Revert "chore: ruff fixes"

This reverts commit af36fe8c1e.
This commit is contained in:
blessedcoolant 2024-04-13 12:10:20 +05:30
parent af36fe8c1e
commit 7a67fd6a06
3 changed files with 25 additions and 36 deletions

View File

@ -15,12 +15,10 @@ from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import T2IAdapter
from diffusers.models.attention_processor import (
AttnProcessor2_0,
from diffusers.models.attention_processor import (AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
XFormersAttnProcessor)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler
@ -29,22 +27,17 @@ from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
ConditioningField,
from invokeai.app.invocations.constants import (LATENT_SCALE_FACTOR,
SCHEDULER_NAME_VALUES)
from invokeai.app.invocations.fields import (ConditioningField,
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
LatentsField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
FieldDescriptions, ImageField,
Input, InputField, LatentsField,
OutputField, UIType, WithBoard,
WithMetadata)
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.primitives import DenoiseMaskOutput, ImageOutput, LatentsOutput
from invokeai.app.invocations.primitives import (DenoiseMaskOutput,
ImageOutput, LatentsOutput)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
@ -52,28 +45,21 @@ from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion import (PipelineIntermediateState,
set_seamless)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
IPAdapterData,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
BasicConditioningInfo, IPAdapterConditioningInfo, IPAdapterData, Range,
SDXLConditioningInfo, TextConditioningData, TextConditioningRegions)
from invokeai.backend.util.mask import to_standard_float_mask
from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
ControlNetData, StableDiffusionGeneratorPipeline, T2IAdapterData,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, invocation,
invocation_output)
from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField, VAEField

View File

@ -156,6 +156,7 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
if self._ip_adapter_attention_weights["skip"]:
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)

View File

@ -33,8 +33,10 @@ class UNetAttentionPatcher:
# "attn1" processors do not use IP-Adapters.
attn_procs[name] = CustomAttnProcessor2_0()
else:
ip_adapter_attention_weights: IPAdapterAttentionWeights = {"ip_adapter_weights": [], "skip": False}
for ip_adapter in self._ip_adapters:
ip_adapter_weight = ip_adapter["ip_adapter"].attn_weights.get_attention_processor_weights(idx)
skip = False
for block in ip_adapter["target_blocks"]: