mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Update IP-Adapter model to enable running multiple IP-Adapters at once. (Not tested yet.)
This commit is contained in:
@ -24,6 +24,7 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.ip_adapter.unet_patcher import apply_ip_adapter_attention
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
|
||||
|
||||
from ..util import auto_detect_slice_size, normalize_device
|
||||
@ -434,10 +435,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
elif ip_adapter_data is not None:
|
||||
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
|
||||
# As it is now, the IP-Adapter will silently be skipped.
|
||||
weight = ip_adapter_data.weight[0] if isinstance(ip_adapter_data.weight, List) else ip_adapter_data.weight
|
||||
attn_ctx = ip_adapter_data.ip_adapter_model.apply_ip_adapter_attention(
|
||||
unet=self.invokeai_diffuser.model,
|
||||
scale=weight,
|
||||
attn_ctx = apply_ip_adapter_attention(
|
||||
unet=self.invokeai_diffuser.model, ip_adapters=[ipa.ip_adapter_model for ipa in ip_adapter_data]
|
||||
)
|
||||
self.use_ip_adapter = True
|
||||
else:
|
||||
@ -513,7 +512,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
total_step_count: int,
|
||||
additional_guidance: List[Callable] = None,
|
||||
control_data: List[ControlNetData] = None,
|
||||
ip_adapter_data: Optional[IPAdapterData] = None,
|
||||
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
||||
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
||||
):
|
||||
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
|
||||
@ -527,20 +526,20 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
# handle IP-Adapter
|
||||
if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer
|
||||
first_adapter_step = math.floor(ip_adapter_data.begin_step_percent * total_step_count)
|
||||
last_adapter_step = math.ceil(ip_adapter_data.end_step_percent * total_step_count)
|
||||
weight = (
|
||||
ip_adapter_data.weight[step_index]
|
||||
if isinstance(ip_adapter_data.weight, List)
|
||||
else ip_adapter_data.weight
|
||||
)
|
||||
if step_index >= first_adapter_step and step_index <= last_adapter_step:
|
||||
# only apply IP-Adapter if current step is within the IP-Adapter's begin/end step range
|
||||
# ip_adapter_data.ip_adapter_model.set_scale(ip_adapter_data.weight)
|
||||
ip_adapter_data.ip_adapter_model.set_scale(weight)
|
||||
else:
|
||||
# otherwise, set IP-Adapter scale to 0, so it has no effect
|
||||
ip_adapter_data.ip_adapter_model.set_scale(0.0)
|
||||
for single_ip_adapter_data in ip_adapter_data:
|
||||
first_adapter_step = math.floor(single_ip_adapter_data.begin_step_percent * total_step_count)
|
||||
last_adapter_step = math.ceil(single_ip_adapter_data.end_step_percent * total_step_count)
|
||||
weight = (
|
||||
single_ip_adapter_data.weight[step_index]
|
||||
if isinstance(single_ip_adapter_data.weight, List)
|
||||
else single_ip_adapter_data.weight
|
||||
)
|
||||
if step_index >= first_adapter_step and step_index <= last_adapter_step:
|
||||
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
|
||||
single_ip_adapter_data.ip_adapter_model.attn_weights.set_scale(weight)
|
||||
else:
|
||||
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
|
||||
single_ip_adapter_data.ip_adapter_model.attn_weights.set_scale(0.0)
|
||||
|
||||
# Handle ControlNet(s) and T2I-Adapter(s)
|
||||
down_block_additional_residuals = None
|
||||
|
Reference in New Issue
Block a user