First working lora implementation

This commit is contained in:
Sergey Borisov 2023-05-30 01:11:00 +03:00
parent f50293920e
commit 79de9047b5
6 changed files with 652 additions and 43 deletions

View File

@ -1,5 +1,6 @@
from typing import Literal, Optional, Union from typing import Literal, Optional, Union
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from contextlib import ExitStack
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
@ -8,6 +9,7 @@ from .model import ClipField
from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from ...backend.model_management.lora import LoRAHelper
from compel import Compel from compel import Compel
from compel.prompt_parser import ( from compel.prompt_parser import (
@ -63,7 +65,10 @@ class CompelInvocation(BaseInvocation):
**self.clip.tokenizer.dict(), **self.clip.tokenizer.dict(),
) )
with text_encoder_info as text_encoder,\ with text_encoder_info as text_encoder,\
tokenizer_info as tokenizer: tokenizer_info as tokenizer,\
ExitStack() as stack:
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.clip.loras]
# TODO: global? input? # TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast" #use_full_precision = precision == "float32" or precision == "autocast"
@ -92,6 +97,7 @@ class CompelInvocation(BaseInvocation):
if context.services.configuration.log_tokenization: if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer) log_tokenization_for_prompt_object(prompt, tokenizer)
with LoRAHelper.apply_lora_text_encoder(text_encoder, loras):
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt) c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
# TODO: long prompt support # TODO: long prompt support
@ -106,7 +112,7 @@ class CompelInvocation(BaseInvocation):
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow? # TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.set(conditioning_name, (c, ec)) context.services.latents.save(conditioning_name, (c, ec))
return CompelOutput( return CompelOutput(
conditioning=ConditioningField( conditioning=ConditioningField(

View File

@ -7,6 +7,7 @@ import torch
from diffusers.image_processor import VaeImageProcessor from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import BaseModel, Field, validator from pydantic import BaseModel, Field, validator
from contextlib import ExitStack
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.app.util.step_callback import stable_diffusion_step_callback
@ -28,6 +29,8 @@ from .compel import ConditioningField
from .image import ImageCategory, ImageField, ImageOutput from .image import ImageCategory, ImageField, ImageOutput
from .model import ModelInfo, UNetField, VaeField from .model import ModelInfo, UNetField, VaeField
from ...backend.model_management.lora import LoRAHelper
class LatentsField(BaseModel): class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations""" """A latents field used for passing latents between invocations"""
@ -196,18 +199,7 @@ class TextToLatentsInvocation(BaseInvocation):
source_node_id=source_node_id, source_node_id=source_node_id,
) )
def get_model(self, model_manager: ModelManagerService) -> StableDiffusionGeneratorPipeline: def get_conditioning_data(self, context: InvocationContext, scheduler) -> ConditioningData:
model_info = model_manager.get_model(self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.scheduler
)
return model
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name) c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name) uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
@ -222,7 +214,7 @@ class TextToLatentsInvocation(BaseInvocation):
h_symmetry_time_pct=None,#h_symmetry_time_pct, h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct, v_symmetry_time_pct=None#v_symmetry_time_pct,
), ),
).add_scheduler_args_if_applicable(self.scheduler, eta=0.0)#ddim_eta) ).add_scheduler_args_if_applicable(scheduler, eta=0.0)#ddim_eta)
return conditioning_data return conditioning_data
def create_pipeline(self, unet, scheduler) -> StableDiffusionGeneratorPipeline: def create_pipeline(self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
@ -264,7 +256,9 @@ class TextToLatentsInvocation(BaseInvocation):
self.dispatch_progress(context, source_node_id, state) self.dispatch_progress(context, source_node_id, state)
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict()) unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
with unet_info as unet: with unet_info as unet,\
ExitStack() as stack:
scheduler = get_scheduler( scheduler = get_scheduler(
context=context, context=context,
scheduler_info=self.unet.scheduler, scheduler_info=self.unet.scheduler,
@ -274,6 +268,9 @@ class TextToLatentsInvocation(BaseInvocation):
pipeline = self.create_pipeline(unet, scheduler) pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler) conditioning_data = self.get_conditioning_data(context, scheduler)
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
with LoRAHelper.apply_lora_unet(pipeline.unet, loras):
# TODO: Verify the noise is the right size # TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings( result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)), latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
@ -324,7 +321,9 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
**self.unet.unet.dict(), **self.unet.unet.dict(),
) )
with unet_info as unet: with unet_info as unet,\
ExitStack() as stack:
scheduler = get_scheduler( scheduler = get_scheduler(
context=context, context=context,
scheduler_info=self.unet.scheduler, scheduler_info=self.unet.scheduler,
@ -345,6 +344,9 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
device=unet.device, device=unet.device,
) )
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
with LoRAHelper.apply_lora_unet(pipeline.unet, loras):
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings( result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents, latents=initial_latents,
timesteps=timesteps, timesteps=timesteps,
@ -416,7 +418,6 @@ class LatentsToImageInvocation(BaseInvocation):
image_category=ImageCategory.GENERAL, image_category=ImageCategory.GENERAL,
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
) )
return ImageOutput( return ImageOutput(

