';
|
||||
export const INPAINT_IMAGE_RESIZE_UP = 'inpaint_image_resize_up';
|
||||
@ -27,10 +25,14 @@ export const INPAINT_IMAGE_RESIZE_DOWN = 'inpaint_image_resize_down';
|
||||
export const INPAINT_INFILL = 'inpaint_infill';
|
||||
export const INPAINT_INFILL_RESIZE_DOWN = 'inpaint_infill_resize_down';
|
||||
export const INPAINT_FINAL_IMAGE = 'inpaint_final_image';
|
||||
export const SEAM_FIX_DENOISE_LATENTS = 'seam_fix_denoise_latents';
|
||||
export const MASK_FROM_ALPHA = 'tomask';
|
||||
export const MASK_EDGE = 'mask_edge';
|
||||
export const MASK_BLUR = 'mask_blur';
|
||||
export const MASK_COMBINE = 'mask_combine';
|
||||
export const SEAM_MASK_COMBINE = 'seam_mask_combine';
|
||||
export const SEAM_MASK_RESIZE_UP = 'seam_mask_resize_up';
|
||||
export const SEAM_MASK_RESIZE_DOWN = 'seam_mask_resize_down';
|
||||
export const MASK_RESIZE_UP = 'mask_resize_up';
|
||||
export const MASK_RESIZE_DOWN = 'mask_resize_down';
|
||||
export const COLOR_CORRECT = 'color_correct';
|
||||
|
@ -0,0 +1,36 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setSeamBlur } from 'features/parameters/store/generationSlice';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const ParamSeamBlur = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const seamBlur = useAppSelector(
|
||||
(state: RootState) => state.generation.seamBlur
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters.seamBlur')}
|
||||
min={0}
|
||||
max={64}
|
||||
step={8}
|
||||
sliderNumberInputProps={{ max: 512 }}
|
||||
value={seamBlur}
|
||||
onChange={(v) => {
|
||||
dispatch(setSeamBlur(v));
|
||||
}}
|
||||
withInput
|
||||
withSliderMarks
|
||||
withReset
|
||||
handleReset={() => {
|
||||
dispatch(setSeamBlur(8));
|
||||
}}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSeamBlur);
|
@ -0,0 +1,27 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import IAICollapse from 'common/components/IAICollapse';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import ParamSeamBlur from './ParamSeamBlur';
|
||||
import ParamSeamSize from './ParamSeamSize';
|
||||
import ParamSeamSteps from './ParamSeamSteps';
|
||||
import ParamSeamStrength from './ParamSeamStrength';
|
||||
import ParamSeamThreshold from './ParamSeamThreshold';
|
||||
|
||||
const ParamSeamPaintingCollapse = () => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<IAICollapse label={t('parameters.seamPaintingHeader')}>
|
||||
<Flex sx={{ flexDirection: 'column', gap: 2, paddingBottom: 2 }}>
|
||||
<ParamSeamSize />
|
||||
<ParamSeamBlur />
|
||||
<ParamSeamSteps />
|
||||
<ParamSeamStrength />
|
||||
<ParamSeamThreshold />
|
||||
</Flex>
|
||||
</IAICollapse>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSeamPaintingCollapse);
|
@ -0,0 +1,36 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setSeamSize } from 'features/parameters/store/generationSlice';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const ParamSeamSize = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const seamSize = useAppSelector(
|
||||
(state: RootState) => state.generation.seamSize
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters.seamSize')}
|
||||
min={0}
|
||||
max={128}
|
||||
step={8}
|
||||
sliderNumberInputProps={{ max: 512 }}
|
||||
value={seamSize}
|
||||
onChange={(v) => {
|
||||
dispatch(setSeamSize(v));
|
||||
}}
|
||||
withInput
|
||||
withSliderMarks
|
||||
withReset
|
||||
handleReset={() => {
|
||||
dispatch(setSeamSize(16));
|
||||
}}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSeamSize);
|
@ -0,0 +1,36 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setSeamSteps } from 'features/parameters/store/generationSlice';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const ParamSeamSteps = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const seamSteps = useAppSelector(
|
||||
(state: RootState) => state.generation.seamSteps
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters.seamSteps')}
|
||||
min={0}
|
||||
max={100}
|
||||
step={1}
|
||||
sliderNumberInputProps={{ max: 999 }}
|
||||
value={seamSteps}
|
||||
onChange={(v) => {
|
||||
dispatch(setSeamSteps(v));
|
||||
}}
|
||||
withInput
|
