mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into textfontimage
This commit is contained in:
commit
7d50e413bc
@ -29,12 +29,13 @@ The first set of things we need to do when creating a new Invocation are -
|
||||
|
||||
- Create a new class that derives from a predefined parent class called
|
||||
`BaseInvocation`.
|
||||
- The name of every Invocation must end with the word `Invocation` in order for
|
||||
it to be recognized as an Invocation.
|
||||
- Every Invocation must have a `docstring` that describes what this Invocation
|
||||
does.
|
||||
- Every Invocation must have a unique `type` field defined which becomes its
|
||||
indentifier.
|
||||
- While not strictly required, we suggest every invocation class name ends in
|
||||
"Invocation", eg "CropImageInvocation".
|
||||
- Every Invocation must use the `@invocation` decorator to provide its unique
|
||||
invocation type. You may also provide its title, tags and category using the
|
||||
decorator.
|
||||
- Invocations are strictly typed. We make use of the native
|
||||
[typing](https://docs.python.org/3/library/typing.html) library and the
|
||||
installed [pydantic](https://pydantic-docs.helpmanual.io/) library for
|
||||
@ -43,12 +44,11 @@ The first set of things we need to do when creating a new Invocation are -
|
||||
So let us do that.
|
||||
|
||||
```python
|
||||
from typing import Literal
|
||||
from .baseinvocation import BaseInvocation
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
```
|
||||
|
||||
That's great.
|
||||
@ -62,8 +62,10 @@ our Invocation takes.
|
||||
|
||||
### **Inputs**
|
||||
|
||||
Every Invocation input is a pydantic `Field` and like everything else should be
|
||||
strictly typed and defined.
|
||||
Every Invocation input must be defined using the `InputField` function. This is
|
||||
a wrapper around the pydantic `Field` function, which handles a few extra things
|
||||
and provides type hints. Like everything else, this should be strictly typed and
|
||||
defined.
|
||||
|
||||
So let us create these inputs for our Invocation. First up, the `image` input we
|
||||
need. Generally, we can use standard variable types in Python but InvokeAI
|
||||
@ -76,55 +78,51 @@ create your own custom field types later in this guide. For now, let's go ahead
|
||||
and use it.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation
|
||||
from ..models.image import ImageField
|
||||
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||
from .primitives import ImageField
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
image: ImageField = InputField(description="The input image")
|
||||
```
|
||||
|
||||
Let us break down our input code.
|
||||
|
||||
```python
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
image: ImageField = InputField(description="The input image")
|
||||
```
|
||||
|
||||
| Part | Value | Description |
|
||||
| --------- | ---------------------------------------------------- | -------------------------------------------------------------------------------------------------- |
|
||||
| Name | `image` | The variable that will hold our image |
|
||||
| Type Hint | `Union[ImageField, None]` | The types for our field. Indicates that the image can either be an `ImageField` type or `None` |
|
||||
| Field | `Field(description="The input image", default=None)` | The image variable is a field which needs a description and a default value that we set to `None`. |
|
||||
| Part | Value | Description |
|
||||
| --------- | ------------------------------------------- | ------------------------------------------------------------------------------- |
|
||||
| Name | `image` | The variable that will hold our image |
|
||||
| Type Hint | `ImageField` | The types for our field. Indicates that the image must be an `ImageField` type. |
|
||||
| Field | `InputField(description="The input image")` | The image variable is an `InputField` which needs a description. |
|
||||
|
||||
Great. Now let us create our other inputs for `width` and `height`
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation
|
||||
from ..models.image import ImageField
|
||||
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||
from .primitives import ImageField
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
```
|
||||
|
||||
As you might have noticed, we added two new parameters to the field type for
|
||||
`width` and `height` called `gt` and `le`. These basically stand for _greater
|
||||
than or equal to_ and _less than or equal to_. There are various other param
|
||||
types for field that you can find on the **pydantic** documentation.
|
||||
As you might have noticed, we added two new arguments to the `InputField`
|
||||
definition for `width` and `height`, called `gt` and `le`. They stand for
|
||||
_greater than or equal to_ and _less than or equal to_.
|
||||
|
||||
These impose contraints on those fields, and will raise an exception if the
|
||||
values do not meet the constraints. Field constraints are provided by
|
||||
**pydantic**, so anything you see in the **pydantic docs** will work.
|
||||
|
||||
**Note:** _Any time it is possible to define constraints for our field, we
|
||||
should do it so the frontend has more information on how to parse this field._
|
||||
@ -141,20 +139,17 @@ that are provided by it by InvokeAI.
|
||||
Let us create this function first.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from ..models.image import ImageField
|
||||
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||
from .primitives import ImageField
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext):
|
||||
pass
|
||||
@ -173,21 +168,18 @@ all the necessary info related to image outputs. So let us use that.
|
||||
We will cover how to create your own output types later in this guide.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from ..models.image import ImageField
|
||||
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||
from .primitives import ImageField
|
||||
from .image import ImageOutput
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pass
|
||||
@ -195,39 +187,34 @@ class ResizeInvocation(BaseInvocation):
|
||||
|
||||
Perfect. Now that we have our Invocation setup, let us do what we want to do.
|
||||
|
||||
- We will first load the image. Generally we do this using the `PIL` library but
|
||||
we can use one of the services provided by InvokeAI to load the image.
|
||||
- We will first load the image using one of the services provided by InvokeAI to
|
||||
load the image.
|
||||
- We will resize the image using `PIL` to our input data.
|
||||
- We will output this image in the format we set above.
|
||||
|
||||
So let's do that.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from ..models.image import ImageField, ResourceOrigin, ImageCategory
|
||||
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||
from .primitives import ImageField
|
||||
from .image import ImageOutput
|
||||
|
||||
@invocation("resize")
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
"""Resizes an image"""
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Load the image using InvokeAI's predefined Image Service.
|
||||
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
|
||||
# Load the image using InvokeAI's predefined Image Service. Returns the PIL image.
|
||||
image = context.services.images.get_pil_image(self.image.image_name)
|
||||
|
||||
# Resizing the image
|
||||
# Because we used the above service, we already have a PIL image. So we can simply resize.
|
||||
resized_image = image.resize((self.width, self.height))
|
||||
|
||||
# Preparing the image for output using InvokeAI's predefined Image Service.
|
||||
# Save the image using InvokeAI's predefined Image Service. Returns the prepared PIL image.
|
||||
output_image = context.services.images.create(
|
||||
image=resized_image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
@ -241,7 +228,6 @@ class ResizeInvocation(BaseInvocation):
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=output_image.image_name,
|
||||
image_origin=output_image.image_origin,
|
||||
),
|
||||
width=output_image.width,
|
||||
height=output_image.height,
|
||||
@ -253,6 +239,20 @@ certain way that the images need to be dispatched in order to be stored and read
|
||||
correctly. In 99% of the cases when dealing with an image output, you can simply
|
||||
copy-paste the template above.
|
||||
|
||||
### Customization
|
||||
|
||||
We can use the `@invocation` decorator to provide some additional info to the
|
||||
UI, like a custom title, tags and category.
|
||||
|
||||
```python
|
||||
@invocation("resize", title="My Resizer", tags=["resize", "image"], category="My Invocations")
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
"""Resizes an image"""
|
||||
|
||||
image: ImageField = InputField(description="The input image")
|
||||
...
|
||||
```
|
||||
|
||||
That's it. You made your own **Resize Invocation**.
|
||||
|
||||
## Result
|
||||
@ -271,10 +271,57 @@ new Invocation ready to be used.
|
||||
![resize node editor](../assets/contributing/resize_node_editor.png)
|
||||
|
||||
## Contributing Nodes
|
||||
Once you've created a Node, the next step is to share it with the community! The best way to do this is to submit a Pull Request to add the Node to the [Community Nodes](nodes/communityNodes) list. If you're not sure how to do that, take a look a at our [contributing nodes overview](contributingNodes).
|
||||
|
||||
Once you've created a Node, the next step is to share it with the community! The
|
||||
best way to do this is to submit a Pull Request to add the Node to the
|
||||
[Community Nodes](nodes/communityNodes) list. If you're not sure how to do that,
|
||||
take a look a at our [contributing nodes overview](contributingNodes).
|
||||
|
||||
## Advanced
|
||||
|
||||
-->
|
||||
|
||||
### Custom Output Types
|
||||
|
||||
Like with custom inputs, sometimes you might find yourself needing custom
|
||||
outputs that InvokeAI does not provide. We can easily set one up.
|
||||
|
||||
Now that you are familiar with Invocations and Inputs, let us use that knowledge
|
||||
to create an output that has an `image` field, a `color` field and a `string`
|
||||
field.
|
||||
|
||||
- An invocation output is a class that derives from the parent class of
|
||||
`BaseInvocationOutput`.
|
||||
- All invocation outputs must use the `@invocation_output` decorator to provide
|
||||
their unique output type.
|
||||
- Output fields must use the provided `OutputField` function. This is very
|
||||
similar to the `InputField` function described earlier - it's a wrapper around
|
||||
`pydantic`'s `Field()`.
|
||||
- It is not mandatory but we recommend using names ending with `Output` for
|
||||
output types.
|
||||
- It is not mandatory but we highly recommend adding a `docstring` to describe
|
||||
what your output type is for.
|
||||
|
||||
Now that we know the basic rules for creating a new output type, let us go ahead
|
||||
and make it.
|
||||
|
||||
```python
|
||||
from .baseinvocation import BaseInvocationOutput, OutputField, invocation_output
|
||||
from .primitives import ImageField, ColorField
|
||||
|
||||
@invocation_output('image_color_string_output')
|
||||
class ImageColorStringOutput(BaseInvocationOutput):
|
||||
'''Base class for nodes that output a single image'''
|
||||
|
||||
image: ImageField = OutputField(description="The image")
|
||||
color: ColorField = OutputField(description="The color")
|
||||
text: str = OutputField(description="The string")
|
||||
```
|
||||
|
||||
That's all there is to it.
|
||||
|
||||
<!-- TODO: DANGER - we probably do not want people to create their own field types, because this requires a lot of work on the frontend to accomodate.
|
||||
|
||||
### Custom Input Fields
|
||||
|
||||
Now that you know how to create your own Invocations, let us dive into slightly
|
||||
@ -329,172 +376,6 @@ like this.
|
||||
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
|
||||
```
|
||||
|
||||
**Extra Config**
|
||||
|
||||
All input fields also take an additional `Config` class that you can use to do
|
||||
various advanced things like setting required parameters and etc.
|
||||
|
||||
Let us do that for our _ColorField_ and enforce all the values because we did
|
||||
not define any defaults for our fields.
|
||||
|
||||
```python
|
||||
class ColorField(BaseModel):
|
||||
'''A field that holds the rgba values of a color'''
|
||||
r: int = Field(ge=0, le=255, description="The red channel")
|
||||
g: int = Field(ge=0, le=255, description="The green channel")
|
||||
b: int = Field(ge=0, le=255, description="The blue channel")
|
||||
a: int = Field(ge=0, le=255, description="The alpha channel")
|
||||
|
||||
class Config:
|
||||
schema_extra = {"required": ["r", "g", "b", "a"]}
|
||||
```
|
||||
|
||||
Now it becomes mandatory for the user to supply all the values required by our
|
||||
input field.
|
||||
|
||||
We will discuss the `Config` class in extra detail later in this guide and how
|
||||
you can use it to make your Invocations more robust.
|
||||
|
||||
### Custom Output Types
|
||||
|
||||
Like with custom inputs, sometimes you might find yourself needing custom
|
||||
outputs that InvokeAI does not provide. We can easily set one up.
|
||||
|
||||
Now that you are familiar with Invocations and Inputs, let us use that knowledge
|
||||
to put together a custom output type for an Invocation that returns _width_,
|
||||
_height_ and _background_color_ that we need to create a blank image.
|
||||
|
||||
- A custom output type is a class that derives from the parent class of
|
||||
`BaseInvocationOutput`.
|
||||
- It is not mandatory but we recommend using names ending with `Output` for
|
||||
output types. So we'll call our class `BlankImageOutput`
|
||||
- It is not mandatory but we highly recommend adding a `docstring` to describe
|
||||
what your output type is for.
|
||||
- Like Invocations, each output type should have a `type` variable that is
|
||||
**unique**
|
||||
|
||||
Now that we know the basic rules for creating a new output type, let us go ahead
|
||||
and make it.
|
||||
|
||||
```python
|
||||
from typing import Literal
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocationOutput
|
||||
|
||||
class BlankImageOutput(BaseInvocationOutput):
|
||||
'''Base output type for creating a blank image'''
|
||||
type: Literal['blank_image_output'] = 'blank_image_output'
|
||||
|
||||
# Inputs
|
||||
width: int = Field(description='Width of blank image')
|
||||
height: int = Field(description='Height of blank image')
|
||||
bg_color: ColorField = Field(description='Background color of blank image')
|
||||
|
||||
class Config:
|
||||
schema_extra = {"required": ["type", "width", "height", "bg_color"]}
|
||||
```
|
||||
|
||||
All set. We now have an output type that requires what we need to create a
|
||||
blank_image. And if you noticed it, we even used the `Config` class to ensure
|
||||
the fields are required.
|
||||
|
||||
### Custom Configuration
|
||||
|
||||
As you might have noticed when making inputs and outputs, we used a class called
|
||||
`Config` from _pydantic_ to further customize them. Because our inputs and
|
||||
outputs essentially inherit from _pydantic_'s `BaseModel` class, all
|
||||
[configuration options](https://docs.pydantic.dev/latest/usage/schema/#schema-customization)
|
||||
that are valid for _pydantic_ classes are also valid for our inputs and outputs.
|
||||
You can do the same for your Invocations too but InvokeAI makes our life a
|
||||
little bit easier on that end.
|
||||
|
||||
InvokeAI provides a custom configuration class called `InvocationConfig`
|
||||
particularly for configuring Invocations. This is exactly the same as the raw
|
||||
`Config` class from _pydantic_ with some extra stuff on top to help faciliate
|
||||
parsing of the scheme in the frontend UI.
|
||||
|
||||
At the current moment, tihs `InvocationConfig` class is further improved with
|
||||
the following features related the `ui`.
|
||||
|
||||
| Config Option | Field Type | Example |
|
||||
| ------------- | ------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||||
| type_hints | `Dict[str, Literal["integer", "float", "boolean", "string", "enum", "image", "latents", "model", "control"]]` | `type_hint: "model"` provides type hints related to the model like displaying a list of available models |
|
||||
| tags | `List[str]` | `tags: ['resize', 'image']` will classify your invocation under the tags of resize and image. |
|
||||
| title | `str` | `title: 'Resize Image` will rename your to this custom title rather than infer from the name of the Invocation class. |
|
||||
|
||||
So let us update your `ResizeInvocation` with some extra configuration and see
|
||||
how that works.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
|
||||
from ..models.image import ImageField, ResourceOrigin, ImageCategory
|
||||
from .image import ImageOutput
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
class Config(InvocationConfig):
|
||||
schema_extra: {
|
||||
ui: {
|
||||
tags: ['resize', 'image'],
|
||||
title: ['My Custom Resize']
|
||||
}
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Load the image using InvokeAI's predefined Image Service.
|
||||
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
|
||||
|
||||
# Resizing the image
|
||||
# Because we used the above service, we already have a PIL image. So we can simply resize.
|
||||
resized_image = image.resize((self.width, self.height))
|
||||
|
||||
# Preparing the image for output using InvokeAI's predefined Image Service.
|
||||
output_image = context.services.images.create(
|
||||
image=resized_image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
# Returning the Image
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=output_image.image_name,
|
||||
image_origin=output_image.image_origin,
|
||||
),
|
||||
width=output_image.width,
|
||||
height=output_image.height,
|
||||
)
|
||||
```
|
||||
|
||||
We now customized our code to let the frontend know that our Invocation falls
|
||||
under `resize` and `image` categories. So when the user searches for these
|
||||
particular words, our Invocation will show up too.
|
||||
|
||||
We also set a custom title for our Invocation. So instead of being called
|
||||
`Resize`, it will be called `My Custom Resize`.
|
||||
|
||||
As simple as that.
|
||||
|
||||
As time goes by, InvokeAI will further improve and add more customizability for
|
||||
Invocation configuration. We will have more documentation regarding this at a
|
||||
later time.
|
||||
|
||||
# **[TODO]**
|
||||
|
||||
### Custom Components For Frontend
|
||||
|
||||
Every backend input type should have a corresponding frontend component so the
|
||||
@ -513,282 +394,4 @@ Let us create a new component for our custom color field we created above. When
|
||||
we use a color field, let us say we want the UI to display a color picker for
|
||||
the user to pick from rather than entering values. That is what we will build
|
||||
now.
|
||||
|
||||
---
|
||||
|
||||
<!-- # OLD -- TO BE DELETED OR MOVED LATER
|
||||
|
||||
---
|
||||
|
||||
## Creating a new invocation
|
||||
|
||||
To create a new invocation, either find the appropriate module file in
|
||||
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
|
||||
that folder. All invocations in that folder will be discovered and made
|
||||
available to the CLI and API automatically. Invocations make use of
|
||||
[typing](https://docs.python.org/3/library/typing.html) and
|
||||
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
|
||||
into the CLI and API.
|
||||
|
||||
An invocation looks like this:
|
||||
|
||||
```py
|
||||
class UpscaleInvocation(BaseInvocation):
|
||||
"""Upscales an image."""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["upscale"] = "upscale"
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
|
||||
level: Literal[2, 4] = Field(default=2, description="The upscale level")
|
||||
# fmt: on
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["upscaling", "image"],
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get_pil_image(
|
||||
self.image.image_origin, self.image.image_name
|
||||
)
|
||||
results = context.services.restoration.upscale_and_reconstruct(
|
||||
image_list=[[image, 0]],
|
||||
upscale=(self.level, self.strength),
|
||||
strength=0.0, # GFPGAN strength
|
||||
save_original=False,
|
||||
image_callback=None,
|
||||
)
|
||||
|
||||
# Results are image and seed, unwrap for now
|
||||
# TODO: can this return multiple results?
|
||||
image_dto = context.services.images.create(
|
||||
image=results[0][0],
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=image_dto.image_name,
|
||||
image_origin=image_dto.image_origin,
|
||||
),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
Each portion is important to implement correctly.
|
||||
|
||||
### Class definition and type
|
||||
|
||||
```py
|
||||
class UpscaleInvocation(BaseInvocation):
|
||||
"""Upscales an image."""
|
||||
type: Literal['upscale'] = 'upscale'
|
||||
```
|
||||
|
||||
All invocations must derive from `BaseInvocation`. They should have a docstring
|
||||
that declares what they do in a single, short line. They should also have a
|
||||
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
|
||||
is what the user will type on the CLI or use in the API to create this
|
||||
invocation. The `command_name` must be unique. The `type` must be assigned to
|
||||
the value of the literal in the type hint.
|
||||
|
||||
### Inputs
|
||||
|
||||
```py
|
||||
# Inputs
|
||||
image: Union[ImageField,None] = Field(description="The input image")
|
||||
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
|
||||
level: Literal[2,4] = Field(default=2, description="The upscale level")
|
||||
```
|
||||
|
||||
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
|
||||
description, and validation information. For example:
|
||||
|
||||
| Part | Value | Description |
|
||||
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Name | `strength` | This field is referred to as `strength` |
|
||||
| Type Hint | `float` | This field must be of type `float` |
|
||||
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
|
||||
|
||||
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
|
||||
field to be parsed with `None` as a value, which enables linking to previous
|
||||
invocations. All fields should either provide a default value or allow `None` as
|
||||
a value, so that they can be overwritten with a linked output from another
|
||||
invocation.
|
||||
|
||||
The special type `ImageField` is also used here. All images are passed as
|
||||
`ImageField`, which protects them from pydantic validation errors (since images
|
||||
only ever come from links).
|
||||
|
||||
Finally, note that for all linking, the `type` of the linked fields must match.
|
||||
If the `name` also matches, then the field can be **automatically linked** to a
|
||||
previous invocation by name and matching.
|
||||
|
||||
### Config
|
||||
|
||||
```py
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["upscaling", "image"],
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
This is an optional configuration for the invocation. It inherits from
|
||||
pydantic's model `Config` class, and it used primarily to customize the
|
||||
autogenerated OpenAPI schema.
|
||||
|
||||
The UI relies on the OpenAPI schema in two ways:
|
||||
|
||||
- An API client & Typescript types are generated from it. This happens at build
|
||||
time.
|
||||
- The node editor parses the schema into a template used by the UI to create the
|
||||
node editor UI. This parsing happens at runtime.
|
||||
|
||||
In this example, a `ui` key has been added to the `schema_extra` dict to provide
|
||||
some tags for the UI, to facilitate filtering nodes.
|
||||
|
||||
See the Schema Generation section below for more information.