View File

@ -1,4 +1,4 @@
from typing import Literal, Optional, Union from typing import Literal, Optional, Union, List
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
@ -7,19 +7,22 @@ from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.model_management import SDModelType from ...backend.model_management import SDModelType
class ModelInfo(BaseModel): class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load unet submodel") model_name: str = Field(description="Info to load submodel")
model_type: SDModelType = Field(description="Info to load unet submodel") model_type: SDModelType = Field(description="Info to load submodel")
submodel: Optional[SDModelType] = Field(description="Info to load unet submodel") submodel: Optional[SDModelType] = Field(description="Info to load submodel")
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class UNetField(BaseModel): class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel") unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel") scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
# loras: List[ModelInfo] loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class ClipField(BaseModel): class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel") tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel") text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
# loras: List[ModelInfo] loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VaeField(BaseModel): class VaeField(BaseModel):
# TODO: better naming? # TODO: better naming?
@ -95,6 +98,21 @@ class ModelLoaderInvocation(BaseInvocation):
) )
""" """
loras = [
LoraInfo(
model_name="sadcatmeme",
model_type=SDModelType.Lora,
submodel=None,
weight=0.75,
),
LoraInfo(
model_name="gunAimingAtYouV1",
model_type=SDModelType.Lora,
submodel=None,
weight=0.75,
),
]
return ModelLoaderOutput( return ModelLoaderOutput(
unet=UNetField( unet=UNetField(
@ -108,6 +126,7 @@ class ModelLoaderInvocation(BaseInvocation):
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.Scheduler, submodel=SDModelType.Scheduler,
), ),
loras=loras,
), ),
clip=ClipField( clip=ClipField(
tokenizer=ModelInfo( tokenizer=ModelInfo(
@ -120,6 +139,7 @@ class ModelLoaderInvocation(BaseInvocation):
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder, submodel=SDModelType.TextEncoder,
), ),
loras=loras,
), ),
vae=VaeField( vae=VaeField(
vae=ModelInfo( vae=ModelInfo(

View File

@ -0,0 +1,541 @@
from __future__ import annotations
from pathlib import Path
from contextlib import contextmanager
from typing import Optional, Dict, Tuple, Any
import torch
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
class LoRALayerBase:
#rank: Optional[int]
#alpha: Optional[float]
#bias: Optional[torch.Tensor]
#layer_key: str
#@property
#def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if (
"bias_indices" in values
and "bias_values" in values
and "bias_size" in values
):
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def forward(
self,
module: torch.nn.Module,
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
multiplier: float,
):
if type(module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
weight = self.get_weight(module)
bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
return op(
*input_h,
(weight + bias).view(module.weight.shape),
None,
**extra_args,
) * multiplier * scale
def get_weight(self, module: torch.nn.Module):
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
#up: torch.Tensor
#mid: Optional[torch.Tensor]
#down: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self, module: torch.nn.Module):
if self.mid is not None:
up = self.up.reshape(up.shape[0], up.shape[1])
down = self.down.reshape(up.shape[0], up.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
#w1_a: torch.Tensor
#w1_b: torch.Tensor
#w2_a: torch.Tensor
#w2_b: torch.Tensor
#t1: Optional[torch.Tensor] = None
#t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(module_key, rank, alpha, bias)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self, module: torch.nn.Module):
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum(
"i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a
)
rebuild2 = torch.einsum(
"i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a
)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
#w1: Optional[torch.Tensor] = None
#w1_a: Optional[torch.Tensor] = None
#w1_b: Optional[torch.Tensor] = None
#w2: Optional[torch.Tensor] = None
#w2_a: Optional[torch.Tensor] = None
#w2_b: Optional[torch.Tensor] = None
#t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(module_key, rank, alpha, bias)
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self, module: torch.nn.Module):
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum('i j k l, i p, j r -> p r k l', self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2).reshape(module.weight.shape) # TODO: can we remove reshape?
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoRAModel: #(torch.nn.Module):
_name: str
layers: Dict[str, LoRALayer]
_device: torch.device
_dtype: torch.dtype
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
device: torch.device,
dtype: torch.dtype,
):
self._name = name
self._device = device or torch.cpu
self._dtype = dtype or torch.float32
self.layers = layers
@property
def name(self):
return self._name
@property
def device(self):
return self._device
@property
def dtype(self):
return self._dtype
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> LoRAModel:
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
self._device = device
self._dtype = dtype
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
device=device,
dtype=dtype,
name=file_path.stem, # TODO:
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
else:
# TODO: diff/ia3/... format
print(
f">> Encountered unknown lora layer module in {self.name}: {layer_key}"
)
return
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
"""
loras = [
(lora_model1, 0.7),
(lora_model2, 0.4),
]
with LoRAHelper.apply_lora_unet(unet, loras):
# unet with applied loras
# unmodified unet
"""
# TODO: rename smth like ModelPatcher and add TI method?
class LoRAHelper:
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix):].split('_')
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = module_key.rstrip(".")
return (module_key, module)
@staticmethod
def _lora_forward_hook(
applied_loras: List[Tuple[LoraModel, float]],
layer_name: str,
):
def lora_forward(module, input_h, output):
if len(applied_loras) == 0:
return output
for lora, weight in applied_loras:
layer = lora.layers.get(layer_name, None)
if layer is None:
continue
output += layer.forward(module, input_h, weight)
return output
return lora_forward
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: UNet2DConditionModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_lora(
cls,
model: torch.nn.Module,
loras: List[Tuple[LoraModel, float]],
prefix: str,
):
hooks = dict()
try:
for lora, lora_weight in loras:
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
if module_key not in hooks:
hooks[module_key] = module.register_forward_hook(cls._lora_forward_hook(loras, layer_key))
yield # wait for context manager exit
finally:
for module_key, hook in hooks.items():
hook.remove()
hooks.clear()