||||
withSliderMarks
|
||||
withReset
|
||||
handleReset={() => {
|
||||
dispatch(setSeamSteps(20));
|
||||
}}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSeamSteps);
|
@ -0,0 +1,36 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setSeamStrength } from 'features/parameters/store/generationSlice';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const ParamSeamStrength = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const seamStrength = useAppSelector(
|
||||
(state: RootState) => state.generation.seamStrength
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters.seamStrength')}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.01}
|
||||
sliderNumberInputProps={{ max: 999 }}
|
||||
value={seamStrength}
|
||||
onChange={(v) => {
|
||||
dispatch(setSeamStrength(v));
|
||||
}}
|
||||
withInput
|
||||
withSliderMarks
|
||||
withReset
|
||||
handleReset={() => {
|
||||
dispatch(setSeamStrength(0.7));
|
||||
}}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSeamStrength);
|
@ -0,0 +1,121 @@
|
||||
import {
|
||||
FormControl,
|
||||
FormLabel,
|
||||
HStack,
|
||||
RangeSlider,
|
||||
RangeSliderFilledTrack,
|
||||
RangeSliderMark,
|
||||
RangeSliderThumb,
|
||||
RangeSliderTrack,
|
||||
Tooltip,
|
||||
} from '@chakra-ui/react';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import {
|
||||
setSeamHighThreshold,
|
||||
setSeamLowThreshold,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { BiReset } from 'react-icons/bi';
|
||||
|
||||
const ParamSeamThreshold = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const seamLowThreshold = useAppSelector(
|
||||
(state: RootState) => state.generation.seamLowThreshold
|
||||
);
|
||||
|
||||
const seamHighThreshold = useAppSelector(
|
||||
(state: RootState) => state.generation.seamHighThreshold
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleSeamThresholdChange = useCallback(
|
||||
(v: number[]) => {
|
||||
dispatch(setSeamLowThreshold(v[0] as number));
|
||||
dispatch(setSeamHighThreshold(v[1] as number));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const handleSeamThresholdReset = () => {
|
||||
dispatch(setSeamLowThreshold(100));
|
||||
dispatch(setSeamHighThreshold(200));
|
||||
};
|
||||
|
||||
return (
|
||||
<FormControl>
|
||||
<FormLabel>{t('parameters.seamThreshold')}</FormLabel>
|
||||
<HStack w="100%" gap={4} mt={-2}>
|
||||
<RangeSlider
|
||||
aria-label={[
|
||||
t('parameters.seamLowThreshold'),
|
||||
t('parameters.seamHighThreshold'),
|
||||
]}
|
||||
value={[seamLowThreshold, seamHighThreshold]}
|
||||
min={0}
|
||||
max={255}
|
||||
step={1}
|
||||
minStepsBetweenThumbs={1}
|
||||
onChange={handleSeamThresholdChange}
|
||||
>
|
||||
<RangeSliderTrack>
|
||||
<RangeSliderFilledTrack />
|
||||
</RangeSliderTrack>
|
||||
<Tooltip label={seamLowThreshold} placement="top" hasArrow>
|
||||
<RangeSliderThumb index={0} />
|
||||
</Tooltip>
|
||||
<Tooltip label={seamHighThreshold} placement="top" hasArrow>
|
||||
<RangeSliderThumb index={1} />
|
||||
</Tooltip>
|
||||
<RangeSliderMark
|
||||
value={0}
|
||||
sx={{
|
||||
insetInlineStart: '0 !important',
|
||||
insetInlineEnd: 'unset !important',
|
||||
}}
|
||||
>
|
||||
0
|
||||
</RangeSliderMark>
|
||||
<RangeSliderMark
|
||||
value={0.392}
|
||||
sx={{
|
||||
insetInlineStart: '38.4% !important',
|
||||
transform: 'translateX(-38.4%)',
|
||||
}}
|
||||
>
|
||||
100
|
||||
</RangeSliderMark>
|
||||
<RangeSliderMark
|
||||
value={0.784}
|
||||
sx={{
|
||||
insetInlineStart: '79.8% !important',
|
||||
transform: 'translateX(-79.8%)',
|
||||
}}
|
||||
>
|
||||
200
|
||||
</RangeSliderMark>
|
||||
<RangeSliderMark
|
||||
value={1}
|
||||
sx={{
|
||||
insetInlineStart: 'unset !important',
|
||||
insetInlineEnd: '0 !important',
|
||||
}}
|
||||
>
|
||||
255
|
||||
</RangeSliderMark>
|
||||
</RangeSlider>
|
||||
<IAIIconButton
|
||||
size="sm"
|
||||
aria-label={t('accessibility.reset')}
|
||||
tooltip={t('accessibility.reset')}
|
||||
icon={<BiReset />}
|
||||
onClick={handleSeamThresholdReset}
|
||||
/>
|
||||
</HStack>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSeamThreshold);
|
@ -37,6 +37,12 @@ export interface GenerationState {