|
||||
|
||||
### Invoke Function
|
||||
|
||||
```py
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get_pil_image(
|
||||
self.image.image_origin, self.image.image_name
|
||||
)
|
||||
results = context.services.restoration.upscale_and_reconstruct(
|
||||
image_list=[[image, 0]],
|
||||
upscale=(self.level, self.strength),
|
||||
strength=0.0, # GFPGAN strength
|
||||
save_original=False,
|
||||
image_callback=None,
|
||||
)
|
||||
|
||||
# Results are image and seed, unwrap for now
|
||||
# TODO: can this return multiple results?
|
||||
image_dto = context.services.images.create(
|
||||
image=results[0][0],
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=image_dto.image_name,
|
||||
image_origin=image_dto.image_origin,
|
||||
),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
```
|
||||
|
||||
The `invoke` function is the last portion of an invocation. It is provided an
|
||||
`InvocationContext` which contains services to perform work as well as a
|
||||
`session_id` for use as needed. It should return a class with output values that
|
||||
derives from `BaseInvocationOutput`.
|
||||
|
||||
Before being called, the invocation will have all of its fields set from
|
||||
defaults, inputs, and finally links (overriding in that order).
|
||||
|
||||
Assume that this invocation may be running simultaneously with other
|
||||
invocations, may be running on another machine, or in other interesting
|
||||
scenarios. If you need functionality, please provide it as a service in the
|
||||
`InvocationServices` class, and make sure it can be overridden.
|
||||
|
||||
### Outputs
|
||||
|
||||
```py
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["image_output"] = "image_output"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
schema_extra = {"required": ["type", "image", "width", "height"]}
|
||||
```
|
||||
|
||||
Output classes look like an invocation class without the invoke method. Prefer
|
||||
to use an existing output class if available, and prefer to name inputs the same
|
||||
as outputs when possible, to promote automatic invocation linking.
|
||||
|
||||
## Schema Generation
|
||||
|
||||
Invocation, output and related classes are used to generate an OpenAPI schema.
|
||||
|
||||
### Required Properties
|
||||
|
||||
The schema generation treat all properties with default values as optional. This
|
||||
makes sense internally, but when when using these classes via the generated
|
||||
schema, we end up with e.g. the `ImageOutput` class having its `image` property
|
||||
marked as optional.
|
||||
|
||||
We know that this property will always be present, so the additional logic
|
||||
needed to always check if the property exists adds a lot of extraneous cruft.
|
||||
|
||||
To fix this, we can leverage `pydantic`'s
|
||||
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
|
||||
to mark properties that we know will always be present as required.
|
||||
|
||||
Here's that `ImageOutput` class, without the needed schema customisation:
|
||||
|
||||
```python
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["image_output"] = "image_output"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
```
|
||||
|
||||
The OpenAPI schema that results from this `ImageOutput` will have the `type`,
|
||||
`image`, `width` and `height` properties marked as optional, even though we know
|
||||
they will always have a value.
|
||||
|
||||
```python
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["image_output"] = "image_output"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
|
||||
# Add schema customization
|
||||
class Config:
|
||||
schema_extra = {"required": ["type", "image", "width", "height"]}
|
||||
```
|
||||
|
||||
With the customization in place, the schema will now show these properties as
|
||||
required, obviating the need for extensive null checks in client code.
|
||||
|
||||
See this `pydantic` issue for discussion on this solution:
|
||||
<https://github.com/pydantic/pydantic/discussions/4577> -->
|
||||
|
||||
-->
|
||||
|
@ -46,6 +46,7 @@ if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build"
|
||||
pip install --user build
|
||||
fi
|
||||
|
||||
rm -r ../build
|
||||
python -m build --wheel --outdir dist/ ../.
|
||||
|
||||
# ----------------------
|
||||
|
@ -2,15 +2,18 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from inspect import signature
|
||||
import re
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
AbstractSet,
|
||||
Any,
|
||||
Callable,
|
||||
ClassVar,
|
||||
Literal,
|
||||
Mapping,
|
||||
Optional,
|
||||
Type,
|
||||
@ -20,8 +23,8 @@ from typing import (
|
||||
get_type_hints,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic.fields import Undefined
|
||||
from pydantic import BaseModel, Field, validator
|
||||
from pydantic.fields import Undefined, ModelField
|
||||
from pydantic.typing import NoArgAnyCallable
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -141,9 +144,11 @@ class UIType(str, Enum):
|
||||
# endregion
|
||||
|
||||
# region Misc
|
||||
FilePath = "FilePath"
|
||||
Enum = "enum"
|
||||
Scheduler = "Scheduler"
|
||||
WorkflowField = "WorkflowField"
|
||||
IsIntermediate = "IsIntermediate"
|
||||
MetadataField = "MetadataField"
|
||||
# endregion
|
||||
|
||||
|
||||
@ -365,12 +370,12 @@ def OutputField(
|
||||
class UIConfigBase(BaseModel):
|
||||
"""
|
||||
Provides additional node configuration to the UI.
|
||||
This is used internally by the @tags and @title decorator logic. You probably want to use those
|
||||
decorators, though you may add this class to a node definition to specify the title and tags.
|
||||
This is used internally by the @invocation decorator logic. Do not use this directly.
|
||||
"""
|
||||
|
||||
tags: Optional[list[str]] = Field(default_factory=None, description="The tags to display in the UI")
|
||||
title: Optional[str] = Field(default=None, description="The display name of the node")
|
||||
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
|
||||
title: Optional[str] = Field(default=None, description="The node's display name")
|
||||
category: Optional[str] = Field(default=None, description="The node's category")
|
||||
|
||||
|
||||
class InvocationContext:
|
||||
@ -383,10 +388,11 @@ class InvocationContext:
|
||||
|
||||
|
||||
class BaseInvocationOutput(BaseModel):
|
||||
"""Base class for all invocation outputs"""
|
||||
"""
|
||||
Base class for all invocation outputs.
|
||||
|
||||
# All outputs must include a type name like this:
|
||||
# type: Literal['your_output_name'] # noqa f821
|
||||
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def get_all_subclasses_tuple(cls):
|
||||
@ -422,12 +428,12 @@ class MissingInputException(Exception):
|
||||
|
||||
|
||||
class BaseInvocation(ABC, BaseModel):
|
||||
"""A node to process inputs and produce outputs.
|
||||
May use dependency injection in __init__ to receive providers.
|
||||
"""
|
||||
A node to process inputs and produce outputs.
|
||||
May use dependency injection in __init__ to receive providers.
|
||||
|
||||
# All invocations must include a type name like this:
|
||||
# type: Literal['your_output_name'] # noqa f821
|
||||
All invocations must use the `@invocation` decorator to provide their unique type.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def get_all_subclasses(cls):
|
||||
@ -466,6 +472,8 @@ class BaseInvocation(ABC, BaseModel):
|
||||
schema["title"] = uiconfig.title
|
||||
if uiconfig and hasattr(uiconfig, "tags"):
|
||||
schema["tags"] = uiconfig.tags
|
||||
if uiconfig and hasattr(uiconfig, "category"):
|
||||
schema["category"] = uiconfig.category
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = list()
|
||||
schema["required"].extend(["type", "id"])
|
||||
@ -505,37 +513,110 @@ class BaseInvocation(ABC, BaseModel):
|
||||
raise MissingInputException(self.__fields__["type"].default, field_name)
|
||||
return self.invoke(context)
|
||||
|
||||
id: str = Field(description="The id of this node. Must be unique among all nodes.")
|
||||
is_intermediate: bool = InputField(
|
||||
default=False, description="Whether or not this node is an intermediate node.", input=Input.Direct
|
||||
id: str = Field(
|
||||
description="The id of this instance of an invocation. Must be unique among all instances of invocations."
|
||||
)
|
||||
is_intermediate: bool = InputField(
|
||||
default=False, description="Whether or not this is an intermediate invocation.", ui_type=UIType.IsIntermediate
|
||||
)
|
||||
workflow: Optional[str] = InputField(
|
||||
default=None,
|
||||
description="The workflow to save with the image",
|
||||
ui_type=UIType.WorkflowField,
|
||||
)
|
||||
|
||||
@validator("workflow", pre=True)
|
||||
def validate_workflow_is_json(cls, v):
|
||||
if v is None:
|
||||
return None
|
||||
try:
|
||||
json.loads(v)
|
||||
except json.decoder.JSONDecodeError:
|
||||
raise ValueError("Workflow must be valid JSON")
|
||||
return v
|
||||
|
||||
UIConfig: ClassVar[Type[UIConfigBase]]
|
||||
|
||||
|
||||
T = TypeVar("T", bound=BaseInvocation)
|
||||
GenericBaseInvocation = TypeVar("GenericBaseInvocation", bound=BaseInvocation)
|
||||
|
||||
|
||||
def title(title: str) -> Callable[[Type[T]], Type[T]]:
|
||||
"""Adds a title to the invocation. Use this to override the default title generation, which is based on the class name."""
|
||||
def invocation(
|
||||
invocation_type: str, title: Optional[str] = None, tags: Optional[list[str]] = None, category: Optional[str] = None
|
||||
) -> Callable[[Type[GenericBaseInvocation]], Type[GenericBaseInvocation]]:
|
||||
"""
|
||||
Adds metadata to an invocation.
|
||||
|
||||
def wrapper(cls: Type[T]) -> Type[T]:
|
||||
:param str invocation_type: The type of the invocation. Must be unique among all invocations.
|
||||
:param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None.
|
||||
:param Optional[list[str]] tags: Adds tags to the invocation. Invocations may be searched for by their tags. Defaults to None.
|
||||
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
|
||||
"""
|
||||
|
||||
def wrapper(cls: Type[GenericBaseInvocation]) -> Type[GenericBaseInvocation]:
|
||||
# Validate invocation types on creation of invocation classes
|
||||
# TODO: ensure unique?
|
||||
if re.compile(r"^\S+$").match(invocation_type) is None:
|
||||
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
|
||||
|
||||
# Add OpenAPI schema extras
|
||||
uiconf_name = cls.__qualname__ + ".UIConfig"
|
||||
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
|
||||
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
|
||||
cls.UIConfig.title = title
|
||||
if title is not None:
|
||||
cls.UIConfig.title = title
|
||||
if tags is not None:
|
||||
cls.UIConfig.tags = tags
|
||||
if category is not None:
|
||||
cls.UIConfig.category = category
|
||||
|
||||
# Add the invocation type to the pydantic model of the invocation
|
||||
invocation_type_annotation = Literal[invocation_type] # type: ignore
|
||||
invocation_type_field = ModelField.infer(
|
||||
name="type",
|
||||
value=invocation_type,
|
||||
annotation=invocation_type_annotation,
|
||||
class_validators=None,
|
||||
config=cls.__config__,
|
||||
)
|
||||
cls.__fields__.update({"type": invocation_type_field})
|
||||
cls.__annotations__.update({"type": invocation_type_annotation})
|
||||
|
||||
return cls
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def tags(*tags: str) -> Callable[[Type[T]], Type[T]]:
|
||||
"""Adds tags to the invocation. Use this to improve the streamline finding the invocation in the UI."""
|
||||
GenericBaseInvocationOutput = TypeVar("GenericBaseInvocationOutput", bound=BaseInvocationOutput)
|
||||
|
||||
|
||||
def invocation_output(
|
||||
output_type: str,
|
||||
) -> Callable[[Type[GenericBaseInvocationOutput]], Type[GenericBaseInvocationOutput]]:
|
||||
"""
|
||||
Adds metadata to an invocation output.
|
||||
|
||||
:param str output_type: The type of the invocation output. Must be unique among all invocation outputs.
|
||||
"""
|
||||
|
||||
def wrapper(cls: Type[GenericBaseInvocationOutput]) -> Type[GenericBaseInvocationOutput]:
|
||||
# Validate output types on creation of invocation output classes
|
||||
# TODO: ensure unique?
|
||||
if re.compile(r"^\S+$").match(output_type) is None:
|
||||
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
|
||||
|
||||
# Add the output type to the pydantic model of the invocation output
|
||||
output_type_annotation = Literal[output_type] # type: ignore
|
||||
output_type_field = ModelField.infer(
|
||||
name="type",
|
||||
value=output_type,
|
||||
annotation=output_type_annotation,
|
||||
class_validators=None,
|
||||
config=cls.__config__,
|
||||
)
|
||||
cls.__fields__.update({"type": output_type_field})
|
||||
cls.__annotations__.update({"type": output_type_annotation})
|
||||
|
||||
def wrapper(cls: Type[T]) -> Type[T]:
|
||||
uiconf_name = cls.__qualname__ + ".UIConfig"
|
||||
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
|
||||
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
|
||||
cls.UIConfig.tags = list(tags)
|
||||
return cls
|
||||
|
||||
return wrapper
|
||||
|
@ -1,6 +1,5 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
from pydantic import validator
|
||||
@ -8,17 +7,13 @@ from pydantic import validator
|
||||
from invokeai.app.invocations.primitives import IntegerCollectionOutput
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, tags, title
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
@title("Integer Range")
|
||||
@tags("collection", "integer", "range")
|
||||
@invocation("range", title="Integer Range", tags=["collection", "integer", "range"], category="collections")
|
||||
class RangeInvocation(BaseInvocation):
|
||||
"""Creates a range of numbers from start to stop with step"""
|
||||
|
||||
type: Literal["range"] = "range"
|
||||
|
||||
# Inputs
|
||||
start: int = InputField(default=0, description="The start of the range")
|
||||
stop: int = InputField(default=10, description="The stop of the range")
|
||||
step: int = InputField(default=1, description="The step of the range")
|
||||
@ -33,14 +28,15 @@ class RangeInvocation(BaseInvocation):
|
||||
return IntegerCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
|
||||
|
||||
|
||||
@title("Integer Range of Size")
|
||||
@tags("range", "integer", "size", "collection")
|
||||
@invocation(
|
||||
"range_of_size",
|
||||
title="Integer Range of Size",
|
||||
tags=["collection", "integer", "size", "range"],
|
||||
category="collections",
|
||||
)
|
||||
class RangeOfSizeInvocation(BaseInvocation):
|
||||
"""Creates a range from start to start + size with step"""
|
||||
|
||||
type: Literal["range_of_size"] = "range_of_size"
|
||||
|
||||
# Inputs
|
||||
start: int = InputField(default=0, description="The start of the range")
|
||||
size: int = InputField(default=1, description="The number of values")
|
||||
step: int = InputField(default=1, description="The step of the range")
|
||||
@ -49,14 +45,15 @@ class RangeOfSizeInvocation(BaseInvocation):
|
||||
return IntegerCollectionOutput(collection=list(range(self.start, self.start + self.size, self.step)))
|
||||
|
||||
|
||||
@title("Random Range")
|
||||
@tags("range", "integer", "random", "collection")
|
||||
@invocation(
|
||||
"random_range",
|
||||
title="Random Range",
|
||||
tags=["range", "integer", "random", "collection"],
|
||||
category="collections",
|
||||
)
|
||||
class RandomRangeInvocation(BaseInvocation):
|
||||
"""Creates a collection of random numbers"""
|
||||
|
||||
type: Literal["random_range"] = "random_range"
|
||||
|
||||
# Inputs
|
||||
low: int = InputField(default=0, description="The inclusive low value")
|
||||
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
|
||||
size: int = InputField(default=1, description="The number of values to generate")
|
||||
|
@ -1,6 +1,6 @@
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Literal, Union
|
||||
from typing import List, Union
|
||||
|
||||
import torch
|
||||
from compel import Compel, ReturnedEmbeddingsType
|
||||
@ -26,8 +26,8 @@ from .baseinvocation import (
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIComponent,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .model import ClipField
|
||||
|
||||
@ -44,13 +44,10 @@ class ConditioningFieldData:
|
||||
# PerpNeg = "perp_neg"
|
||||
|
||||
|
||||
@title("Compel Prompt")
|
||||
@tags("prompt", "compel")
|
||||
@invocation("compel", title="Prompt", tags=["prompt", "compel"], category="conditioning")
|
||||
class CompelInvocation(BaseInvocation):
|
||||
"""Parse prompt using compel package to conditioning."""
|
||||
|
||||
type: Literal["compel"] = "compel"
|
||||
|
||||
prompt: str = InputField(
|
||||
default="",
|
||||
description=FieldDescriptions.compel_prompt,
|
||||
@ -265,13 +262,15 @@ class SDXLPromptInvocationBase:
|
||||
return c, c_pooled, ec
|
||||
|
||||
|
||||
@title("SDXL Compel Prompt")
|
||||
@tags("sdxl", "compel", "prompt")
|
||||
@invocation(
|
||||
"sdxl_compel_prompt",
|
||||
title="SDXL Prompt",
|
||||
tags=["sdxl", "compel", "prompt"],
|
||||
category="conditioning",
|
||||
)
|
||||
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
"""Parse prompt using compel package to conditioning."""
|
||||
|
||||
type: Literal["sdxl_compel_prompt"] = "sdxl_compel_prompt"
|
||||
|
||||
prompt: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
|
||||
style: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
|
||||
original_width: int = InputField(default=1024, description="")
|
||||
@ -280,8 +279,8 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
crop_left: int = InputField(default=0, description="")
|
||||
target_width: int = InputField(default=1024, description="")
|
||||
target_height: int = InputField(default=1024, description="")
|
||||
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
|
||||
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
|
||||
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
|
||||
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||
@ -303,6 +302,29 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
|
||||
add_time_ids = torch.tensor([original_size + crop_coords + target_size])
|
||||
|
||||
# [1, 77, 768], [1, 154, 1280]
|
||||
if c1.shape[1] < c2.shape[1]:
|
||||
c1 = torch.cat(
|
||||
[
|
||||
c1,
|
||||
torch.zeros(
|
||||
(c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]), device=c1.device, dtype=c1.dtype
|
||||
),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
elif c1.shape[1] > c2.shape[1]:
|
||||
c2 = torch.cat(
|
||||
[
|
||||
c2,
|
||||
torch.zeros(
|
||||
(c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]), device=c2.device, dtype=c2.dtype
|
||||
),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[
|
||||
SDXLConditioningInfo(
|
||||
@ -324,13 +346,15 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
)
|
||||
|
||||
|
||||
@title("SDXL Refiner Compel Prompt")
|
||||
@tags("sdxl", "compel", "prompt")
|
||||
@invocation(
|
||||
"sdxl_refiner_compel_prompt",
|
||||
title="SDXL Refiner Prompt",
|
||||
tags=["sdxl", "compel", "prompt"],
|
||||
category="conditioning",
|
||||
)
|
||||
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
"""Parse prompt using compel package to conditioning."""
|
||||
|
||||
type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt"
|
||||
|
||||
style: str = InputField(
|
||||
default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea
|
||||
) # TODO: ?
|
||||
@ -372,20 +396,17 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
|
||||
)
|
||||
|
||||
|
||||
@invocation_output("clip_skip_output")
|
||||
class ClipSkipInvocationOutput(BaseInvocationOutput):
|
||||
"""Clip skip node output"""
|
||||
|
||||
type: Literal["clip_skip_output"] = "clip_skip_output"
|
||||
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
|
||||
|
||||
|
||||
@title("CLIP Skip")
|
||||
@tags("clipskip", "clip", "skip")
|
||||
@invocation("clip_skip", title="CLIP Skip", tags=["clipskip", "clip", "skip"], category="conditioning")
|
||||
class ClipSkipInvocation(BaseInvocation):
|
||||
"""Skip layers in clip text_encoder model."""