View File

@ -37,6 +37,8 @@ from transformers import logging as transformers_logging
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config from invokeai.app.services.config import get_invokeai_config
from .lora import LoRAModel
def get_model_path(repo_id_or_path: str): def get_model_path(repo_id_or_path: str):
globals = get_invokeai_config() globals = get_invokeai_config()
@ -152,6 +154,7 @@ class SDModelType(str, Enum):
Tokenizer = "tokenizer" Tokenizer = "tokenizer"
Vae = "vae" Vae = "vae"
Scheduler = "scheduler" Scheduler = "scheduler"
Lora = "lora"
class ModelInfoBase: class ModelInfoBase:
@ -400,10 +403,45 @@ class VaeModelInfo(ModelInfoBase):
return model return model
class LoRAModelInfo(ModelInfoBase):
#model_size: int
def __init__(self, file_path: str, model_type: SDModelType):
assert model_type == SDModelType.Lora
# check manualy as super().__init__ will try to resolve repo_id too
if not os.path.exists(file_path):
raise Exception("Model not found")
super().__init__(file_path, model_type)
self.model_size = os.path.getsize(file_path)
def get_size(self, child_type: Optional[SDModelType] = None):
if child_type is not None:
raise Exception("There is no child models in lora model")
return self.model_size
def get_model(
self,
child_type: Optional[SDModelType] = None,
torch_dtype: Optional[torch.dtype] = None,
):
if child_type is not None:
raise Exception("There is no child models in lora model")
model = LoRAModel.from_checkpoint(
file_path=self.model_path,
dtype=torch_dtype,
)
self.model_size = model.calc_size()
return model
MODEL_TYPES = { MODEL_TYPES = {
SDModelType.Diffusers: DiffusersModelInfo, SDModelType.Diffusers: DiffusersModelInfo,
SDModelType.Classifier: ClassifierModelInfo, SDModelType.Classifier: ClassifierModelInfo,
SDModelType.Vae: VaeModelInfo, SDModelType.Vae: VaeModelInfo,
SDModelType.Lora: LoRAModelInfo,
} }
@ -558,7 +596,7 @@ class ModelCache(object):
model_type=model_type, model_type=model_type,
revision=revision, revision=revision,
) )
# TODO: variant
key = self.get_key( key = self.get_key(
model_path=model_path, model_path=model_path,
model_type=model_type, model_type=model_type,

View File

@ -332,6 +332,9 @@ class ModelManager(object):
location = None location = None
revision = mconfig.get('revision') revision = mconfig.get('revision')
if model_type in [SDModelType.Lora]:
hash = "<NO_HASH>" # TODO:
else:
hash = self.cache.model_hash(location, revision) hash = self.cache.model_hash(location, revision)
# If the caller is asking for part of the model and the config indicates # If the caller is asking for part of the model and the config indicates