|
||||
scheduler: SchedulerParam;
|
||||
maskBlur: number;
|
||||
maskBlurMethod: MaskBlurMethodParam;
|
||||
seamSize: number;
|
||||
seamBlur: number;
|
||||
seamSteps: number;
|
||||
seamStrength: StrengthParam;
|
||||
seamLowThreshold: number;
|
||||
seamHighThreshold: number;
|
||||
seed: SeedParam;
|
||||
seedWeights: string;
|
||||
shouldFitToWidthHeight: boolean;
|
||||
@ -74,6 +80,12 @@ export const initialGenerationState: GenerationState = {
|
||||
scheduler: 'euler',
|
||||
maskBlur: 16,
|
||||
maskBlurMethod: 'box',
|
||||
seamSize: 16,
|
||||
seamBlur: 8,
|
||||
seamSteps: 20,
|
||||
seamStrength: 0.7,
|
||||
seamLowThreshold: 100,
|
||||
seamHighThreshold: 200,
|
||||
seed: 0,
|
||||
seedWeights: '',
|
||||
shouldFitToWidthHeight: true,
|
||||
@ -200,6 +212,24 @@ export const generationSlice = createSlice({
|
||||
setMaskBlurMethod: (state, action: PayloadAction<MaskBlurMethodParam>) => {
|
||||
state.maskBlurMethod = action.payload;
|
||||
},
|
||||
setSeamSize: (state, action: PayloadAction<number>) => {
|
||||
state.seamSize = action.payload;
|
||||
},
|
||||
setSeamBlur: (state, action: PayloadAction<number>) => {
|
||||
state.seamBlur = action.payload;
|
||||
},
|
||||
setSeamSteps: (state, action: PayloadAction<number>) => {
|
||||
state.seamSteps = action.payload;
|
||||
},
|
||||
setSeamStrength: (state, action: PayloadAction<number>) => {
|
||||
state.seamStrength = action.payload;
|
||||
},
|
||||
setSeamLowThreshold: (state, action: PayloadAction<number>) => {
|
||||
state.seamLowThreshold = action.payload;
|
||||
},
|
||||
setSeamHighThreshold: (state, action: PayloadAction<number>) => {
|
||||
state.seamHighThreshold = action.payload;
|
||||
},
|
||||
setTileSize: (state, action: PayloadAction<number>) => {
|
||||
state.tileSize = action.payload;
|
||||
},
|
||||
@ -306,6 +336,12 @@ export const {
|
||||
setScheduler,
|
||||
setMaskBlur,
|
||||
setMaskBlurMethod,
|
||||
setSeamSize,
|
||||
setSeamBlur,
|
||||
setSeamSteps,
|
||||
setSeamStrength,
|
||||
setSeamLowThreshold,
|
||||
setSeamHighThreshold,
|
||||
setSeed,
|
||||
setSeedWeights,
|
||||
setShouldFitToWidthHeight,
|
||||
|
@ -2,6 +2,7 @@ import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/Para
|
||||
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
|
||||
import ParamInfillAndScalingCollapse from 'features/parameters/components/Parameters/Canvas/InfillAndScaling/ParamInfillAndScalingCollapse';
|
||||
import ParamMaskAdjustmentCollapse from 'features/parameters/components/Parameters/Canvas/MaskAdjustment/ParamMaskAdjustmentCollapse';
|
||||
import ParamSeamPaintingCollapse from 'features/parameters/components/Parameters/Canvas/SeamPainting/ParamSeamPaintingCollapse';
|
||||
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
||||
@ -22,6 +23,7 @@ export default function SDXLUnifiedCanvasTabParameters() {
|
||||
<ParamNoiseCollapse />
|
||||
<ParamMaskAdjustmentCollapse />
|
||||
<ParamInfillAndScalingCollapse />
|
||||
<ParamSeamPaintingCollapse />
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
@ -6,6 +6,7 @@ import ParamControlNetCollapse from 'features/parameters/components/Parameters/C
|
||||
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
|
||||
// import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
|
||||
import ParamMaskAdjustmentCollapse from 'features/parameters/components/Parameters/Canvas/MaskAdjustment/ParamMaskAdjustmentCollapse';
|
||||
import ParamSeamPaintingCollapse from 'features/parameters/components/Parameters/Canvas/SeamPainting/ParamSeamPaintingCollapse';
|
||||
import ParamPromptArea from 'features/parameters/components/Parameters/Prompt/ParamPromptArea';
|
||||
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
||||
import UnifiedCanvasCoreParameters from './UnifiedCanvasCoreParameters';
|
||||
@ -23,6 +24,7 @@ const UnifiedCanvasParameters = () => {
|
||||
<ParamSymmetryCollapse />
|
||||
<ParamMaskAdjustmentCollapse />
|
||||
<ParamInfillAndScalingCollapse />
|
||||
<ParamSeamPaintingCollapse />
|
||||
<ParamAdvancedCollapse />
|
||||
</>
|
||||
);
|
||||
|
Loading…
Reference in New Issue
Block a user