|
||||
|
||||
type: Literal["clip_skip"] = "clip_skip"
|
||||
|
||||
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
|
||||
skipped_layers: int = InputField(default=0, description=FieldDescriptions.skipped_layers)
|
||||
|
||||
|
@ -40,8 +40,8 @@ from .baseinvocation import (
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
|
||||
@ -87,23 +87,18 @@ class ControlField(BaseModel):
|
||||
return v
|
||||
|
||||
|
||||
@invocation_output("control_output")
|
||||
class ControlOutput(BaseInvocationOutput):
|
||||
"""node output for ControlNet info"""
|
||||
|
||||
type: Literal["control_output"] = "control_output"
|
||||
|
||||
# Outputs
|
||||
control: ControlField = OutputField(description=FieldDescriptions.control)
|
||||
|
||||
|
||||
@title("ControlNet")
|
||||
@tags("controlnet")
|
||||
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet")
|
||||
class ControlNetInvocation(BaseInvocation):
|
||||
"""Collects ControlNet info to pass to other nodes"""
|
||||
|
||||
type: Literal["controlnet"] = "controlnet"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The control image")
|
||||
control_model: ControlNetModelField = InputField(
|
||||
default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
|
||||
@ -134,12 +129,10 @@ class ControlNetInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@invocation("image_processor", title="Base Image Processor", tags=["controlnet"], category="controlnet")
|
||||
class ImageProcessorInvocation(BaseInvocation):
|
||||
"""Base class for invocations that preprocess images for ControlNet"""
|
||||
|
||||
type: Literal["image_processor"] = "image_processor"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to process")
|
||||
|
||||
def run_processor(self, image):
|
||||
@ -151,11 +144,6 @@ class ImageProcessorInvocation(BaseInvocation):
|
||||
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
||||
processed_image = self.run_processor(raw_image)
|
||||
|
||||
# FIXME: what happened to image metadata?
|
||||
# metadata = context.services.metadata.build_metadata(
|
||||
# session_id=context.graph_execution_state_id, node=self
|
||||
# )
|
||||
|
||||
# currently can't see processed image in node UI without a showImage node,
|
||||
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
|
||||
image_dto = context.services.images.create(
|
||||
@ -165,6 +153,7 @@ class ImageProcessorInvocation(BaseInvocation):
|
||||
session_id=context.graph_execution_state_id,
|
||||
node_id=self.id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
"""Builds an ImageOutput and its ImageField"""
|
||||
@ -179,14 +168,15 @@ class ImageProcessorInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Canny Processor")
|
||||
@tags("controlnet", "canny")
|
||||
@invocation(
|
||||
"canny_image_processor",
|
||||
title="Canny Processor",
|
||||
tags=["controlnet", "canny"],
|
||||
category="controlnet",
|
||||
)
|
||||
class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Canny edge detection for ControlNet"""
|
||||
|
||||
type: Literal["canny_image_processor"] = "canny_image_processor"
|
||||
|
||||
# Input
|
||||
low_threshold: int = InputField(
|
||||
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
|
||||
)
|
||||
@ -200,14 +190,15 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("HED (softedge) Processor")
|
||||
@tags("controlnet", "hed", "softedge")
|
||||
@invocation(
|
||||
"hed_image_processor",
|
||||
title="HED (softedge) Processor",
|
||||
tags=["controlnet", "hed", "softedge"],
|
||||
category="controlnet",
|
||||
)
|
||||
class HedImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies HED edge detection to image"""
|
||||
|
||||
type: Literal["hed_image_processor"] = "hed_image_processor"
|
||||
|
||||
# Inputs
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
# safe not supported in controlnet_aux v0.0.3
|
||||
@ -227,14 +218,15 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Lineart Processor")
|
||||
@tags("controlnet", "lineart")
|
||||
@invocation(
|
||||
"lineart_image_processor",
|
||||
title="Lineart Processor",
|
||||
tags=["controlnet", "lineart"],
|
||||
category="controlnet",
|
||||
)
|
||||
class LineartImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies line art processing to image"""
|
||||
|
||||
type: Literal["lineart_image_processor"] = "lineart_image_processor"
|
||||
|
||||
# Inputs
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
|
||||
@ -247,14 +239,15 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Lineart Anime Processor")
|
||||
@tags("controlnet", "lineart", "anime")
|
||||
@invocation(
|
||||
"lineart_anime_image_processor",
|
||||
title="Lineart Anime Processor",
|
||||
tags=["controlnet", "lineart", "anime"],
|
||||
category="controlnet",
|
||||
)
|
||||
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies line art anime processing to image"""
|
||||
|
||||
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
|
||||
|
||||
# Inputs
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
|
||||
@ -268,14 +261,15 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Openpose Processor")
|
||||
@tags("controlnet", "openpose", "pose")
|
||||
@invocation(
|
||||
"openpose_image_processor",
|
||||
title="Openpose Processor",
|
||||
tags=["controlnet", "openpose", "pose"],
|
||||
category="controlnet",
|
||||
)
|
||||
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies Openpose processing to image"""
|
||||
|
||||
type: Literal["openpose_image_processor"] = "openpose_image_processor"
|
||||
|
||||
# Inputs
|
||||
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
@ -291,14 +285,15 @@ class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Midas (Depth) Processor")
|
||||
@tags("controlnet", "midas", "depth")
|
||||
@invocation(
|
||||
"midas_depth_image_processor",
|
||||
title="Midas Depth Processor",
|
||||
tags=["controlnet", "midas"],
|
||||
category="controlnet",
|
||||
)
|
||||
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies Midas depth processing to image"""
|
||||
|
||||
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
|
||||
|
||||
# Inputs
|
||||
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
|
||||
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
|
||||
# depth_and_normal not supported in controlnet_aux v0.0.3
|
||||
@ -316,14 +311,15 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Normal BAE Processor")
|
||||
@tags("controlnet", "normal", "bae")
|
||||
@invocation(
|
||||
"normalbae_image_processor",
|
||||
title="Normal BAE Processor",
|
||||
tags=["controlnet"],
|
||||
category="controlnet",
|
||||
)
|
||||
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies NormalBae processing to image"""
|
||||
|
||||
type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
|
||||
|
||||
# Inputs
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
|
||||
@ -335,14 +331,10 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("MLSD Processor")
|
||||
@tags("controlnet", "mlsd")
|
||||
@invocation("mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet")
|
||||
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies MLSD processing to image"""
|
||||
|
||||
type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
|
||||
|
||||
# Inputs
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
|
||||
@ -360,14 +352,10 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("PIDI Processor")
|
||||
@tags("controlnet", "pidi")
|
||||
@invocation("pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet")
|
||||
class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies PIDI processing to image"""
|
||||
|
||||
type: Literal["pidi_image_processor"] = "pidi_image_processor"
|
||||
|
||||
# Inputs
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
|
||||
@ -385,14 +373,15 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Content Shuffle Processor")
|
||||
@tags("controlnet", "contentshuffle")
|
||||
@invocation(
|
||||
"content_shuffle_image_processor",
|
||||
title="Content Shuffle Processor",
|
||||
tags=["controlnet", "contentshuffle"],
|
||||
category="controlnet",
|
||||
)
|
||||
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies content shuffle processing to image"""
|
||||
|
||||
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
|
||||
|
||||
# Inputs
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
h: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
|
||||
@ -413,27 +402,30 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
||||
|
||||
|
||||
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
|
||||
@title("Zoe (Depth) Processor")
|
||||
@tags("controlnet", "zoe", "depth")
|
||||
@invocation(
|
||||
"zoe_depth_image_processor",
|
||||
title="Zoe (Depth) Processor",
|
||||
tags=["controlnet", "zoe", "depth"],
|
||||
category="controlnet",
|
||||
)
|
||||
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies Zoe depth processing to image"""
|
||||
|
||||
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
|
||||
|
||||
def run_processor(self, image):
|
||||
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = zoe_depth_processor(image)
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Mediapipe Face Processor")
|
||||
@tags("controlnet", "mediapipe", "face")
|
||||
@invocation(
|
||||
"mediapipe_face_processor",
|
||||
title="Mediapipe Face Processor",
|
||||
tags=["controlnet", "mediapipe", "face"],
|
||||
category="controlnet",
|
||||
)
|
||||
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies mediapipe face processing to image"""
|
||||
|
||||
type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor"
|
||||
|
||||
# Inputs
|
||||
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
|
||||
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
|
||||
|
||||
@ -447,14 +439,15 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Leres (Depth) Processor")
|
||||
@tags("controlnet", "leres", "depth")
|
||||
@invocation(
|
||||
"leres_image_processor",
|
||||
title="Leres (Depth) Processor",
|
||||
tags=["controlnet", "leres", "depth"],
|
||||
category="controlnet",
|
||||
)
|
||||
class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies leres processing to image"""
|
||||
|
||||
type: Literal["leres_image_processor"] = "leres_image_processor"
|
||||
|
||||
# Inputs
|
||||
thr_a: float = InputField(default=0, description="Leres parameter `thr_a`")
|
||||
thr_b: float = InputField(default=0, description="Leres parameter `thr_b`")
|
||||
boost: bool = InputField(default=False, description="Whether to use boost mode")
|
||||
@ -474,14 +467,15 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Tile Resample Processor")
|
||||
@tags("controlnet", "tile")
|
||||
@invocation(
|
||||
"tile_image_processor",
|
||||
title="Tile Resample Processor",
|
||||
tags=["controlnet", "tile"],
|
||||
category="controlnet",
|
||||
)
|
||||
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Tile resampler processor"""
|
||||
|
||||
type: Literal["tile_image_processor"] = "tile_image_processor"
|
||||
|
||||
# Inputs
|
||||
# res: int = InputField(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
|
||||
down_sampling_rate: float = InputField(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
|
||||
|
||||
@ -512,13 +506,15 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@title("Segment Anything Processor")
|
||||
@tags("controlnet", "segmentanything")
|
||||
@invocation(
|
||||
"segment_anything_processor",
|
||||
title="Segment Anything Processor",
|
||||
tags=["controlnet", "segmentanything"],
|
||||
category="controlnet",
|
||||
)
|
||||
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies segment anything processing to image"""
|
||||
|
||||
type: Literal["segment_anything_processor"] = "segment_anything_processor"
|
||||
|
||||
def run_processor(self, image):
|
||||
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
||||
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
|
||||
|
@ -1,6 +1,5 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
from typing import Literal
|
||||
|
||||
import cv2 as cv
|
||||
import numpy
|
||||
@ -8,17 +7,18 @@ from PIL import Image, ImageOps
|
||||
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||
|
||||
from invokeai.app.models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, tags, title
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
@title("OpenCV Inpaint")
|
||||
@tags("opencv", "inpaint")
|
||||
@invocation(
|
||||
"cv_inpaint",
|
||||
title="OpenCV Inpaint",
|
||||
tags=["opencv", "inpaint"],
|
||||
category="inpaint",
|
||||
)
|
||||
class CvInpaintInvocation(BaseInvocation):
|
||||
"""Simple inpaint using opencv."""
|
||||
|
||||
type: Literal["cv_inpaint"] = "cv_inpaint"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to inpaint")
|
||||
mask: ImageField = InputField(description="The mask to use when inpainting")
|
||||
|
||||
@ -45,6 +45,7 @@ class CvInpaintInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
|
@ -13,18 +13,13 @@ from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
|
||||
from ..models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, tags, title
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
@title("Show Image")
|
||||
@tags("image")
|
||||
@invocation("show_image", title="Show Image", tags=["image"], category="image")
|
||||
class ShowImageInvocation(BaseInvocation):
|
||||
"""Displays a provided image, and passes it forward in the pipeline."""
|
||||
"""Displays a provided image using the OS image viewer, and passes it forward in the pipeline."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["show_image"] = "show_image"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to show")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
@ -41,15 +36,10 @@ class ShowImageInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Blank Image")
|
||||
@tags("image")
|
||||
@invocation("blank_image", title="Blank Image", tags=["image"], category="image")
|
||||
class BlankImageInvocation(BaseInvocation):
|
||||
"""Creates a blank image and forwards it to the pipeline"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["blank_image"] = "blank_image"
|
||||
|
||||
# Inputs
|
||||
width: int = InputField(default=512, description="The width of the image")
|
||||
height: int = InputField(default=512, description="The height of the image")
|
||||
mode: Literal["RGB", "RGBA"] = InputField(default="RGB", description="The mode of the image")
|
||||
@ -65,6 +55,7 @@ class BlankImageInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -74,15 +65,10 @@ class BlankImageInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Crop Image")
|
||||
@tags("image", "crop")
|
||||
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image")
|
||||
class ImageCropInvocation(BaseInvocation):
|
||||
"""Crops an image to a specified box. The box can be outside of the image."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_crop"] = "img_crop"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to crop")
|
||||
x: int = InputField(default=0, description="The left x coordinate of the crop rectangle")
|
||||
y: int = InputField(default=0, description="The top y coordinate of the crop rectangle")
|
||||
@ -102,6 +88,7 @@ class ImageCropInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -111,15 +98,10 @@ class ImageCropInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Paste Image")
|
||||
@tags("image", "paste")
|
||||
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image")
|
||||
class ImagePasteInvocation(BaseInvocation):
|
||||
"""Pastes an image into another image."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_paste"] = "img_paste"
|
||||
|
||||
# Inputs
|
||||
base_image: ImageField = InputField(description="The base image")
|
||||
image: ImageField = InputField(description="The image to paste")
|
||||
mask: Optional[ImageField] = InputField(
|
||||
@ -154,6 +136,7 @@ class ImagePasteInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -163,15 +146,10 @@ class ImagePasteInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Mask from Alpha")
|
||||
@tags("image", "mask")
|
||||
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image")
|
||||
class MaskFromAlphaInvocation(BaseInvocation):
|
||||
"""Extracts the alpha channel of an image as a mask."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["tomask"] = "tomask"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to create the mask from")
|
||||
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
|
||||
|
||||
@ -189,6 +167,7 @@ class MaskFromAlphaInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -198,15 +177,10 @@ class MaskFromAlphaInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Multiply Images")
|
||||
@tags("image", "multiply")
|
||||
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image")
|
||||
class ImageMultiplyInvocation(BaseInvocation):
|
||||
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_mul"] = "img_mul"
|
||||
|
||||
# Inputs
|
||||
image1: ImageField = InputField(description="The first image to multiply")
|
||||
image2: ImageField = InputField(description="The second image to multiply")
|
||||
|
||||
@ -223,6 +197,7 @@ class ImageMultiplyInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -235,15 +210,10 @@ class ImageMultiplyInvocation(BaseInvocation):
|
||||
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
|
||||
|
||||
|
||||
@title("Extract Image Channel")
|
||||
@tags("image", "channel")
|
||||
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image")
|
||||
class ImageChannelInvocation(BaseInvocation):
|
||||
"""Gets a channel from an image."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_chan"] = "img_chan"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to get the channel from")
|
||||
channel: IMAGE_CHANNELS = InputField(default="A", description="The channel to get")
|
||||
|
||||
@ -259,6 +229,7 @@ class ImageChannelInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -271,15 +242,10 @@ class ImageChannelInvocation(BaseInvocation):
|
||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||
|
||||
|
||||
@title("Convert Image Mode")
|
||||
@tags("image", "convert")
|
||||
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image")
|
||||
class ImageConvertInvocation(BaseInvocation):
|
||||
"""Converts an image to a different mode."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_conv"] = "img_conv"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to convert")
|
||||
mode: IMAGE_MODES = InputField(default="L", description="The mode to convert to")
|
||||
|
||||
@ -295,6 +261,7 @@ class ImageConvertInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -304,15 +271,10 @@ class ImageConvertInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Blur Image")
|
||||
@tags("image", "blur")
|
||||
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image")
|
||||
class ImageBlurInvocation(BaseInvocation):
|
||||
"""Blurs an image"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_blur"] = "img_blur"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to blur")
|
||||
radius: float = InputField(default=8.0, ge=0, description="The blur radius")
|
||||
# Metadata
|
||||
@ -333,6 +295,7 @@ class ImageBlurInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -362,15 +325,10 @@ PIL_RESAMPLING_MAP = {
|
||||
}
|
||||
|
||||
|
||||
@title("Resize Image")
|
||||
@tags("image", "resize")
|
||||
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image")
|
||||
class ImageResizeInvocation(BaseInvocation):
|
||||
"""Resizes an image to specific dimensions"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_resize"] = "img_resize"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to resize")
|
||||
width: int = InputField(default=512, ge=64, multiple_of=8, description="The width to resize to (px)")
|
||||
height: int = InputField(default=512, ge=64, multiple_of=8, description="The height to resize to (px)")
|
||||
@ -397,6 +355,7 @@ class ImageResizeInvocation(BaseInvocation):
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -406,15 +365,10 @@ class ImageResizeInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Scale Image")
|
||||
@tags("image", "scale")
|
||||
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image")
|
||||
class ImageScaleInvocation(BaseInvocation):
|
||||
"""Scales an image by a factor"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_scale"] = "img_scale"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to scale")
|
||||
scale_factor: float = InputField(
|
||||
default=2.0,
|
||||
@ -442,6 +396,7 @@ class ImageScaleInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -451,15 +406,10 @@ class ImageScaleInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Lerp Image")
|
||||
@tags("image", "lerp")
|
||||
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image")
|
||||
class ImageLerpInvocation(BaseInvocation):
|
||||
"""Linear interpolation of all pixels of an image"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_lerp"] = "img_lerp"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to lerp")
|
||||
min: int = InputField(default=0, ge=0, le=255, description="The minimum output value")
|
||||
max: int = InputField(default=255, ge=0, le=255, description="The maximum output value")
|
||||
@ -479,6 +429,7 @@ class ImageLerpInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -488,15 +439,10 @@ class ImageLerpInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Inverse Lerp Image")
|
||||
@tags("image", "ilerp")
|
||||
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image")
|
||||
class ImageInverseLerpInvocation(BaseInvocation):
|
||||
"""Inverse linear interpolation of all pixels of an image"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_ilerp"] = "img_ilerp"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to lerp")
|
||||
min: int = InputField(default=0, ge=0, le=255, description="The minimum input value")
|
||||
max: int = InputField(default=255, ge=0, le=255, description="The maximum input value")
|
||||
@ -516,6 +462,7 @@ class ImageInverseLerpInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -525,15 +472,10 @@ class ImageInverseLerpInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Blur NSFW Image")
|
||||
@tags("image", "nsfw")
|
||||
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image")
|
||||
class ImageNSFWBlurInvocation(BaseInvocation):
|
||||
"""Add blur to NSFW-flagged images"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_nsfw"] = "img_nsfw"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to check")
|
||||
metadata: Optional[CoreMetadata] = InputField(
|
||||
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
|
||||
@ -559,6 +501,7 @@ class ImageNSFWBlurInvocation(BaseInvocation):
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -574,15 +517,10 @@ class ImageNSFWBlurInvocation(BaseInvocation):
|
||||
return caution.resize((caution.width // 2, caution.height // 2))
|
||||
|
||||
|
||||
@title("Add Invisible Watermark")
|
||||
@tags("image", "watermark")
|
||||
@invocation("img_watermark", title="Add Invisible Watermark", tags=["image", "watermark"], category="image")
|
||||
class ImageWatermarkInvocation(BaseInvocation):
|
||||
"""Add an invisible watermark to an image"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["img_watermark"] = "img_watermark"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to check")
|
||||
text: str = InputField(default="InvokeAI", description="Watermark text")
|
||||
metadata: Optional[CoreMetadata] = InputField(
|
||||
@ -600,6 +538,7 @@ class ImageWatermarkInvocation(BaseInvocation):
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -609,14 +548,10 @@ class ImageWatermarkInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Mask Edge")
|
||||
@tags("image", "mask", "inpaint")
|
||||
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image")
|
||||
class MaskEdgeInvocation(BaseInvocation):
|
||||
"""Applies an edge mask to an image"""
|
||||
|
||||
type: Literal["mask_edge"] = "mask_edge"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to apply the mask to")
|
||||
edge_size: int = InputField(description="The size of the edge")
|
||||
edge_blur: int = InputField(description="The amount of blur on the edge")
|
||||
@ -648,6 +583,7 @@ class MaskEdgeInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -657,14 +593,10 @@ class MaskEdgeInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Combine Mask")
|
||||
@tags("image", "mask", "multiply")
|
||||
@invocation("mask_combine", title="Combine Masks", tags=["image", "mask", "multiply"], category="image")
|
||||
class MaskCombineInvocation(BaseInvocation):
|
||||
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
|
||||
|
||||
type: Literal["mask_combine"] = "mask_combine"
|
||||
|
||||
# Inputs
|
||||
mask1: ImageField = InputField(description="The first mask to combine")
|
||||
mask2: ImageField = InputField(description="The second image to combine")
|
||||
|
||||
@ -681,6 +613,7 @@ class MaskCombineInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -690,17 +623,13 @@ class MaskCombineInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Color Correct")
|
||||
@tags("image", "color")
|
||||
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image")
|
||||
class ColorCorrectInvocation(BaseInvocation):
|
||||
"""
|
||||
Shifts the colors of a target image to match the reference image, optionally
|
||||
using a mask to only color-correct certain regions of the target image.
|
||||
"""
|
||||
|
||||
type: Literal["color_correct"] = "color_correct"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to color-correct")
|
||||
reference: ImageField = InputField(description="Reference image for color-correction")
|
||||
mask: Optional[ImageField] = InputField(default=None, description="Mask to use when applying color-correction")
|
||||
@ -789,6 +718,7 @@ class ColorCorrectInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -798,14 +728,10 @@ class ColorCorrectInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Image Hue Adjustment")
|
||||
@tags("image", "hue", "hsl")
|
||||
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image")
|
||||
class ImageHueAdjustmentInvocation(BaseInvocation):
|
||||
"""Adjusts the Hue of an image."""
