mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Update l2i invoke and seamless to support AutoencoderTiny, remove attention processors if no mid_block is detected
This commit is contained in:
parent
43948e0758
commit
7b393656de
@ -837,14 +837,15 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|||||||
latents = context.tensors.load(self.latents.latents_name)
|
latents = context.tensors.load(self.latents.latents_name)
|
||||||
|
|
||||||
vae_info = context.models.load(self.vae.vae)
|
vae_info = context.models.load(self.vae.vae)
|
||||||
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL))
|
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
|
||||||
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||||
assert isinstance(vae, torch.nn.Module)
|
assert isinstance(vae, torch.nn.Module)
|
||||||
latents = latents.to(vae.device)
|
latents = latents.to(vae.device)
|
||||||
if self.fp32:
|
if self.fp32:
|
||||||
vae.to(dtype=torch.float32)
|
vae.to(dtype=torch.float32)
|
||||||
|
|
||||||
use_torch_2_0_or_xformers = isinstance(
|
# AutoencoderTiny doesn't contain a mid_block property or appear to accept attn processors
|
||||||
|
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
||||||
vae.decoder.mid_block.attentions[0].processor,
|
vae.decoder.mid_block.attentions[0].processor,
|
||||||
(
|
(
|
||||||
AttnProcessor2_0,
|
AttnProcessor2_0,
|
||||||
|
@ -5,6 +5,7 @@ from typing import Callable, List, Union
|
|||||||
|
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||||
|
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||||
|
|
||||||
|
|
||||||
@ -26,7 +27,7 @@ def _conv_forward_asymmetric(self, input, weight, bias):
|
|||||||
|
|
||||||
|
|
||||||
@contextmanager
|
@contextmanager
|
||||||
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axes: List[str]):
|
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
|
||||||
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
|
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
|
||||||
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
|
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
|
||||||
try:
|
try:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user