|
||||
|
||||
type: Literal["img_hue_adjust"] = "img_hue_adjust"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to adjust")
|
||||
hue: int = InputField(default=0, description="The degrees by which to rotate the hue, 0-360")
|
||||
|
||||
@ -831,6 +757,7 @@ class ImageHueAdjustmentInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
session_id=context.graph_execution_state_id,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -842,14 +769,15 @@ class ImageHueAdjustmentInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Image Luminosity Adjustment")
|
||||
@tags("image", "luminosity", "hsl")
|
||||
@invocation(
|
||||
"img_luminosity_adjust",
|
||||
title="Adjust Image Luminosity",
|
||||
tags=["image", "luminosity", "hsl"],
|
||||
category="image",
|
||||
)
|
||||
class ImageLuminosityAdjustmentInvocation(BaseInvocation):
|
||||
"""Adjusts the Luminosity (Value) of an image."""
|
||||
|
||||
type: Literal["img_luminosity_adjust"] = "img_luminosity_adjust"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to adjust")
|
||||
luminosity: float = InputField(
|
||||
default=1.0, ge=0, le=1, description="The factor by which to adjust the luminosity (value)"
|
||||
@ -881,6 +809,7 @@ class ImageLuminosityAdjustmentInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
session_id=context.graph_execution_state_id,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -892,14 +821,15 @@ class ImageLuminosityAdjustmentInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Image Saturation Adjustment")
|
||||
@tags("image", "saturation", "hsl")
|
||||
@invocation(
|
||||
"img_saturation_adjust",
|
||||
title="Adjust Image Saturation",
|
||||
tags=["image", "saturation", "hsl"],
|
||||
category="image",
|
||||
)
|
||||
class ImageSaturationAdjustmentInvocation(BaseInvocation):
|
||||
"""Adjusts the Saturation of an image."""
|
||||
|
||||
type: Literal["img_saturation_adjust"] = "img_saturation_adjust"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to adjust")
|
||||
saturation: float = InputField(default=1.0, ge=0, le=1, description="The factor by which to adjust the saturation")
|
||||
|
||||
@ -929,6 +859,7 @@ class ImageSaturationAdjustmentInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
session_id=context.graph_execution_state_id,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
|
@ -12,7 +12,7 @@ from invokeai.backend.image_util.lama import LaMA
|
||||
from invokeai.backend.image_util.patchmatch import PatchMatch
|
||||
|
||||
from ..models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, tags, title
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
def infill_methods() -> list[str]:
|
||||
@ -116,14 +116,10 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
|
||||
return si
|
||||
|
||||
|
||||
@title("Solid Color Infill")
|
||||
@tags("image", "inpaint")
|
||||
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint")
|
||||
class InfillColorInvocation(BaseInvocation):
|
||||
"""Infills transparent areas of an image with a solid color"""
|
||||
|
||||
type: Literal["infill_rgba"] = "infill_rgba"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to infill")
|
||||
color: ColorField = InputField(
|
||||
default=ColorField(r=127, g=127, b=127, a=255),
|
||||
@ -145,6 +141,7 @@ class InfillColorInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -154,14 +151,10 @@ class InfillColorInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Tile Infill")
|
||||
@tags("image", "inpaint")
|
||||
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint")
|
||||
class InfillTileInvocation(BaseInvocation):
|
||||
"""Infills transparent areas of an image with tiles of the image"""
|
||||
|
||||
type: Literal["infill_tile"] = "infill_tile"
|
||||
|
||||
# Input
|
||||
image: ImageField = InputField(description="The image to infill")
|
||||
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
|
||||
seed: int = InputField(
|
||||
@ -184,6 +177,7 @@ class InfillTileInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -193,14 +187,10 @@ class InfillTileInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("PatchMatch Infill")
|
||||
@tags("image", "inpaint")
|
||||
@invocation("infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint")
|
||||
class InfillPatchMatchInvocation(BaseInvocation):
|
||||
"""Infills transparent areas of an image using the PatchMatch algorithm"""
|
||||
|
||||
type: Literal["infill_patchmatch"] = "infill_patchmatch"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to infill")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
@ -218,6 +208,7 @@ class InfillPatchMatchInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -227,14 +218,10 @@ class InfillPatchMatchInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("LaMa Infill")
|
||||
@tags("image", "inpaint")
|
||||
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint")
|
||||
class LaMaInfillInvocation(BaseInvocation):
|
||||
"""Infills transparent areas of an image using the LaMa model"""
|
||||
|
||||
type: Literal["infill_lama"] = "infill_lama"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to infill")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
|
@ -47,7 +47,18 @@ from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import Post
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from ...backend.util.devices import choose_precision, choose_torch_device
|
||||
from ..models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, UIType, tags, title
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .compel import ConditioningField
|
||||
from .controlnet_image_processors import ControlField
|
||||
from .model import ModelInfo, UNetField, VaeField
|
||||
@ -58,15 +69,27 @@ DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
||||
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
|
||||
|
||||
|
||||
@title("Create Denoise Mask")
|
||||
@tags("mask", "denoise")
|
||||
@invocation_output("scheduler_output")
|
||||
class SchedulerOutput(BaseInvocationOutput):
|
||||
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
|
||||
|
||||
|
||||
@invocation("scheduler", title="Scheduler", tags=["scheduler"], category="latents")
|
||||
class SchedulerInvocation(BaseInvocation):
|
||||
"""Selects a scheduler."""
|
||||
|
||||
scheduler: SAMPLER_NAME_VALUES = InputField(
|
||||
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SchedulerOutput:
|
||||
return SchedulerOutput(scheduler=self.scheduler)
|
||||
|
||||
|
||||
@invocation("create_denoise_mask", title="Create Denoise Mask", tags=["mask", "denoise"], category="latents")
|
||||
class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
|
||||
# Metadata
|
||||
type: Literal["create_denoise_mask"] = "create_denoise_mask"
|
||||
|
||||
# Inputs
|
||||
vae: VaeField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
|
||||
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
|
||||
@ -158,14 +181,15 @@ def get_scheduler(
|
||||
return scheduler
|
||||
|
||||
|
||||
@title("Denoise Latents")
|
||||
@tags("latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l")
|
||||
@invocation(
|
||||
"denoise_latents",
|
||||
title="Denoise Latents",
|
||||
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
|
||||
category="latents",
|
||||
)
|
||||
class DenoiseLatentsInvocation(BaseInvocation):
|
||||
"""Denoises noisy latents to decodable images"""
|
||||
|
||||
type: Literal["denoise_latents"] = "denoise_latents"
|
||||
|
||||
# Inputs
|
||||
positive_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
|
||||
)
|
||||
@ -421,8 +445,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
if seed is None:
|
||||
seed = self.latents.seed
|
||||
else:
|
||||
|
||||
if noise is not None and noise.shape[1:] != latents.shape[1:]:
|
||||
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
|
||||
|
||||
elif noise is not None:
|
||||
latents = torch.zeros_like(noise)
|
||||
else:
|
||||
raise Exception("'latents' or 'noise' must be provided!")
|
||||
|
||||
if seed is None:
|
||||
seed = 0
|
||||
@ -512,14 +542,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
return build_latents_output(latents_name=name, latents=result_latents, seed=seed)
|
||||
|
||||
|
||||
@title("Latents to Image")
|
||||
@tags("latents", "image", "vae", "l2i")
|
||||
@invocation("l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents")
|
||||
class LatentsToImageInvocation(BaseInvocation):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
type: Literal["l2i"] = "l2i"
|
||||
|
||||
# Inputs
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
@ -600,6 +626,7 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -612,14 +639,10 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
|
||||
|
||||
|
||||
@title("Resize Latents")
|
||||
@tags("latents", "resize")
|
||||
@invocation("lresize", title="Resize Latents", tags=["latents", "resize"], category="latents")
|
||||
class ResizeLatentsInvocation(BaseInvocation):
|
||||
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
||||
|
||||
type: Literal["lresize"] = "lresize"
|
||||
|
||||
# Inputs
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
@ -660,14 +683,10 @@ class ResizeLatentsInvocation(BaseInvocation):
|
||||
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
||||
|
||||
|
||||
@title("Scale Latents")
|
||||
@tags("latents", "resize")
|
||||
@invocation("lscale", title="Scale Latents", tags=["latents", "resize"], category="latents")
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
"""Scales latents by a given factor."""
|
||||
|
||||
type: Literal["lscale"] = "lscale"
|
||||
|
||||
# Inputs
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
@ -700,14 +719,10 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
||||
|
||||
|
||||
@title("Image to Latents")
|
||||
@tags("latents", "image", "vae", "i2l")
|
||||
@invocation("i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents")
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
type: Literal["i2l"] = "i2l"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode",
|
||||
)
|
||||
@ -784,14 +799,10 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
return build_latents_output(latents_name=name, latents=latents, seed=None)
|
||||
|
||||
|
||||
@title("Blend Latents")
|
||||
@tags("latents", "blend")
|
||||
@invocation("lblend", title="Blend Latents", tags=["latents", "blend"], category="latents")
|
||||
class BlendLatentsInvocation(BaseInvocation):
|
||||
"""Blend two latents using a given alpha. Latents must have same size."""
|
||||
|
||||
type: Literal["lblend"] = "lblend"
|
||||
|
||||
# Inputs
|
||||
latents_a: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
|
@ -1,22 +1,16 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
|
||||
from invokeai.app.invocations.primitives import IntegerOutput
|
||||
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, tags, title
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
@title("Add Integers")
|
||||
@tags("math")
|
||||
@invocation("add", title="Add Integers", tags=["math", "add"], category="math")
|
||||
class AddInvocation(BaseInvocation):
|
||||
"""Adds two numbers"""
|
||||
|
||||
type: Literal["add"] = "add"
|
||||
|
||||
# Inputs
|
||||
a: int = InputField(default=0, description=FieldDescriptions.num_1)
|
||||
b: int = InputField(default=0, description=FieldDescriptions.num_2)
|
||||
|
||||
@ -24,14 +18,10 @@ class AddInvocation(BaseInvocation):
|
||||
return IntegerOutput(value=self.a + self.b)
|
||||
|
||||
|
||||
@title("Subtract Integers")
|
||||
@tags("math")
|
||||
@invocation("sub", title="Subtract Integers", tags=["math", "subtract"], category="math")
|
||||
class SubtractInvocation(BaseInvocation):
|
||||
"""Subtracts two numbers"""
|
||||
|
||||
type: Literal["sub"] = "sub"
|
||||
|
||||
# Inputs
|
||||
a: int = InputField(default=0, description=FieldDescriptions.num_1)
|
||||
b: int = InputField(default=0, description=FieldDescriptions.num_2)
|
||||
|
||||
@ -39,14 +29,10 @@ class SubtractInvocation(BaseInvocation):
|
||||
return IntegerOutput(value=self.a - self.b)
|
||||
|
||||
|
||||
@title("Multiply Integers")
|
||||
@tags("math")
|
||||
@invocation("mul", title="Multiply Integers", tags=["math", "multiply"], category="math")
|
||||
class MultiplyInvocation(BaseInvocation):
|
||||
"""Multiplies two numbers"""
|
||||
|
||||
type: Literal["mul"] = "mul"
|
||||
|
||||
# Inputs
|
||||
a: int = InputField(default=0, description=FieldDescriptions.num_1)
|
||||
b: int = InputField(default=0, description=FieldDescriptions.num_2)
|
||||
|
||||
@ -54,14 +40,10 @@ class MultiplyInvocation(BaseInvocation):
|
||||
return IntegerOutput(value=self.a * self.b)
|
||||
|
||||
|
||||
@title("Divide Integers")
|
||||
@tags("math")
|
||||
@invocation("div", title="Divide Integers", tags=["math", "divide"], category="math")
|
||||
class DivideInvocation(BaseInvocation):
|
||||
"""Divides two numbers"""
|
||||
|
||||
type: Literal["div"] = "div"
|
||||
|
||||
# Inputs
|
||||
a: int = InputField(default=0, description=FieldDescriptions.num_1)
|
||||
b: int = InputField(default=0, description=FieldDescriptions.num_2)
|
||||
|
||||
@ -69,14 +51,10 @@ class DivideInvocation(BaseInvocation):
|
||||
return IntegerOutput(value=int(self.a / self.b))
|
||||
|
||||
|
||||
@title("Random Integer")
|
||||
@tags("math")
|
||||
@invocation("rand_int", title="Random Integer", tags=["math", "random"], category="math")
|
||||
class RandomIntInvocation(BaseInvocation):
|
||||
"""Outputs a single random integer."""
|
||||
|
||||
type: Literal["rand_int"] = "rand_int"
|
||||
|
||||
# Inputs
|
||||
low: int = InputField(default=0, description="The inclusive low value")
|
||||
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Literal, Optional
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
@ -8,8 +8,8 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
|
||||
@ -72,10 +72,10 @@ class CoreMetadata(BaseModelExcludeNull):
|
||||
)
|
||||
refiner_steps: Optional[int] = Field(default=None, description="The number of steps used for the refiner")
|
||||
refiner_scheduler: Optional[str] = Field(default=None, description="The scheduler used for the refiner")
|
||||
refiner_positive_aesthetic_store: Optional[float] = Field(
|
||||
refiner_positive_aesthetic_score: Optional[float] = Field(
|
||||
default=None, description="The aesthetic score used for the refiner"
|
||||
)
|
||||
refiner_negative_aesthetic_store: Optional[float] = Field(
|
||||
refiner_negative_aesthetic_score: Optional[float] = Field(
|
||||
default=None, description="The aesthetic score used for the refiner"
|
||||
)
|
||||
refiner_start: Optional[float] = Field(default=None, description="The start value used for refiner denoising")
|
||||
@ -91,21 +91,17 @@ class ImageMetadata(BaseModelExcludeNull):
|
||||
graph: Optional[dict] = Field(default=None, description="The graph that created the image")
|
||||
|
||||
|
||||
@invocation_output("metadata_accumulator_output")
|
||||
class MetadataAccumulatorOutput(BaseInvocationOutput):
|
||||
"""The output of the MetadataAccumulator node"""
|
||||
|
||||
type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output"
|
||||
|
||||
metadata: CoreMetadata = OutputField(description="The core metadata for the image")
|
||||
|
||||
|
||||
@title("Metadata Accumulator")
|
||||
@tags("metadata")
|
||||
@invocation("metadata_accumulator", title="Metadata Accumulator", tags=["metadata"], category="metadata")
|
||||
class MetadataAccumulatorInvocation(BaseInvocation):
|
||||
"""Outputs a Core Metadata Object"""
|
||||
|
||||
type: Literal["metadata_accumulator"] = "metadata_accumulator"
|
||||
|
||||
generation_mode: str = InputField(
|
||||
description="The generation mode that output this image",
|
||||
)
|
||||
@ -164,11 +160,11 @@ class MetadataAccumulatorInvocation(BaseInvocation):
|
||||
default=None,
|
||||
description="The scheduler used for the refiner",
|
||||
)
|
||||
refiner_positive_aesthetic_store: Optional[float] = InputField(
|
||||
refiner_positive_aesthetic_score: Optional[float] = InputField(
|
||||
default=None,
|
||||
description="The aesthetic score used for the refiner",
|
||||
)
|
||||
refiner_negative_aesthetic_store: Optional[float] = InputField(
|
||||
refiner_negative_aesthetic_score: Optional[float] = InputField(
|
||||
default=None,
|
||||
description="The aesthetic score used for the refiner",
|
||||
)
|
||||
|
@ -1,5 +1,5 @@
|
||||
import copy
|
||||
from typing import List, Literal, Optional
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@ -13,8 +13,8 @@ from .baseinvocation import (
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
|
||||
@ -49,11 +49,10 @@ class VaeField(BaseModel):
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
|
||||
|
||||
@invocation_output("model_loader_output")
|
||||
class ModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
type: Literal["model_loader_output"] = "model_loader_output"
|
||||
|
||||
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
@ -74,14 +73,10 @@ class LoRAModelField(BaseModel):
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
|
||||
@title("Main Model")
|
||||
@tags("model")
|
||||
@invocation("main_model_loader", title="Main Model", tags=["model"], category="model")
|
||||
class MainModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a main model, outputting its submodels."""
|
||||
|
||||
type: Literal["main_model_loader"] = "main_model_loader"
|
||||
|
||||
# Inputs
|
||||
model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
|
||||
# TODO: precision?
|
||||
|
||||
@ -170,25 +165,18 @@ class MainModelLoaderInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@invocation_output("lora_loader_output")
|
||||
class LoraLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["lora_loader_output"] = "lora_loader_output"
|
||||
|
||||
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
|
||||
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
|
||||
# fmt: on
|
||||
|
||||
|
||||
@title("LoRA")
|
||||
@tags("lora", "model")
|
||||
@invocation("lora_loader", title="LoRA", tags=["model"], category="model")
|
||||
class LoraLoaderInvocation(BaseInvocation):
|
||||
"""Apply selected lora to unet and text_encoder."""
|
||||
|
||||
type: Literal["lora_loader"] = "lora_loader"
|
||||
|
||||
# Inputs
|
||||
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
@ -247,34 +235,28 @@ class LoraLoaderInvocation(BaseInvocation):
|
||||
return output
|
||||
|
||||
|
||||
@invocation_output("sdxl_lora_loader_output")
|
||||
class SDXLLoraLoaderOutput(BaseInvocationOutput):
|
||||
"""SDXL LoRA Loader Output"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["sdxl_lora_loader_output"] = "sdxl_lora_loader_output"
|
||||
|
||||
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
|
||||
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
|
||||
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
|
||||
# fmt: on
|
||||
|
||||
|
||||
@title("SDXL LoRA")
|
||||
@tags("sdxl", "lora", "model")
|
||||
@invocation("sdxl_lora_loader", title="SDXL LoRA", tags=["lora", "model"], category="model")
|
||||
class SDXLLoraLoaderInvocation(BaseInvocation):
|
||||
"""Apply selected lora to unet and text_encoder."""
|
||||
|
||||
type: Literal["sdxl_lora_loader"] = "sdxl_lora_loader"
|
||||
|
||||
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
|
||||
weight: float = Field(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
unet: Optional[UNetField] = Field(
|
||||
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNET"
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
|
||||
)
|
||||
clip: Optional[ClipField] = Field(
|
||||
clip: Optional[ClipField] = InputField(
|
||||
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1"
|
||||
)
|
||||
clip2: Optional[ClipField] = Field(
|
||||
clip2: Optional[ClipField] = InputField(
|
||||
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2"
|
||||
)
|
||||
|
||||
@ -349,23 +331,17 @@ class VAEModelField(BaseModel):
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
|
||||
@invocation_output("vae_loader_output")
|
||||
class VaeLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
"""VAE output"""
|
||||
|
||||
type: Literal["vae_loader_output"] = "vae_loader_output"
|
||||
|
||||
# Outputs
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@title("VAE")
|
||||
@tags("vae", "model")
|
||||
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model")
|
||||
class VaeLoaderInvocation(BaseInvocation):
|
||||
"""Loads a VAE model, outputting a VaeLoaderOutput"""
|
||||
|
||||
type: Literal["vae_loader"] = "vae_loader"
|
||||
|
||||
# Inputs
|
||||
vae_model: VAEModelField = InputField(
|
||||
description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE"
|
||||
)
|
||||
@ -392,24 +368,18 @@ class VaeLoaderInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@invocation_output("seamless_output")
|
||||
class SeamlessModeOutput(BaseInvocationOutput):
|
||||
"""Modified Seamless Model output"""
|
||||
|
||||
type: Literal["seamless_output"] = "seamless_output"
|
||||
|
||||
# Outputs
|
||||
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@title("Seamless")
|
||||
@tags("seamless", "model")
|
||||
@invocation("seamless", title="Seamless", tags=["seamless", "model"], category="model")
|
||||
class SeamlessModeInvocation(BaseInvocation):
|
||||
"""Applies the seamless transformation to the Model UNet and VAE."""
|
||||
|
||||
type: Literal["seamless"] = "seamless"
|
||||
|
||||
# Inputs
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
|
||||
)
|
||||
|
@ -1,6 +1,5 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
||||
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from pydantic import validator
|
||||
@ -16,8 +15,8 @@ from .baseinvocation import (
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
"""
|
||||
@ -62,12 +61,10 @@ Nodes
|
||||
"""
|
||||
|
||||
|
||||
@invocation_output("noise_output")
|
||||
class NoiseOutput(BaseInvocationOutput):
|
||||
"""Invocation noise output"""
|
||||
|
||||
type: Literal["noise_output"] = "noise_output"
|
||||
|
||||
# Inputs
|
||||
noise: LatentsField = OutputField(default=None, description=FieldDescriptions.noise)
|
||||
width: int = OutputField(description=FieldDescriptions.width)
|
||||
height: int = OutputField(description=FieldDescriptions.height)
|
||||
@ -81,14 +78,10 @@ def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
|
||||
)
|
||||
|
||||
|
||||
@title("Noise")
|
||||
@tags("latents", "noise")
|
||||
@invocation("noise", title="Noise", tags=["latents", "noise"], category="latents")
|
||||
class NoiseInvocation(BaseInvocation):
|
||||
"""Generates latent noise."""
|
||||
|
||||
type: Literal["noise"] = "noise"
|
||||
|
||||
# Inputs
|
||||
seed: int = InputField(
|
||||
ge=0,
|
||||
le=SEED_MAX,
|
||||
|
@ -31,8 +31,8 @@ from .baseinvocation import (
|
||||
OutputField,
|
||||
UIComponent,
|
||||
UIType,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .controlnet_image_processors import ControlField
|
||||
from .latent import SAMPLER_NAME_VALUES, LatentsField, LatentsOutput, build_latents_output, get_scheduler
|
||||
@ -56,11 +56,8 @@ ORT_TO_NP_TYPE = {
|
||||
PRECISION_VALUES = Literal[tuple(list(ORT_TO_NP_TYPE.keys()))]
|
||||
|
||||
|
||||
@title("ONNX Prompt (Raw)")
|
||||
@tags("onnx", "prompt")
|
||||
@invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning")
|
||||
class ONNXPromptInvocation(BaseInvocation):
|
||||
type: Literal["prompt_onnx"] = "prompt_onnx"
|
||||
|
||||
prompt: str = InputField(default="", description=FieldDescriptions.raw_prompt, ui_component=UIComponent.Textarea)
|
||||
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
|
||||
|
||||
@ -141,14 +138,15 @@ class ONNXPromptInvocation(BaseInvocation):
|
||||
|
||||
|
||||
# Text to image
|
||||
@title("ONNX Text to Latents")
|
||||
@tags("latents", "inference", "txt2img", "onnx")
|
||||
@invocation(
|
||||
"t2l_onnx",
|
||||
title="ONNX Text to Latents",
|
||||
tags=["latents", "inference", "txt2img", "onnx"],
|
||||
category="latents",
|
||||
)
|
||||
class ONNXTextToLatentsInvocation(BaseInvocation):
|
||||
"""Generates latents from conditionings."""
|
||||
|
||||
type: Literal["t2l_onnx"] = "t2l_onnx"
|
||||
|
||||
# Inputs
|
||||
positive_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond,
|
||||
input=Input.Connection,
|
||||
@ -316,14 +314,15 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
|
||||
|
||||
|
||||
# Latent to image
|
||||
@title("ONNX Latents to Image")
|
||||
@tags("latents", "image", "vae", "onnx")
|
||||
@invocation(
|
||||
"l2i_onnx",
|
||||
title="ONNX Latents to Image",
|
||||
tags=["latents", "image", "vae", "onnx"],
|
||||
category="image",
|
||||
)
|
||||
class ONNXLatentsToImageInvocation(BaseInvocation):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
type: Literal["l2i_onnx"] = "l2i_onnx"
|
||||
|
||||
# Inputs
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.denoised_latents,
|
||||
input=Input.Connection,
|
||||
@ -376,6 +375,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -385,17 +385,14 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@invocation_output("model_loader_output_onnx")
|
||||
class ONNXModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx"
|
||||
|
||||
unet: UNetField = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
|
||||
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
|
||||
vae_decoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Decoder")
|
||||
vae_encoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Encoder")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class OnnxModelField(BaseModel):
|
||||
@ -406,14 +403,10 @@ class OnnxModelField(BaseModel):
|
||||
model_type: ModelType = Field(description="Model Type")
|
||||
|
||||
|
||||
@title("ONNX Main Model")
|
||||
@tags("onnx", "model")
|
||||
@invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model")
|
||||
class OnnxModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a main model, outputting its submodels."""
|
||||
|
||||
type: Literal["onnx_model_loader"] = "onnx_model_loader"
|
||||
|
||||
# Inputs
|
||||
model: OnnxModelField = InputField(
|
||||
description=FieldDescriptions.onnx_main_model, input=Input.Direct, ui_type=UIType.ONNXModel
|
||||
)
|
||||
|
@ -42,17 +42,13 @@ from matplotlib.ticker import MaxNLocator
|
||||
|
||||
from invokeai.app.invocations.primitives import FloatCollectionOutput
|
||||
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, tags, title
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
@title("Float Range")
|
||||
@tags("math", "range")
|
||||
@invocation("float_range", title="Float Range", tags=["math", "range"], category="math")
|
||||
class FloatLinearRangeInvocation(BaseInvocation):
|
||||
"""Creates a range"""
|
||||
|
||||
type: Literal["float_range"] = "float_range"
|
||||
|
||||
# Inputs
|
||||
start: float = InputField(default=5, description="The first value of the range")
|
||||
stop: float = InputField(default=10, description="The last value of the range")
|
||||
steps: int = InputField(default=30, description="number of values to interpolate over (including start and stop)")
|
||||
@ -100,14 +96,10 @@ EASING_FUNCTION_KEYS = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
|
||||
|
||||
|
||||
# actually I think for now could just use CollectionOutput (which is list[Any]
|
||||
@title("Step Param Easing")
|
||||
@tags("step", "easing")
|
||||
@invocation("step_param_easing", title="Step Param Easing", tags=["step", "easing"], category="step")
|
||||
class StepParamEasingInvocation(BaseInvocation):
|
||||
"""Experimental per-step parameter easing for denoising steps"""
|
||||
|
||||
type: Literal["step_param_easing"] = "step_param_easing"
|
||||
|
||||
# Inputs
|
||||
easing: EASING_FUNCTION_KEYS = InputField(default="Linear", description="The easing function to use")
|
||||
num_steps: int = InputField(default=20, description="number of denoising steps")
|
||||
start_value: float = InputField(default=0.0, description="easing starting value")
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
from typing import Literal, Optional, Tuple
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel, Field
|
||||
@ -15,8 +15,8 @@ from .baseinvocation import (
|
||||
OutputField,
|
||||
UIComponent,
|
||||
UIType,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
"""
|
||||
@ -29,44 +29,39 @@ Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
|
||||
# region Boolean
|
||||
|
||||
|
||||
@invocation_output("boolean_output")
|
||||
class BooleanOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single boolean"""
|
||||
|
||||
type: Literal["boolean_output"] = "boolean_output"
|
||||
value: bool = OutputField(description="The output boolean")
|
||||
|
||||
|
||||
@invocation_output("boolean_collection_output")
|
||||
class BooleanCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of booleans"""
|
||||
|
||||
type: Literal["boolean_collection_output"] = "boolean_collection_output"
|
||||
|
||||
# Outputs
|
||||
collection: list[bool] = OutputField(description="The output boolean collection", ui_type=UIType.BooleanCollection)
|
||||
|
||||
|
||||
@title("Boolean Primitive")
|
||||
@tags("primitives", "boolean")
|
||||
@invocation("boolean", title="Boolean Primitive", tags=["primitives", "boolean"], category="primitives")
|
||||
class BooleanInvocation(BaseInvocation):
|
||||
"""A boolean primitive value"""
|
||||
|
||||
type: Literal["boolean"] = "boolean"
|
||||
|
||||
# Inputs
|
||||
value: bool = InputField(default=False, description="The boolean value")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> BooleanOutput:
|
||||
return BooleanOutput(value=self.value)
|
||||
|
||||
|
||||
@title("Boolean Primitive Collection")
|
||||
@tags("primitives", "boolean", "collection")
|
||||
@invocation(
|
||||
"boolean_collection",
|
||||
title="Boolean Collection Primitive",
|
||||
tags=["primitives", "boolean", "collection"],
|
||||
category="primitives",
|
||||
)
|
||||
class BooleanCollectionInvocation(BaseInvocation):
|
||||
"""A collection of boolean primitive values"""
|
||||
|
||||
type: Literal["boolean_collection"] = "boolean_collection"
|
||||
|
||||
# Inputs
|
||||
collection: list[bool] = InputField(
|
||||
default_factory=list, description="The collection of boolean values", ui_type=UIType.BooleanCollection
|
||||
)
|
||||
@ -80,46 +75,41 @@ class BooleanCollectionInvocation(BaseInvocation):
|
||||
# region Integer
|
||||
|
||||
|
||||
@invocation_output("integer_output")
|
||||
class IntegerOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single integer"""
|
||||
|
||||
type: Literal["integer_output"] = "integer_output"
|
||||
value: int = OutputField(description="The output integer")
|
||||
|
||||
|
||||
@invocation_output("integer_collection_output")
|
||||
class IntegerCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of integers"""
|
||||
|
||||
type: Literal["integer_collection_output"] = "integer_collection_output"
|
||||
|
||||
# Outputs
|
||||
collection: list[int] = OutputField(description="The int collection", ui_type=UIType.IntegerCollection)
|
||||
|
||||
|
||||
@title("Integer Primitive")
|
||||
@tags("primitives", "integer")
|
||||
@invocation("integer", title="Integer Primitive", tags=["primitives", "integer"], category="primitives")
|
||||
class IntegerInvocation(BaseInvocation):
|
||||
"""An integer primitive value"""
|
||||
|
||||
type: Literal["integer"] = "integer"
|
||||
|
||||
# Inputs
|
||||
value: int = InputField(default=0, description="The integer value")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerOutput:
|
||||
return IntegerOutput(value=self.value)
|
||||
|
||||
|
||||
@title("Integer Primitive Collection")
|
||||
@tags("primitives", "integer", "collection")
|
||||
@invocation(
|
||||
"integer_collection",
|
||||
title="Integer Collection Primitive",
|
||||
tags=["primitives", "integer", "collection"],
|
||||
category="primitives",
|
||||
)
|
||||
class IntegerCollectionInvocation(BaseInvocation):
|
||||
"""A collection of integer primitive values"""
|
||||
|
||||
type: Literal["integer_collection"] = "integer_collection"
|
||||
|
||||
# Inputs
|
||||
collection: list[int] = InputField(
|
||||
default=0, description="The collection of integer values", ui_type=UIType.IntegerCollection
|
||||
default_factory=list, description="The collection of integer values", ui_type=UIType.IntegerCollection
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
||||
@ -131,44 +121,39 @@ class IntegerCollectionInvocation(BaseInvocation):
|
||||
# region Float
|
||||
|
||||
|
||||
@invocation_output("float_output")
|
||||
class FloatOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single float"""
|
||||
|
||||
type: Literal["float_output"] = "float_output"
|
||||
value: float = OutputField(description="The output float")
|
||||
|
||||
|
||||
@invocation_output("float_collection_output")
|
||||
class FloatCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of floats"""
|
||||
|
||||
type: Literal["float_collection_output"] = "float_collection_output"
|
||||
|
||||
# Outputs
|
||||
collection: list[float] = OutputField(description="The float collection", ui_type=UIType.FloatCollection)
|
||||
|
||||
|
||||
@title("Float Primitive")
|
||||
@tags("primitives", "float")
|
||||
@invocation("float", title="Float Primitive", tags=["primitives", "float"], category="primitives")
|
||||
class FloatInvocation(BaseInvocation):
|
||||
"""A float primitive value"""
|
||||
|
||||
type: Literal["float"] = "float"
|
||||
|
||||
# Inputs
|
||||
value: float = InputField(default=0.0, description="The float value")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FloatOutput:
|
||||
return FloatOutput(value=self.value)
|
||||
|
||||
|
||||
@title("Float Primitive Collection")
|
||||
@tags("primitives", "float", "collection")
|
||||
@invocation(
|
||||
"float_collection",
|
||||
title="Float Collection Primitive",
|
||||
tags=["primitives", "float", "collection"],
|
||||
category="primitives",
|
||||
)
|
||||
class FloatCollectionInvocation(BaseInvocation):
|
||||
"""A collection of float primitive values"""
|
||||
|
||||
type: Literal["float_collection"] = "float_collection"
|
||||
|
||||
# Inputs
|
||||
collection: list[float] = InputField(
|
||||
default_factory=list, description="The collection of float values", ui_type=UIType.FloatCollection
|
||||
)
|
||||
@ -182,44 +167,39 @@ class FloatCollectionInvocation(BaseInvocation):
|
||||
# region String
|
||||
|
||||
|
||||
@invocation_output("string_output")
|
||||
class StringOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single string"""
|
||||
|
||||
type: Literal["string_output"] = "string_output"
|
||||
value: str = OutputField(description="The output string")
|
||||
|
||||
|
||||
@invocation_output("string_collection_output")
|
||||
class StringCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of strings"""
|
||||
|
||||
type: Literal["string_collection_output"] = "string_collection_output"
|
||||
|
||||
# Outputs
|
||||
collection: list[str] = OutputField(description="The output strings", ui_type=UIType.StringCollection)
|
||||
|
||||
|
||||
@title("String Primitive")
|
||||
@tags("primitives", "string")
|
||||
@invocation("string", title="String Primitive", tags=["primitives", "string"], category="primitives")
|
||||
class StringInvocation(BaseInvocation):
|
||||
"""A string primitive value"""
|
||||
|
||||
type: Literal["string"] = "string"
|
||||
|
||||
# Inputs
|
||||
value: str = InputField(default="", description="The string value", ui_component=UIComponent.Textarea)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> StringOutput:
|
||||
return StringOutput(value=self.value)
|
||||
|
||||
|
||||
@title("String Primitive Collection")
|
||||
@tags("primitives", "string", "collection")
|
||||
@invocation(
|
||||
"string_collection",
|
||||
title="String Collection Primitive",
|
||||
tags=["primitives", "string", "collection"],
|
||||
category="primitives",
|
||||
)
|
||||
class StringCollectionInvocation(BaseInvocation):
|
||||
"""A collection of string primitive values"""
|
||||
|
||||
type: Literal["string_collection"] = "string_collection"
|
||||
|
||||
# Inputs
|
||||
collection: list[str] = InputField(
|
||||
default_factory=list, description="The collection of string values", ui_type=UIType.StringCollection
|
||||
)
|
||||
@ -239,33 +219,26 @@ class ImageField(BaseModel):
|
||||
image_name: str = Field(description="The name of the image")
|
||||
|
||||
|
||||
@invocation_output("image_output")
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single image"""
|
||||
|
||||
type: Literal["image_output"] = "image_output"
|
||||
image: ImageField = OutputField(description="The output image")
|
||||
width: int = OutputField(description="The width of the image in pixels")
|
||||
height: int = OutputField(description="The height of the image in pixels")
|
||||
|
||||
|
||||
@invocation_output("image_collection_output")
|
||||
class ImageCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of images"""
|
||||
|
||||
type: Literal["image_collection_output"] = "image_collection_output"
|
||||
|
||||
# Outputs
|
||||
collection: list[ImageField] = OutputField(description="The output images", ui_type=UIType.ImageCollection)
|
||||
|
||||
|
||||
@title("Image Primitive")
|
||||
@tags("primitives", "image")
|
||||
@invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives")
|
||||
class ImageInvocation(BaseInvocation):
|
||||
"""An image primitive value"""
|
||||
|
||||
# Metadata
|
||||
type: Literal["image"] = "image"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The image to load")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
@ -278,16 +251,17 @@ class ImageInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("Image Primitive Collection")
|
||||
@tags("primitives", "image", "collection")
|
||||
@invocation(
|
||||
"image_collection",
|
||||
title="Image Collection Primitive",
|
||||
tags=["primitives", "image", "collection"],
|
||||
category="primitives",
|
||||
)
|
||||
class ImageCollectionInvocation(BaseInvocation):
|
||||
"""A collection of image primitive values"""
|
||||
|
||||
type: Literal["image_collection"] = "image_collection"
|
||||
|
||||
# Inputs
|
||||
collection: list[ImageField] = InputField(
|
||||
default=0, description="The collection of image values", ui_type=UIType.ImageCollection
|
||||
default_factory=list, description="The collection of image values", ui_type=UIType.ImageCollection
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageCollectionOutput:
|
||||
@ -306,10 +280,10 @@ class DenoiseMaskField(BaseModel):
|
||||
masked_latents_name: Optional[str] = Field(description="The name of the masked image latents")
|
||||
|
||||
|
||||
@invocation_output("denoise_mask_output")
|
||||
class DenoiseMaskOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single image"""
|
||||
|
||||
type: Literal["denoise_mask_output"] = "denoise_mask_output"
|
||||
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
|
||||
|
||||
|
||||
@ -325,11 +299,10 @@ class LatentsField(BaseModel):
|
||||
seed: Optional[int] = Field(default=None, description="Seed used to generate this latents")
|
||||
|
||||
|
||||
@invocation_output("latents_output")
|
||||
class LatentsOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single latents tensor"""
|
||||
|
||||
type: Literal["latents_output"] = "latents_output"
|
||||
|
||||
latents: LatentsField = OutputField(
|
||||
description=FieldDescriptions.latents,
|
||||
)
|
||||
@ -337,25 +310,20 @@ class LatentsOutput(BaseInvocationOutput):
|
||||
height: int = OutputField(description=FieldDescriptions.height)
|
||||
|
||||
|
||||
@invocation_output("latents_collection_output")
|
||||
class LatentsCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of latents tensors"""
|
||||
|
||||
type: Literal["latents_collection_output"] = "latents_collection_output"
|
||||
|
||||
collection: list[LatentsField] = OutputField(
|
||||
description=FieldDescriptions.latents,
|
||||
ui_type=UIType.LatentsCollection,
|
||||
)
|
||||
|
||||
|
||||
@title("Latents Primitive")
|
||||
@tags("primitives", "latents")
|
||||
@invocation("latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives")
|
||||
class LatentsInvocation(BaseInvocation):
|
||||
"""A latents tensor primitive value"""
|
||||
|
||||
type: Literal["latents"] = "latents"
|
||||
|
||||
# Inputs
|
||||
latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
@ -364,14 +332,15 @@ class LatentsInvocation(BaseInvocation):
|
||||
return build_latents_output(self.latents.latents_name, latents)
|
||||
|
||||
|
||||
@title("Latents Primitive Collection")
|
||||
@tags("primitives", "latents", "collection")
|
||||
@invocation(
|
||||
"latents_collection",
|
||||
title="Latents Collection Primitive",
|
||||
tags=["primitives", "latents", "collection"],
|
||||
category="primitives",
|
||||
)
|
||||
class LatentsCollectionInvocation(BaseInvocation):
|
||||
"""A collection of latents tensor primitive values"""
|
||||
|
||||
type: Literal["latents_collection"] = "latents_collection"
|
||||
|
||||
# Inputs
|
||||
collection: list[LatentsField] = InputField(
|
||||
description="The collection of latents tensors", ui_type=UIType.LatentsCollection
|
||||
)
|
||||
@ -405,30 +374,24 @@ class ColorField(BaseModel):
|
||||
return (self.r, self.g, self.b, self.a)
|
||||
|
||||
|
||||
@invocation_output("color_output")
|
||||
class ColorOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single color"""
|
||||
|
||||
type: Literal["color_output"] = "color_output"
|
||||
color: ColorField = OutputField(description="The output color")
|
||||
|
||||
|
||||
@invocation_output("color_collection_output")
|
||||
class ColorCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of colors"""
|
||||
|
||||
type: Literal["color_collection_output"] = "color_collection_output"
|
||||
|
||||
# Outputs
|
||||
collection: list[ColorField] = OutputField(description="The output colors", ui_type=UIType.ColorCollection)
|
||||
|
||||
|
||||
@title("Color Primitive")
|
||||
@tags("primitives", "color")
|
||||
@invocation("color", title="Color Primitive", tags=["primitives", "color"], category="primitives")
|
||||
class ColorInvocation(BaseInvocation):
|
||||
"""A color primitive value"""
|
||||
|
||||
type: Literal["color"] = "color"
|
||||
|
||||
# Inputs
|
||||
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color value")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ColorOutput:
|
||||
@ -446,49 +409,51 @@ class ConditioningField(BaseModel):
|
||||
conditioning_name: str = Field(description="The name of conditioning tensor")
|
||||
|
||||
|
||||
@invocation_output("conditioning_output")
|
||||
class ConditioningOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single conditioning tensor"""
|
||||
|
||||
type: Literal["conditioning_output"] = "conditioning_output"
|
||||
|
||||
conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond)
|
||||
|
||||
|
||||
@invocation_output("conditioning_collection_output")
|
||||
class ConditioningCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of conditioning tensors"""
|
||||
|
||||
type: Literal["conditioning_collection_output"] = "conditioning_collection_output"
|
||||
|
||||
# Outputs
|
||||
collection: list[ConditioningField] = OutputField(
|
||||
description="The output conditioning tensors",
|
||||
ui_type=UIType.ConditioningCollection,
|
||||
)
|
||||
|
||||
|
||||
@title("Conditioning Primitive")
|
||||
@tags("primitives", "conditioning")
|
||||
@invocation(
|
||||
"conditioning",
|
||||
title="Conditioning Primitive",
|
||||
tags=["primitives", "conditioning"],
|
||||
category="primitives",
|
||||
)
|
||||
class ConditioningInvocation(BaseInvocation):
|
||||
"""A conditioning tensor primitive value"""
|
||||
|
||||
type: Literal["conditioning"] = "conditioning"
|
||||
|
||||
conditioning: ConditioningField = InputField(description=FieldDescriptions.cond, input=Input.Connection)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||
return ConditioningOutput(conditioning=self.conditioning)
|
||||
|
||||
|
||||
@title("Conditioning Primitive Collection")
|
||||
@tags("primitives", "conditioning", "collection")
|
||||
@invocation(
|
||||
"conditioning_collection",
|
||||
title="Conditioning Collection Primitive",
|
||||
tags=["primitives", "conditioning", "collection"],
|
||||
category="primitives",
|
||||
)
|
||||
class ConditioningCollectionInvocation(BaseInvocation):
|
||||
"""A collection of conditioning tensor primitive values"""
|
||||
|
||||
type: Literal["conditioning_collection"] = "conditioning_collection"
|
||||
|
||||
# Inputs
|
||||
collection: list[ConditioningField] = InputField(
|
||||
default=0, description="The collection of conditioning tensors", ui_type=UIType.ConditioningCollection
|
||||
default_factory=list,
|
||||
description="The collection of conditioning tensors",
|
||||
ui_type=UIType.ConditioningCollection,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ConditioningCollectionOutput:
|
||||
|
@ -1,5 +1,5 @@
|
||||
from os.path import exists
|
||||
from typing import Literal, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
|
||||
@ -7,17 +7,13 @@ from pydantic import validator
|
||||
|
||||
from invokeai.app.invocations.primitives import StringCollectionOutput
|
||||
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIComponent, UIType, tags, title
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIComponent, invocation
|
||||
|
||||
|
||||
@title("Dynamic Prompt")
|
||||
@tags("prompt", "collection")
|
||||
@invocation("dynamic_prompt", title="Dynamic Prompt", tags=["prompt", "collection"], category="prompt")
|
||||
class DynamicPromptInvocation(BaseInvocation):
|
||||
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
|
||||
|
||||
type: Literal["dynamic_prompt"] = "dynamic_prompt"
|
||||
|
||||
# Inputs
|
||||
prompt: str = InputField(description="The prompt to parse with dynamicprompts", ui_component=UIComponent.Textarea)
|
||||
max_prompts: int = InputField(default=1, description="The number of prompts to generate")
|
||||
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
|
||||
@ -33,15 +29,11 @@ class DynamicPromptInvocation(BaseInvocation):
|
||||
return StringCollectionOutput(collection=prompts)
|
||||
|
||||
|
||||
@title("Prompts from File")
|
||||
@tags("prompt", "file")
|
||||
@invocation("prompt_from_file", title="Prompts from File", tags=["prompt", "file"], category="prompt")
|
||||
class PromptsFromFileInvocation(BaseInvocation):
|
||||
"""Loads prompts from a text file"""
|
||||
|
||||
type: Literal["prompt_from_file"] = "prompt_from_file"
|
||||
|
||||
# Inputs
|
||||
file_path: str = InputField(description="Path to prompt text file", ui_type=UIType.FilePath)
|
||||
file_path: str = InputField(description="Path to prompt text file")
|
||||
pre_prompt: Optional[str] = InputField(
|
||||
default=None, description="String to prepend to each prompt", ui_component=UIComponent.Textarea
|
||||
)
|
||||
|
@ -1,5 +1,3 @@
|
||||
from typing import Literal
|
||||
|
||||
from ...backend.model_management import ModelType, SubModelType
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -10,41 +8,35 @@ from .baseinvocation import (
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
tags,
|
||||
title,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .model import ClipField, MainModelField, ModelInfo, UNetField, VaeField
|
||||
|
||||
|
||||
@invocation_output("sdxl_model_loader_output")
|
||||
class SDXLModelLoaderOutput(BaseInvocationOutput):
|
||||
"""SDXL base model loader output"""
|
||||
|
||||
type: Literal["sdxl_model_loader_output"] = "sdxl_model_loader_output"
|
||||
|
||||
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
|
||||
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@invocation_output("sdxl_refiner_model_loader_output")
|
||||
class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
|
||||
"""SDXL refiner model loader output"""
|
||||
|
||||
type: Literal["sdxl_refiner_model_loader_output"] = "sdxl_refiner_model_loader_output"
|
||||
|
||||
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@title("SDXL Main Model")
|
||||
@tags("model", "sdxl")
|
||||
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model")
|
||||
class SDXLModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads an sdxl base model, outputting its submodels."""
|
||||
|
||||
type: Literal["sdxl_model_loader"] = "sdxl_model_loader"
|
||||
|
||||
# Inputs
|
||||
model: MainModelField = InputField(
|
||||
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
|
||||
)
|
||||
@ -122,14 +114,15 @@ class SDXLModelLoaderInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
|
||||
@title("SDXL Refiner Model")
|
||||
@tags("model", "sdxl", "refiner")
|
||||
@invocation(
|
||||
"sdxl_refiner_model_loader",
|
||||
title="SDXL Refiner Model",
|
||||
tags=["model", "sdxl", "refiner"],
|
||||
category="model",
|
||||
)
|
||||
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads an sdxl refiner model, outputting its submodels."""
|
||||
|
||||
type: Literal["sdxl_refiner_model_loader"] = "sdxl_refiner_model_loader"
|
||||
|
||||
# Inputs
|
||||
model: MainModelField = InputField(
|
||||
description=FieldDescriptions.sdxl_refiner_model,
|
||||
input=Input.Direct,
|
||||
|
@ -11,7 +11,7 @@ from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||
|
||||
from invokeai.app.models.image import ImageCategory, ResourceOrigin
|
||||
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, title, tags
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
||||
|
||||
# TODO: Populate this from disk?
|
||||
# TODO: Use model manager to load?
|
||||
@ -23,14 +23,10 @@ ESRGAN_MODELS = Literal[
|
||||
]
|
||||
|
||||
|
||||
@title("Upscale (RealESRGAN)")
|
||||
@tags("esrgan", "upscale")
|
||||
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan")
|
||||
class ESRGANInvocation(BaseInvocation):
|
||||
"""Upscales an image using RealESRGAN."""
|
||||
|
||||
type: Literal["esrgan"] = "esrgan"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The input image")
|
||||
model_name: ESRGAN_MODELS = InputField(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
|
||||
|
||||
@ -110,6 +106,7 @@ class ESRGANInvocation(BaseInvocation):
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
|
@ -6,3 +6,4 @@ from .invokeai_config import ( # noqa F401
|
||||
InvokeAIAppConfig,
|
||||
get_invokeai_config,
|
||||
)
|
||||
from .base import PagingArgumentParser # noqa F401
|
||||
|
@ -3,7 +3,7 @@
|
||||
import copy
|
||||
import itertools
|
||||
import uuid
|
||||
from typing import Annotated, Any, Literal, Optional, Union, get_args, get_origin, get_type_hints
|
||||
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
|
||||
|
||||
import networkx as nx
|
||||
from pydantic import BaseModel, root_validator, validator
|
||||
@ -14,11 +14,13 @@ from ..invocations import * # noqa: F401 F403
|
||||
from ..invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
Input,
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
# in 3.10 this would be "from types import NoneType"
|
||||
@ -148,24 +150,16 @@ class NodeAlreadyExecutedError(Exception):
|
||||
|
||||
|
||||
# TODO: Create and use an Empty output?
|
||||
@invocation_output("graph_output")
|
||||
class GraphInvocationOutput(BaseInvocationOutput):
|
||||
type: Literal["graph_output"] = "graph_output"
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"required": [
|
||||
"type",
|
||||
"image",
|
||||
]
|
||||
}
|
||||
pass
|
||||
|
||||
|
||||
# TODO: Fill this out and move to invocations
|
||||
@invocation("graph")
|
||||
class GraphInvocation(BaseInvocation):
|
||||
"""Execute a graph"""
|
||||
|
||||
type: Literal["graph"] = "graph"
|
||||
|
||||
# TODO: figure out how to create a default here
|
||||
graph: "Graph" = Field(description="The graph to run", default=None)
|
||||
|
||||
@ -174,22 +168,20 @@ class GraphInvocation(BaseInvocation):
|
||||
return GraphInvocationOutput()
|
||||
|
||||
|
||||
@invocation_output("iterate_output")
|
||||
class IterateInvocationOutput(BaseInvocationOutput):
|
||||
"""Used to connect iteration outputs. Will be expanded to a specific output."""
|
||||
|
||||
type: Literal["iterate_output"] = "iterate_output"
|
||||
|
||||
item: Any = OutputField(
|
||||
description="The item being iterated over", title="Collection Item", ui_type=UIType.CollectionItem
|
||||
)
|
||||
|
||||
|
||||
# TODO: Fill this out and move to invocations
|
||||
@invocation("iterate")
|
||||
class IterateInvocation(BaseInvocation):
|
||||
"""Iterates over a list of items"""
|
||||
|
||||
type: Literal["iterate"] = "iterate"
|
||||
|
||||
collection: list[Any] = InputField(
|
||||
description="The list of items to iterate over", default_factory=list, ui_type=UIType.Collection
|
||||
)
|
||||
@ -200,19 +192,17 @@ class IterateInvocation(BaseInvocation):
|
||||
return IterateInvocationOutput(item=self.collection[self.index])
|
||||
|
||||
|
||||
@invocation_output("collect_output")
|
||||
class CollectInvocationOutput(BaseInvocationOutput):
|
||||
type: Literal["collect_output"] = "collect_output"
|
||||
|
||||
collection: list[Any] = OutputField(
|
||||
description="The collection of input items", title="Collection", ui_type=UIType.Collection
|
||||
)
|
||||
|
||||
|
||||
@invocation("collect")
|
||||
class CollectInvocation(BaseInvocation):
|
||||
"""Collects values into a collection"""
|
||||
|
||||
type: Literal["collect"] = "collect"
|
||||
|
||||
item: Any = InputField(
|
||||
description="The item to collect (all inputs must be of the same type)",
|
||||
ui_type=UIType.CollectionItem,
|
||||
|
@ -60,7 +60,7 @@ class ImageFileStorageBase(ABC):
|
||||
image: PILImageType,
|
||||
image_name: str,
|
||||
metadata: Optional[dict] = None,
|
||||
graph: Optional[dict] = None,
|
||||
workflow: Optional[str] = None,
|
||||
thumbnail_size: int = 256,
|
||||
) -> None:
|
||||
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
|
||||
@ -110,7 +110,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
image: PILImageType,
|
||||
image_name: str,
|
||||
metadata: Optional[dict] = None,
|
||||
graph: Optional[dict] = None,
|
||||
workflow: Optional[str] = None,
|
||||
thumbnail_size: int = 256,
|
||||
) -> None:
|
||||
try:
|
||||
@ -119,12 +119,23 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
|
||||
pnginfo = PngImagePlugin.PngInfo()
|
||||
|
||||
if metadata is not None:
|
||||
pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
|
||||
if graph is not None:
|
||||
pnginfo.add_text("invokeai_graph", json.dumps(graph))
|
||||
if metadata is not None or workflow is not None:
|
||||
if metadata is not None:
|
||||
pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
|
||||
if workflow is not None:
|
||||
pnginfo.add_text("invokeai_workflow", workflow)
|
||||
else:
|
||||
# For uploaded images, we want to retain metadata. PIL strips it on save; manually add it back
|
||||
# TODO: retain non-invokeai metadata on save...
|
||||
original_metadata = image.info.get("invokeai_metadata", None)
|
||||
if original_metadata is not None:
|
||||
pnginfo.add_text("invokeai_metadata", original_metadata)
|
||||
original_workflow = image.info.get("invokeai_workflow", None)
|
||||
if original_workflow is not None:
|
||||
pnginfo.add_text("invokeai_workflow", original_workflow)
|
||||
|
||||
image.save(image_path, "PNG", pnginfo=pnginfo)
|
||||
|
||||
thumbnail_name = get_thumbnail_name(image_name)
|
||||
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)
|
||||
thumbnail_image = make_thumbnail(image, thumbnail_size)
|
||||
|
@ -54,6 +54,7 @@ class ImageServiceABC(ABC):
|
||||
board_id: Optional[str] = None,
|
||||
is_intermediate: bool = False,
|
||||
metadata: Optional[dict] = None,
|
||||
workflow: Optional[str] = None,
|
||||
) -> ImageDTO:
|
||||
"""Creates an image, storing the file and its metadata."""
|
||||
pass
|
||||
@ -177,6 +178,7 @@ class ImageService(ImageServiceABC):
|
||||
board_id: Optional[str] = None,
|
||||
is_intermediate: bool = False,
|
||||
metadata: Optional[dict] = None,
|
||||
workflow: Optional[str] = None,
|
||||
) -> ImageDTO:
|
||||
if image_origin not in ResourceOrigin:
|
||||
raise InvalidOriginException
|
||||
@ -186,16 +188,16 @@ class ImageService(ImageServiceABC):
|
||||
|
||||
image_name = self._services.names.create_image_name()
|
||||
|
||||
graph = None
|
||||
|
||||
if session_id is not None:
|
||||
session_raw = self._services.graph_execution_manager.get_raw(session_id)
|
||||
if session_raw is not None:
|
||||
try:
|
||||
graph = get_metadata_graph_from_raw_session(session_raw)
|
||||
except Exception as e:
|
||||
self._services.logger.warn(f"Failed to parse session graph: {e}")
|
||||
graph = None
|
||||
# TODO: Do we want to store the graph in the image at all? I don't think so...
|
||||
# graph = None
|
||||
# if session_id is not None:
|
||||
# session_raw = self._services.graph_execution_manager.get_raw(session_id)
|
||||
# if session_raw is not None:
|
||||
# try:
|
||||
# graph = get_metadata_graph_from_raw_session(session_raw)
|
||||
# except Exception as e:
|
||||
# self._services.logger.warn(f"Failed to parse session graph: {e}")
|
||||
# graph = None
|
||||
|
||||
(width, height) = image.size
|
||||
|
||||
@ -217,7 +219,7 @@ class ImageService(ImageServiceABC):
|
||||
)
|
||||
if board_id is not None:
|
||||
self._services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
|
||||
self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, graph=graph)
|
||||
self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, workflow=workflow)
|
||||
image_dto = self.get_dto(image_name)
|
||||
|
||||
return image_dto
|
||||
|
@ -53,7 +53,7 @@ class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
|
||||
- `starred`: change whether the image is starred
|
||||
"""
|
||||
|
||||
image_category: Optional[ImageCategory] = Field(description="The image's new category.")
|
||||
image_category: Optional[ImageCategory] = Field(default=None, description="The image's new category.")
|
||||
"""The image's new category."""
|
||||
session_id: Optional[StrictStr] = Field(
|
||||
default=None,
|
||||
|
@ -492,10 +492,10 @@ def _parse_legacy_yamlfile(root: Path, initfile: Path) -> ModelPaths:
|
||||
loras = paths.get("lora_dir", "loras")
|
||||
controlnets = paths.get("controlnet_dir", "controlnets")
|
||||
return ModelPaths(
|
||||
models=root / models,
|
||||
embeddings=root / embeddings,
|
||||
loras=root / loras,
|
||||
controlnets=root / controlnets,
|
||||
models=root / models if models else None,
|
||||
embeddings=root / embeddings if embeddings else None,
|
||||
loras=root / loras if loras else None,
|
||||
controlnets=root / controlnets if controlnets else None,
|
||||
)
|
||||
|
||||
|
||||
|
@ -50,6 +50,7 @@ class ModelProbe(object):
|
||||
"StableDiffusionInpaintPipeline": ModelType.Main,
|
||||
"StableDiffusionXLPipeline": ModelType.Main,
|
||||
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
|
||||
"StableDiffusionXLInpaintPipeline": ModelType.Main,
|
||||
"AutoencoderKL": ModelType.Vae,
|
||||
"ControlNetModel": ModelType.ControlNet,
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
import math
|
||||
import torch
|
||||
import diffusers
|
||||
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
if torch.backends.mps.is_available():
|
||||
torch.empty = torch.zeros
|
||||
|
@ -4,14 +4,14 @@ sd-1/main/stable-diffusion-v1-5:
|
||||
repo_id: runwayml/stable-diffusion-v1-5
|
||||
recommended: True
|
||||
default: True
|
||||
sd-1/main/stable-diffusion-inpainting:
|
||||
sd-1/main/stable-diffusion-v1-5-inpainting:
|
||||
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-inpainting
|
||||
recommended: True
|
||||
sd-2/main/stable-diffusion-2-1:
|
||||
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-1
|
||||
recommended: True
|
||||
recommended: False
|
||||
sd-2/main/stable-diffusion-2-inpainting:
|
||||
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-inpainting
|
||||
@ -19,19 +19,19 @@ sd-2/main/stable-diffusion-2-inpainting:
|
||||
sdxl/main/stable-diffusion-xl-base-1-0:
|
||||
description: Stable Diffusion XL base model (12 GB)
|
||||
repo_id: stabilityai/stable-diffusion-xl-base-1.0
|
||||
recommended: False
|
||||
recommended: True
|
||||
sdxl-refiner/main/stable-diffusion-xl-refiner-1-0:
|
||||
description: Stable Diffusion XL refiner model (12 GB)
|
||||
repo_id: stabilityai/stable-diffusion-xl-refiner-1.0
|
||||
recommended: false
|
||||
recommended: False
|
||||
sdxl/vae/sdxl-1-0-vae-fix:
|
||||
description: Fine tuned version of the SDXL-1.0 VAE
|
||||
repo_id: madebyollin/sdxl-vae-fp16-fix
|
||||
recommended: true
|
||||
recommended: True
|
||||
sd-1/main/Analog-Diffusion:
|
||||
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
|
||||
repo_id: wavymulder/Analog-Diffusion
|
||||
recommended: false
|
||||
recommended: False
|
||||
sd-1/main/Deliberate:
|
||||
description: Versatile model that produces detailed images up to 768px (4.27 GB)
|
||||
repo_id: XpucT/Deliberate
|
||||
|
@ -60,7 +60,7 @@ class Config:
|
||||
thumbnail_path = None
|
||||
|
||||
def find_and_load(self):
|
||||
"""find the yaml config file and load"""
|
||||
"""Find the yaml config file and load"""
|
||||
root = app_config.root_path
|
||||
if not self.confirm_and_load(os.path.abspath(root)):
|
||||
print("\r\nSpecify custom database and outputs paths:")
|
||||
@ -70,7 +70,7 @@ class Config:
|
||||
self.thumbnail_path = os.path.join(self.outputs_path, "thumbnails")
|
||||
|
||||
def confirm_and_load(self, invoke_root):
|
||||
"""Validates a yaml path exists, confirms the user wants to use it and loads config."""
|
||||
"""Validate a yaml path exists, confirms the user wants to use it and loads config."""
|
||||
yaml_path = os.path.join(invoke_root, self.YAML_FILENAME)
|
||||
if os.path.exists(yaml_path):
|
||||
db_dir, outdir = self.load_paths_from_yaml(yaml_path)
|
||||
@ -337,33 +337,24 @@ class InvokeAIMetadataParser:
|
||||
|
||||
def map_scheduler(self, old_scheduler):
|
||||
"""Convert the legacy sampler names to matching 3.0 schedulers"""
|
||||
|
||||
# this was more elegant as a case statement, but that's not available in python 3.9
|
||||
if old_scheduler is None:
|
||||
return None
|
||||
|
||||
match (old_scheduler):
|
||||
case "ddim":
|
||||
return "ddim"
|
||||
case "plms":
|
||||
return "pnmd"
|
||||
case "k_lms":
|
||||
return "lms"
|
||||
case "k_dpm_2":
|
||||
return "kdpm_2"
|
||||
case "k_dpm_2_a":
|
||||
return "kdpm_2_a"
|
||||
case "dpmpp_2":
|
||||
return "dpmpp_2s"
|
||||
case "k_dpmpp_2":
|
||||
return "dpmpp_2m"
|
||||
case "k_dpmpp_2_a":
|
||||
return None # invalid, in 2.3.x, selecting this sample would just fallback to last run or plms if new session
|
||||
case "k_euler":
|
||||
return "euler"
|
||||
case "k_euler_a":
|
||||
return "euler_a"
|
||||
case "k_heun":
|
||||
return "heun"
|
||||
return None
|
||||
scheduler_map = dict(
|
||||
ddim="ddim",
|
||||
plms="pnmd",
|
||||
k_lms="lms",
|
||||
k_dpm_2="kdpm_2",
|
||||
k_dpm_2_a="kdpm_2_a",
|
||||
dpmpp_2="dpmpp_2s",
|
||||
k_dpmpp_2="dpmpp_2m",
|
||||
k_dpmpp_2_a=None, # invalid, in 2.3.x, selecting this sample would just fallback to last run or plms if new session
|
||||
k_euler="euler",
|
||||
k_euler_a="euler_a",
|
||||
k_heun="heun",
|
||||
)
|
||||
return scheduler_map.get(old_scheduler)
|
||||
|
||||
def split_prompt(self, raw_prompt: str):
|
||||
"""Split the unified prompt strings by extracting all negative prompt blocks out into the negative prompt."""
|
||||
@ -524,27 +515,27 @@ class MediaImportProcessor:
|
||||
"5) Create/add to board named 'IMPORT' with a the original file app_version appended (.e.g IMPORT_2.2.5)."
|
||||
)
|
||||
input_option = input("Specify desired board option: ")
|
||||
match (input_option):
|
||||
case "1":
|
||||
if len(board_names) < 1:
|
||||
print("\r\nThere are no existing board names to choose from. Select another option!")
|
||||
continue
|
||||
board_name = self.select_item_from_list(
|
||||
board_names, "board name", True, "Cancel, go back and choose a different board option."
|
||||
)
|
||||
if board_name is not None:
|
||||
# This was more elegant as a case statement, but not supported in python 3.9
|
||||
if input_option == "1":
|
||||
if len(board_names) < 1:
|
||||
print("\r\nThere are no existing board names to choose from. Select another option!")
|
||||
continue
|
||||
board_name = self.select_item_from_list(
|
||||
board_names, "board name", True, "Cancel, go back and choose a different board option."
|
||||
)
|
||||
if board_name is not None:
|
||||
return board_name
|
||||
elif input_option == "2":
|
||||
while True:
|
||||
board_name = input("Specify new/existing board name: ")
|
||||
if board_name:
|
||||
return board_name
|
||||
case "2":
|
||||
while True:
|
||||
board_name = input("Specify new/existing board name: ")
|
||||
if board_name:
|
||||
return board_name
|
||||
case "3":
|
||||
return "IMPORT"
|
||||
case "4":
|
||||
return f"IMPORT_{timestamp_string}"
|
||||
case "5":
|
||||
return "IMPORT_APPVERSION"
|
||||
elif input_option == "3":
|
||||
return "IMPORT"
|
||||
elif input_option == "4":
|
||||
return f"IMPORT_{timestamp_string}"
|
||||
elif input_option == "5":
|
||||
return "IMPORT_APPVERSION"
|
||||
|
||||
def select_item_from_list(self, items, entity_name, allow_cancel, cancel_string):
|
||||
"""A general function to render a list of items to select in the console, prompt the user for a selection and ensure a valid entry is selected."""
|
||||
|
@ -7,5 +7,4 @@ stats.html
|
||||
index.html
|
||||
.yarn/
|
||||
*.scss
|
||||
src/services/api/
|
||||
src/services/fixtures/*
|
||||
src/services/api/schema.d.ts
|
||||
|
@ -7,8 +7,7 @@ index.html
|
||||
.yarn/
|
||||
.yalc/
|
||||
*.scss
|
||||
src/services/api/
|
||||
src/services/fixtures/*
|
||||
src/services/api/schema.d.ts
|
||||
docs/
|
||||
static/
|
||||
src/theme/css/overlayscrollbars.css
|
||||
|
171
invokeai/frontend/web/dist/assets/App-78495256.js
vendored
Normal file
171
invokeai/frontend/web/dist/assets/App-78495256.js
vendored
Normal file
File diff suppressed because one or more lines are too long
169
invokeai/frontend/web/dist/assets/App-7d912410.js
vendored
169
invokeai/frontend/web/dist/assets/App-7d912410.js
vendored
File diff suppressed because one or more lines are too long
310
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-707a230a.js
vendored
Normal file
310
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-707a230a.js
vendored
Normal file
File diff suppressed because one or more lines are too long
@ -1,4 +1,4 @@
|
||||
@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-cyrillic-ext-wght-normal-848492d3.woff2) format("woff2-variations");unicode-range:U+0460-052F,U+1C80-1C88,U+20B4,U+2DE0-2DFF,U+A640-A69F,U+FE2E-FE2F}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-cyrillic-wght-normal-262a1054.woff2) format("woff2-variations");unicode-range:U+0301,U+0400-045F,U+0490-0491,U+04B0-04B1,U+2116}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-greek-ext-wght-normal-fe977ddb.woff2) format("woff2-variations");unicode-range:U+1F00-1FFF}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-greek-wght-normal-89b4a3fe.woff2) format("woff2-variations");unicode-range:U+0370-03FF}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-vietnamese-wght-normal-ac4e131c.woff2) format("woff2-variations");unicode-range:U+0102-0103,U+0110-0111,U+0128-0129,U+0168-0169,U+01A0-01A1,U+01AF-01B0,U+0300-0301,U+0303-0304,U+0308-0309,U+0323,U+0329,U+1EA0-1EF9,U+20AB}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-latin-ext-wght-normal-45606f83.woff2) format("woff2-variations");unicode-range:U+0100-02AF,U+0300-0301,U+0303-0304,U+0308-0309,U+0323,U+0329,U+1E00-1EFF,U+2020,U+20A0-20AB,U+20AD-20CF,U+2113,U+2C60-2C7F,U+A720-A7FF}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-latin-wght-normal-450f3ba4.woff2) format("woff2-variations");unicode-range:U+0000-00FF,U+0131,U+0152-0153,U+02BB-02BC,U+02C6,U+02DA,U+02DC,U+0300-0301,U+0303-0304,U+0308-0309,U+0323,U+0329,U+2000-206F,U+2074,U+20AC,U+2122,U+2191,U+2193,U+2212,U+2215,U+FEFF,U+FFFD}/*!
|
||||
@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-cyrillic-ext-wght-normal-848492d3.woff2) format("woff2-variations");unicode-range:U+0460-052F,U+1C80-1C88,U+20B4,U+2DE0-2DFF,U+A640-A69F,U+FE2E-FE2F}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-cyrillic-wght-normal-262a1054.woff2) format("woff2-variations");unicode-range:U+0301,U+0400-045F,U+0490-0491,U+04B0-04B1,U+2116}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-greek-ext-wght-normal-fe977ddb.woff2) format("woff2-variations");unicode-range:U+1F00-1FFF}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-greek-wght-normal-89b4a3fe.woff2) format("woff2-variations");unicode-range:U+0370-03FF}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-vietnamese-wght-normal-ac4e131c.woff2) format("woff2-variations");unicode-range:U+0102-0103,U+0110-0111,U+0128-0129,U+0168-0169,U+01A0-01A1,U+01AF-01B0,U+0300-0301,U+0303-0304,U+0308-0309,U+0323,U+0329,U+1EA0-1EF9,U+20AB}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-latin-ext-wght-normal-45606f83.woff2) format("woff2-variations");unicode-range:U+0100-02AF,U+0304,U+0308,U+0329,U+1E00-1E9F,U+1EF2-1EFF,U+2020,U+20A0-20AB,U+20AD-20CF,U+2113,U+2C60-2C7F,U+A720-A7FF}@font-face{font-family:Inter Variable;font-style:normal;font-display:swap;font-weight:100 900;src:url(./inter-latin-wght-normal-450f3ba4.woff2) format("woff2-variations");unicode-range:U+0000-00FF,U+0131,U+0152-0153,U+02BB-02BC,U+02C6,U+02DA,U+02DC,U+0304,U+0308,U+0329,U+2000-206F,U+2074,U+20AC,U+2122,U+2191,U+2193,U+2212,U+2215,U+FEFF,U+FFFD}/*!
|
||||
* OverlayScrollbars
|
||||
* Version: 2.2.1
|
||||
*
|
File diff suppressed because one or more lines are too long
126
invokeai/frontend/web/dist/assets/index-08cda350.js
vendored
Normal file
126
invokeai/frontend/web/dist/assets/index-08cda350.js
vendored
Normal file
File diff suppressed because one or more lines are too long
151
invokeai/frontend/web/dist/assets/index-2c171c8f.js
vendored
151
invokeai/frontend/web/dist/assets/index-2c171c8f.js
vendored
File diff suppressed because one or more lines are too long
1
invokeai/frontend/web/dist/assets/menu-3d10c968.js
vendored
Normal file
1
invokeai/frontend/web/dist/assets/menu-3d10c968.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
2
invokeai/frontend/web/dist/index.html
vendored
2
invokeai/frontend/web/dist/index.html
vendored
@ -12,7 +12,7 @@
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
<script type="module" crossorigin src="./assets/index-2c171c8f.js"></script>
|
||||
<script type="module" crossorigin src="./assets/index-08cda350.js"></script>
|
||||
</head>
|
||||
|
||||
<body dir="ltr">
|
||||
|
42
invokeai/frontend/web/dist/locales/en.json
vendored
42
invokeai/frontend/web/dist/locales/en.json
vendored
@ -19,7 +19,7 @@
|
||||
"toggleAutoscroll": "Toggle autoscroll",
|
||||
"toggleLogViewer": "Toggle Log Viewer",
|
||||
"showGallery": "Show Gallery",
|
||||
"showOptionsPanel": "Show Options Panel",
|
||||
"showOptionsPanel": "Show Side Panel",
|
||||
"menu": "Menu"
|
||||
},
|
||||
"common": {
|
||||
@ -52,7 +52,7 @@
|
||||
"img2img": "Image To Image",
|
||||
"unifiedCanvas": "Unified Canvas",
|
||||
"linear": "Linear",
|
||||
"nodes": "Node Editor",
|
||||
"nodes": "Workflow Editor",
|
||||
"batch": "Batch Manager",
|
||||
"modelManager": "Model Manager",
|
||||
"postprocessing": "Post Processing",
|
||||
@ -95,7 +95,6 @@
|
||||
"statusModelConverted": "Model Converted",
|
||||
"statusMergingModels": "Merging Models",
|
||||
"statusMergedModels": "Models Merged",
|
||||
"pinOptionsPanel": "Pin Options Panel",
|
||||
"loading": "Loading",
|
||||
"loadingInvokeAI": "Loading Invoke AI",
|
||||
"random": "Random",
|
||||
@ -116,7 +115,6 @@
|
||||
"maintainAspectRatio": "Maintain Aspect Ratio",
|
||||
"autoSwitchNewImages": "Auto-Switch to New Images",
|
||||
"singleColumnLayout": "Single Column Layout",
|
||||
"pinGallery": "Pin Gallery",
|
||||
"allImagesLoaded": "All Images Loaded",
|
||||
"loadMore": "Load More",
|
||||
"noImagesInGallery": "No Images to Display",
|
||||
@ -133,6 +131,7 @@
|
||||
"generalHotkeys": "General Hotkeys",
|
||||
"galleryHotkeys": "Gallery Hotkeys",
|
||||
"unifiedCanvasHotkeys": "Unified Canvas Hotkeys",
|
||||
"nodesHotkeys": "Nodes Hotkeys",
|
||||
"invoke": {
|
||||
"title": "Invoke",
|
||||
"desc": "Generate an image"
|
||||
@ -332,6 +331,10 @@
|
||||
"acceptStagingImage": {
|
||||
"title": "Accept Staging Image",
|
||||
"desc": "Accept Current Staging Area Image"
|
||||
},
|
||||
"addNodes": {
|
||||
"title": "Add Nodes",
|
||||
"desc": "Opens the add node menu"
|
||||
}
|
||||
},
|
||||
"modelManager": {
|
||||
@ -503,13 +506,15 @@
|
||||
"hiresStrength": "High Res Strength",
|
||||
"imageFit": "Fit Initial Image To Output Size",
|
||||
"codeformerFidelity": "Fidelity",
|
||||
"compositingSettingsHeader": "Compositing Settings",
|
||||
"maskAdjustmentsHeader": "Mask Adjustments",
|
||||
"maskBlur": "Mask Blur",
|
||||
"maskBlurMethod": "Mask Blur Method",
|
||||
"seamSize": "Seam Size",
|
||||
"seamBlur": "Seam Blur",
|
||||
"seamStrength": "Seam Strength",
|
||||
"seamSteps": "Seam Steps",
|
||||
"maskBlur": "Blur",
|
||||
"maskBlurMethod": "Blur Method",
|
||||
"coherencePassHeader": "Coherence Pass",
|
||||
"coherenceSteps": "Steps",
|
||||
"coherenceStrength": "Strength",
|
||||
"seamLowThreshold": "Low",
|
||||
"seamHighThreshold": "High",
|
||||
"scaleBeforeProcessing": "Scale Before Processing",
|
||||
"scaledWidth": "Scaled W",
|
||||
"scaledHeight": "Scaled H",
|
||||
@ -565,10 +570,11 @@
|
||||
"useSlidersForAll": "Use Sliders For All Options",
|
||||
"showProgressInViewer": "Show Progress Images in Viewer",
|
||||
"antialiasProgressImages": "Antialias Progress Images",
|
||||
"autoChangeDimensions": "Update W/H To Model Defaults On Change",
|
||||
"resetWebUI": "Reset Web UI",
|
||||
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
|
||||
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
|
||||
"resetComplete": "Web UI has been reset. Refresh the page to reload.",
|
||||
"resetComplete": "Web UI has been reset.",
|
||||
"consoleLogLevel": "Log Level",
|
||||
"shouldLogToConsole": "Console Logging",
|
||||
"developer": "Developer",
|
||||
@ -708,14 +714,16 @@
|
||||
"ui": {
|
||||
"showProgressImages": "Show Progress Images",
|
||||
"hideProgressImages": "Hide Progress Images",
|
||||
"swapSizes": "Swap Sizes"
|
||||
"swapSizes": "Swap Sizes",
|
||||
"lockRatio": "Lock Ratio"
|
||||
},
|
||||
"nodes": {
|
||||
"reloadSchema": "Reload Schema",
|
||||
"saveGraph": "Save Graph",
|
||||
"loadGraph": "Load Graph (saved from Node Editor) (Do not copy-paste metadata)",
|
||||
"clearGraph": "Clear Graph",
|
||||
"clearGraphDesc": "Are you sure you want to clear all nodes?",
|
||||
"reloadNodeTemplates": "Reload Node Templates",
|
||||
"downloadWorkflow": "Download Workflow JSON",
|
||||
"loadWorkflow": "Load Workflow",
|
||||
"resetWorkflow": "Reset Workflow",
|
||||
"resetWorkflowDesc": "Are you sure you want to reset this workflow?",
|
||||
"resetWorkflowDesc2": "Resetting the workflow will clear all nodes, edges and workflow details.",
|
||||
"zoomInNodes": "Zoom In",
|
||||
"zoomOutNodes": "Zoom Out",
|
||||
"fitViewportNodes": "Fit View",
|
||||
|
@ -74,6 +74,7 @@
|
||||
"@nanostores/react": "^0.7.1",
|
||||
"@reduxjs/toolkit": "^1.9.5",
|
||||
"@roarr/browser-log-writer": "^1.1.5",
|
||||
"@stevebel/png": "^1.5.1",
|
||||
"dateformat": "^5.0.3",
|
||||
"formik": "^2.4.3",
|
||||
"framer-motion": "^10.16.1",
|
||||
@ -110,6 +111,7 @@
|
||||
"roarr": "^7.15.1",
|
||||
"serialize-error": "^11.0.1",
|
||||
"socket.io-client": "^4.7.2",
|
||||
"type-fest": "^4.2.0",
|
||||
"use-debounce": "^9.0.4",
|
||||
"use-image": "^1.1.1",
|
||||
"uuid": "^9.0.0",
|
||||
|
@ -719,7 +719,7 @@
|
||||
},
|
||||
"nodes": {
|
||||
"reloadNodeTemplates": "Reload Node Templates",
|
||||
"saveWorkflow": "Save Workflow",
|
||||
"downloadWorkflow": "Download Workflow JSON",
|
||||
"loadWorkflow": "Load Workflow",
|
||||
"resetWorkflow": "Reset Workflow",
|
||||
"resetWorkflowDesc": "Are you sure you want to reset this workflow?",
|
||||
|
@ -1,10 +1,12 @@
|
||||
import { Box } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppToaster } from 'app/components/Toaster';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { selectIsBusy } from 'features/system/store/systemSelectors';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { AnimatePresence, motion } from 'framer-motion';
|
||||
import {
|
||||
KeyboardEvent,
|
||||
ReactNode,
|
||||
@ -18,8 +20,6 @@ import { useTranslation } from 'react-i18next';
|
||||
import { useUploadImageMutation } from 'services/api/endpoints/images';
|
||||
import { PostUploadAction } from 'services/api/types';
|
||||
import ImageUploadOverlay from './ImageUploadOverlay';
|
||||
import { AnimatePresence, motion } from 'framer-motion';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector, activeTabNameSelector],
|
||||
|
@ -0,0 +1,56 @@
|
||||
import { Box } from '@chakra-ui/react';
|
||||
import { memo, useMemo } from 'react';
|
||||
|
||||
type Props = {
|
||||
isSelected: boolean;
|
||||
isHovered: boolean;
|
||||
};
|
||||
const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
|
||||
const shadow = useMemo(() => {
|
||||
if (isSelected && isHovered) {
|
||||
return 'nodeHoveredSelected.light';
|
||||
}
|
||||
if (isSelected) {
|
||||
return 'nodeSelected.light';
|
||||
}
|
||||
if (isHovered) {
|
||||
return 'nodeHovered.light';
|
||||
}
|
||||
return undefined;
|
||||
}, [isHovered, isSelected]);
|
||||
const shadowDark = useMemo(() => {
|
||||
if (isSelected && isHovered) {
|
||||
return 'nodeHoveredSelected.dark';
|
||||
}
|
||||
if (isSelected) {
|
||||
return 'nodeSelected.dark';
|
||||
}
|
||||
if (isHovered) {
|
||||
return 'nodeHovered.dark';
|
||||
}
|
||||
return undefined;
|
||||
}, [isHovered, isSelected]);
|
||||
return (
|
||||
<Box
|
||||
className="selection-box"
|
||||
sx={{
|
||||
position: 'absolute',
|
||||
top: 0,
|
||||
insetInlineEnd: 0,
|
||||
bottom: 0,
|
||||
insetInlineStart: 0,
|
||||
borderRadius: 'base',
|
||||
opacity: isSelected || isHovered ? 1 : 0.5,
|
||||
transitionProperty: 'common',
|
||||
transitionDuration: '0.1s',
|
||||
pointerEvents: 'none',
|
||||
shadow,
|
||||
_dark: {
|
||||
shadow: shadowDark,
|
||||
},
|
||||
}}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(SelectionOverlay);
|
@ -104,22 +104,22 @@ const ControlNetImagePreview = ({ isSmall, controlNet }: Props) => {
|
||||
]);
|
||||
|
||||
const handleSetControlImageToDimensions = useCallback(() => {
|
||||
if (!processedControlImage) {
|
||||
if (!controlImage) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (activeTabName === 'unifiedCanvas') {
|
||||
dispatch(
|
||||
setBoundingBoxDimensions({
|
||||
width: processedControlImage.width,
|
||||
height: processedControlImage.height,
|
||||
width: controlImage.width,
|
||||
height: controlImage.height,
|
||||
})
|
||||
);
|
||||
} else {
|
||||
dispatch(setWidth(processedControlImage.width));
|
||||
dispatch(setHeight(processedControlImage.height));
|
||||
dispatch(setWidth(controlImage.width));
|
||||
dispatch(setHeight(controlImage.height));
|
||||
}
|
||||
}, [processedControlImage, activeTabName, dispatch]);
|
||||
}, [controlImage, activeTabName, dispatch]);
|
||||
|
||||
const handleMouseEnter = useCallback(() => {
|
||||
setIsMouseOverImage(true);
|
||||
|
@ -15,6 +15,7 @@ import { BoardDTO } from 'services/api/types';
|
||||
import { menuListMotionProps } from 'theme/components/menu';
|
||||
import GalleryBoardContextMenuItems from './GalleryBoardContextMenuItems';
|
||||
import NoBoardContextMenuItems from './NoBoardContextMenuItems';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
|
||||
type Props = {
|
||||
board?: BoardDTO;
|
||||
@ -33,12 +34,16 @@ const BoardContextMenu = ({
|
||||
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createSelector(stateSelector, ({ gallery, system }) => {
|
||||
const isAutoAdd = gallery.autoAddBoardId === board_id;
|
||||
const isProcessing = system.isProcessing;
|
||||
const autoAssignBoardOnClick = gallery.autoAssignBoardOnClick;
|
||||
return { isAutoAdd, isProcessing, autoAssignBoardOnClick };
|
||||
}),
|
||||
createSelector(
|
||||
stateSelector,
|
||||
({ gallery, system }) => {
|
||||
const isAutoAdd = gallery.autoAddBoardId === board_id;
|
||||
const isProcessing = system.isProcessing;
|
||||
const autoAssignBoardOnClick = gallery.autoAssignBoardOnClick;
|
||||
return { isAutoAdd, isProcessing, autoAssignBoardOnClick };
|
||||
},
|
||||
defaultSelectorOptions
|
||||
),
|
||||
[board_id]
|
||||
);
|
||||
|
||||
|
@ -9,20 +9,24 @@ import {
|
||||
MenuButton,
|
||||
MenuList,
|
||||
} from '@chakra-ui/react';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import { skipToken } from '@reduxjs/toolkit/dist/query';
|
||||
import { useAppToaster } from 'app/components/Toaster';
|
||||
import { upscaleRequested } from 'app/store/middleware/listenerMiddleware/listeners/upscaleRequested';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import { DeleteImageButton } from 'features/deleteImageModal/components/DeleteImageButton';
|
||||
import { imagesToDeleteSelected } from 'features/deleteImageModal/store/slice';
|
||||
import { workflowLoaded } from 'features/nodes/store/nodesSlice';
|
||||
import ParamUpscalePopover from 'features/parameters/components/Parameters/Upscale/ParamUpscaleSettings';
|
||||
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
|
||||
import { initialImageSelected } from 'features/parameters/store/actions';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { makeToast } from 'features/system/util/makeToast';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import {
|
||||
setActiveTab,
|
||||
setShouldShowImageDetails,
|
||||
setShouldShowProgressInViewer,
|
||||
} from 'features/ui/store/uiSlice';
|
||||
@ -37,12 +41,12 @@ import {
|
||||
FaSeedling,
|
||||
FaShareAlt,
|
||||
} from 'react-icons/fa';
|
||||
import { MdDeviceHub } from 'react-icons/md';
|
||||
import {
|
||||
useGetImageDTOQuery,
|
||||
useGetImageMetadataQuery,
|
||||
useGetImageMetadataFromFileQuery,
|
||||
} from 'services/api/endpoints/images';
|
||||
import { menuListMotionProps } from 'theme/components/menu';
|
||||
import { useDebounce } from 'use-debounce';
|
||||
import { sentImageToImg2Img } from '../../store/actions';
|
||||
import SingleSelectionMenuItems from '../ImageContextMenu/SingleSelectionMenuItems';
|
||||
|
||||
@ -101,22 +105,36 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
const { recallBothPrompts, recallSeed, recallAllParameters } =
|
||||
useRecallParameters();
|
||||
|
||||
const [debouncedMetadataQueryArg, debounceState] = useDebounce(
|
||||
lastSelectedImage,
|
||||
500
|
||||
);
|
||||
|
||||
const { currentData: imageDTO } = useGetImageDTOQuery(
|
||||
lastSelectedImage?.image_name ?? skipToken
|
||||
);
|
||||
|
||||
const { currentData: metadataData } = useGetImageMetadataQuery(
|
||||
debounceState.isPending()
|
||||
? skipToken
|
||||
: debouncedMetadataQueryArg?.image_name ?? skipToken
|
||||
const { metadata, workflow, isLoading } = useGetImageMetadataFromFileQuery(
|
||||
lastSelectedImage ?? skipToken,
|
||||
{
|
||||
selectFromResult: (res) => ({
|
||||
isLoading: res.isFetching,
|
||||
metadata: res?.currentData?.metadata,
|
||||
workflow: res?.currentData?.workflow,
|
||||
}),
|
||||
}
|
||||
);
|
||||
|
||||
const metadata = metadataData?.metadata;
|
||||
const handleLoadWorkflow = useCallback(() => {
|
||||
if (!workflow) {
|
||||
return;
|
||||
}
|
||||
dispatch(workflowLoaded(workflow));
|
||||
dispatch(setActiveTab('nodes'));
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Workflow Loaded',
|
||||
status: 'success',
|
||||
})
|
||||
)
|
||||
);
|
||||
}, [dispatch, workflow]);
|
||||
|
||||
const handleClickUseAllParameters = useCallback(() => {
|
||||
recallAllParameters(metadata);
|
||||
@ -153,6 +171,8 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
|
||||
useHotkeys('p', handleUsePrompt, [imageDTO]);
|
||||
|
||||
useHotkeys('w', handleLoadWorkflow, [workflow]);
|
||||
|
||||
const handleSendToImageToImage = useCallback(() => {
|
||||
dispatch(sentImageToImg2Img());
|
||||
dispatch(initialImageSelected(imageDTO));
|
||||
@ -259,22 +279,31 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
|
||||
<ButtonGroup isAttached={true} isDisabled={shouldDisableToolbarButtons}>
|
||||
<IAIIconButton
|
||||
isLoading={isLoading}
|
||||
icon={<MdDeviceHub />}
|
||||
tooltip={`${t('nodes.loadWorkflow')} (W)`}
|
||||
aria-label={`${t('nodes.loadWorkflow')} (W)`}
|
||||
isDisabled={!workflow}
|
||||
onClick={handleLoadWorkflow}
|
||||
/>
|
||||
<IAIIconButton
|
||||
isLoading={isLoading}
|
||||
icon={<FaQuoteRight />}
|
||||
tooltip={`${t('parameters.usePrompt')} (P)`}
|
||||
aria-label={`${t('parameters.usePrompt')} (P)`}
|
||||
isDisabled={!metadata?.positive_prompt}
|
||||
onClick={handleUsePrompt}
|
||||
/>
|
||||
|
||||
<IAIIconButton
|
||||
isLoading={isLoading}
|
||||
icon={<FaSeedling />}
|
||||
tooltip={`${t('parameters.useSeed')} (S)`}
|
||||
aria-label={`${t('parameters.useSeed')} (S)`}
|
||||
isDisabled={!metadata?.seed}
|
||||
onClick={handleUseSeed}
|
||||
/>
|
||||
|
||||
<IAIIconButton
|
||||
isLoading={isLoading}
|
||||
icon={<FaAsterisk />}
|
||||
tooltip={`${t('parameters.useAll')} (A)`}
|
||||
aria-label={`${t('parameters.useAll')} (A)`}
|
||||
|
@ -1,5 +1,4 @@
|
||||
import { Flex, MenuItem, Text } from '@chakra-ui/react';
|
||||
import { skipToken } from '@reduxjs/toolkit/dist/query';
|
||||
import { Flex, MenuItem, Spinner } from '@chakra-ui/react';
|
||||
import { useAppToaster } from 'app/components/Toaster';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
|
||||
@ -8,9 +7,12 @@ import {
|
||||
isModalOpenChanged,
|
||||
} from 'features/changeBoardModal/store/slice';
|
||||
import { imagesToDeleteSelected } from 'features/deleteImageModal/store/slice';
|
||||
import { workflowLoaded } from 'features/nodes/store/nodesSlice';
|
||||
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
|
||||
import { initialImageSelected } from 'features/parameters/store/actions';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { makeToast } from 'features/system/util/makeToast';
|
||||
import { useCopyImageToClipboard } from 'features/ui/hooks/useCopyImageToClipboard';
|
||||
import { setActiveTab } from 'features/ui/store/uiSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
@ -26,14 +28,13 @@ import {
|
||||
FaShare,
|
||||
FaTrash,
|
||||
} from 'react-icons/fa';
|
||||
import { MdStar, MdStarBorder } from 'react-icons/md';
|
||||
import { MdDeviceHub, MdStar, MdStarBorder } from 'react-icons/md';
|
||||
import {
|
||||
useGetImageMetadataQuery,
|
||||
useGetImageMetadataFromFileQuery,
|
||||
useStarImagesMutation,
|
||||
useUnstarImagesMutation,
|
||||
} from 'services/api/endpoints/images';
|
||||
import { ImageDTO } from 'services/api/types';
|
||||
import { useDebounce } from 'use-debounce';
|
||||
import { sentImageToCanvas, sentImageToImg2Img } from '../../store/actions';
|
||||
|
||||
type SingleSelectionMenuItemsProps = {
|
||||
@ -50,15 +51,15 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
|
||||
const isCanvasEnabled = useFeatureStatus('unifiedCanvas').isFeatureEnabled;
|
||||
|
||||
const [debouncedMetadataQueryArg, debounceState] = useDebounce(
|
||||
imageDTO.image_name,
|
||||
500
|
||||
);
|
||||
|
||||
const { currentData } = useGetImageMetadataQuery(
|
||||
debounceState.isPending()
|
||||
? skipToken
|
||||
: debouncedMetadataQueryArg ?? skipToken
|
||||
const { metadata, workflow, isLoading } = useGetImageMetadataFromFileQuery(
|
||||
imageDTO,
|
||||
{
|
||||
selectFromResult: (res) => ({
|
||||
isLoading: res.isFetching,
|
||||
metadata: res?.currentData?.metadata,
|
||||
workflow: res?.currentData?.workflow,
|
||||
}),
|
||||
}
|
||||
);
|
||||
|
||||
const [starImages] = useStarImagesMutation();
|
||||
@ -67,8 +68,6 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
const { isClipboardAPIAvailable, copyImageToClipboard } =
|
||||
useCopyImageToClipboard();
|
||||
|
||||
const metadata = currentData?.metadata;
|
||||
|
||||
const handleDelete = useCallback(() => {
|
||||
if (!imageDTO) {
|
||||
return;
|
||||
@ -99,6 +98,22 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
recallSeed(metadata?.seed);
|
||||
}, [metadata?.seed, recallSeed]);
|
||||
|
||||
const handleLoadWorkflow = useCallback(() => {
|
||||
if (!workflow) {
|
||||
return;
|
||||
}
|
||||
dispatch(workflowLoaded(workflow));
|
||||
dispatch(setActiveTab('nodes'));
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Workflow Loaded',
|
||||
status: 'success',
|
||||
})
|
||||
)
|
||||
);
|
||||
}, [dispatch, workflow]);
|
||||
|
||||
const handleSendToImageToImage = useCallback(() => {
|
||||
dispatch(sentImageToImg2Img());
|
||||
dispatch(initialImageSelected(imageDTO));
|
||||
@ -118,7 +133,6 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
}, [dispatch, imageDTO, t, toaster]);
|
||||
|
||||
const handleUseAllParameters = useCallback(() => {
|
||||
console.log(metadata);
|
||||
recallAllParameters(metadata);
|
||||
}, [metadata, recallAllParameters]);
|
||||
|
||||
@ -169,27 +183,34 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
{t('parameters.downloadImage')}
|
||||
</MenuItem>
|
||||
<MenuItem
|
||||
icon={<FaQuoteRight />}
|
||||
icon={isLoading ? <SpinnerIcon /> : <MdDeviceHub />}
|
||||
onClickCapture={handleLoadWorkflow}
|
||||
isDisabled={isLoading || !workflow}
|
||||
>
|
||||
{t('nodes.loadWorkflow')}
|
||||
</MenuItem>
|
||||
<MenuItem
|
||||
icon={isLoading ? <SpinnerIcon /> : <FaQuoteRight />}
|
||||
onClickCapture={handleRecallPrompt}
|
||||
isDisabled={
|
||||
metadata?.positive_prompt === undefined &&
|
||||
metadata?.negative_prompt === undefined
|
||||
isLoading ||
|
||||
(metadata?.positive_prompt === undefined &&
|
||||
metadata?.negative_prompt === undefined)
|
||||
}
|
||||
>
|
||||
{t('parameters.usePrompt')}
|
||||
</MenuItem>
|
||||
|
||||
<MenuItem
|
||||
icon={<FaSeedling />}
|
||||
icon={isLoading ? <SpinnerIcon /> : <FaSeedling />}
|
||||
onClickCapture={handleRecallSeed}
|
||||
isDisabled={metadata?.seed === undefined}
|
||||
isDisabled={isLoading || metadata?.seed === undefined}
|
||||
>
|
||||
{t('parameters.useSeed')}
|
||||
</MenuItem>
|
||||
<MenuItem
|
||||
icon={<FaAsterisk />}
|
||||
icon={isLoading ? <SpinnerIcon /> : <FaAsterisk />}
|
||||
onClickCapture={handleUseAllParameters}
|
||||
isDisabled={!metadata}
|
||||
isDisabled={isLoading || !metadata}
|
||||
>
|
||||
{t('parameters.useAll')}
|
||||
</MenuItem>
|
||||
@ -228,20 +249,14 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
>
|
||||
{t('gallery.deleteImage')}
|
||||
</MenuItem>
|
||||
{metadata?.created_by && (
|
||||
<Flex
|
||||
sx={{
|
||||
padding: '5px 10px',
|
||||
marginTop: '5px',
|
||||
}}
|
||||
>
|
||||
<Text fontSize="xs" fontWeight="bold">
|
||||
Created by {metadata?.created_by}
|
||||
</Text>
|
||||
</Flex>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(SingleSelectionMenuItems);
|
||||
|
||||
const SpinnerIcon = () => (
|
||||
<Flex w="14px" alignItems="center" justifyContent="center">
|
||||
<Spinner size="xs" />
|
||||
</Flex>
|
||||
);
|
||||
|
@ -2,7 +2,7 @@ import { Box, Flex, IconButton, Tooltip } from '@chakra-ui/react';
|
||||
import { isString } from 'lodash-es';
|
||||
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { FaCopy, FaSave } from 'react-icons/fa';
|
||||
import { FaCopy, FaDownload } from 'react-icons/fa';
|
||||
|
||||
type Props = {
|
||||
label: string;
|
||||
@ -23,7 +23,7 @@ const DataViewer = (props: Props) => {
|
||||
navigator.clipboard.writeText(dataString);
|
||||
}, [dataString]);
|
||||
|
||||
const handleSave = useCallback(() => {
|
||||
const handleDownload = useCallback(() => {
|
||||
const blob = new Blob([dataString]);
|
||||
const a = document.createElement('a');
|
||||
a.href = URL.createObjectURL(blob);
|
||||
@ -73,13 +73,13 @@ const DataViewer = (props: Props) => {
|
||||
</Box>
|
||||
<Flex sx={{ position: 'absolute', top: 0, insetInlineEnd: 0, p: 2 }}>
|
||||
{withDownload && (
|
||||
<Tooltip label={`Save ${label} JSON`}>
|
||||
<Tooltip label={`Download ${label} JSON`}>
|
||||
<IconButton
|
||||
aria-label={`Save ${label} JSON`}
|
||||
icon={<FaSave />}
|
||||
aria-label={`Download ${label} JSON`}
|
||||
icon={<FaDownload />}
|
||||
variant="ghost"
|
||||
opacity={0.7}
|
||||
onClick={handleSave}
|
||||
onClick={handleDownload}
|
||||
/>
|
||||
</Tooltip>
|
||||
)}
|
||||
|
@ -1,10 +1,10 @@
|
||||
import { CoreMetadata } from 'features/nodes/types/types';
|
||||
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { UnsafeImageMetadata } from 'services/api/types';
|
||||
import ImageMetadataItem from './ImageMetadataItem';
|
||||
|
||||
type Props = {
|
||||
metadata?: UnsafeImageMetadata['metadata'];
|
||||
metadata?: CoreMetadata;
|
||||
};
|
||||
|
||||
const ImageMetadataActions = (props: Props) => {
|
||||
@ -94,20 +94,22 @@ const ImageMetadataActions = (props: Props) => {
|
||||
onClick={handleRecallNegativePrompt}
|
||||
/>
|
||||
)}
|
||||
{metadata.seed !== undefined && (
|
||||
{metadata.seed !== undefined && metadata.seed !== null && (
|
||||
<ImageMetadataItem
|
||||
label="Seed"
|
||||
value={metadata.seed}
|
||||
onClick={handleRecallSeed}
|
||||
/>
|
||||
)}
|
||||
{metadata.model !== undefined && (
|
||||
<ImageMetadataItem
|
||||
label="Model"
|
||||
value={metadata.model.model_name}
|
||||
onClick={handleRecallModel}
|
||||
/>
|
||||
)}
|
||||
{metadata.model !== undefined &&
|
||||
metadata.model !== null &&
|
||||
metadata.model.model_name && (
|
||||
<ImageMetadataItem
|
||||
label="Model"
|
||||
value={metadata.model.model_name}
|
||||
onClick={handleRecallModel}
|
||||
/>
|
||||
)}
|
||||
{metadata.width && (
|
||||
<ImageMetadataItem
|
||||
label="Width"
|
||||
@ -150,7 +152,7 @@ const ImageMetadataActions = (props: Props) => {
|
||||
onClick={handleRecallSteps}
|
||||
/>
|
||||
)}
|
||||
{metadata.cfg_scale !== undefined && (
|
||||
{metadata.cfg_scale !== undefined && metadata.cfg_scale !== null && (
|
||||
<ImageMetadataItem
|
||||
label="CFG scale"
|
||||
value={metadata.cfg_scale}
|
||||
|
@ -9,14 +9,12 @@ import {
|
||||
Tabs,
|
||||
Text,
|
||||
} from '@chakra-ui/react';
|
||||
import { skipToken } from '@reduxjs/toolkit/dist/query';
|
||||
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
|
||||
import { memo } from 'react';
|
||||
import { useGetImageMetadataQuery } from 'services/api/endpoints/images';
|
||||
import { useGetImageMetadataFromFileQuery } from 'services/api/endpoints/images';
|
||||
import { ImageDTO } from 'services/api/types';
|
||||
import { useDebounce } from 'use-debounce';
|
||||
import ImageMetadataActions from './ImageMetadataActions';
|
||||
import DataViewer from './DataViewer';
|
||||
import ImageMetadataActions from './ImageMetadataActions';
|
||||
|
||||
type ImageMetadataViewerProps = {
|
||||
image: ImageDTO;
|
||||
@ -29,18 +27,12 @@ const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
|
||||
// dispatch(setShouldShowImageDetails(false));
|
||||
// });
|
||||
|
||||
const [debouncedMetadataQueryArg, debounceState] = useDebounce(
|
||||
image.image_name,
|
||||
500
|
||||
);
|
||||
|
||||
const { currentData } = useGetImageMetadataQuery(
|
||||
debounceState.isPending()
|
||||
? skipToken
|
||||
: debouncedMetadataQueryArg ?? skipToken
|
||||
);
|
||||
const metadata = currentData?.metadata;
|
||||
const graph = currentData?.graph;
|
||||
const { metadata, workflow } = useGetImageMetadataFromFileQuery(image, {
|
||||
selectFromResult: (res) => ({
|
||||
metadata: res?.currentData?.metadata,
|
||||
workflow: res?.currentData?.workflow,
|
||||
}),
|
||||
});
|
||||
|
||||
return (
|
||||
<Flex
|
||||
@ -71,17 +63,17 @@ const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
|
||||
sx={{ display: 'flex', flexDir: 'column', w: 'full', h: 'full' }}
|
||||
>
|
||||
<TabList>
|
||||
<Tab>Core Metadata</Tab>
|
||||
<Tab>Metadata</Tab>
|
||||
<Tab>Image Details</Tab>
|
||||
<Tab>Graph</Tab>
|
||||
<Tab>Workflow</Tab>
|
||||
</TabList>
|
||||
|
||||
<TabPanels>
|
||||
<TabPanel>
|
||||
{metadata ? (
|
||||
<DataViewer data={metadata} label="Core Metadata" />
|
||||
<DataViewer data={metadata} label="Metadata" />
|
||||
) : (
|
||||
<IAINoContentFallback label="No core metadata found" />
|
||||
<IAINoContentFallback label="No metadata found" />
|
||||
)}
|
||||
</TabPanel>
|
||||
<TabPanel>
|
||||
@ -92,10 +84,10 @@ const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
|
||||
)}
|
||||
</TabPanel>
|
||||
<TabPanel>
|
||||
{graph ? (
|
||||
<DataViewer data={graph} label="Graph" />
|
||||
{workflow ? (
|
||||
<DataViewer data={workflow} label="Workflow" />
|
||||
) : (
|
||||
<IAINoContentFallback label="No graph found" />
|
||||
<IAINoContentFallback label="No workflow found" />
|
||||
)}
|
||||
</TabPanel>
|
||||
</TabPanels>
|
||||
|
@ -0,0 +1,41 @@
|
||||
import { Checkbox, Flex, FormControl, FormLabel } from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useEmbedWorkflow } from 'features/nodes/hooks/useEmbedWorkflow';
|
||||
import { useHasImageOutput } from 'features/nodes/hooks/useHasImageOutput';
|
||||
import { nodeEmbedWorkflowChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { ChangeEvent, memo, useCallback } from 'react';
|
||||
|
||||
const EmbedWorkflowCheckbox = ({ nodeId }: { nodeId: string }) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const hasImageOutput = useHasImageOutput(nodeId);
|
||||
const embedWorkflow = useEmbedWorkflow(nodeId);
|
||||
const handleChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(
|
||||
nodeEmbedWorkflowChanged({
|
||||
nodeId,
|
||||
embedWorkflow: e.target.checked,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, nodeId]
|
||||
);
|
||||
|
||||
if (!hasImageOutput) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl as={Flex} sx={{ alignItems: 'center', gap: 2, w: 'auto' }}>
|
||||
<FormLabel sx={{ fontSize: 'xs', mb: '1px' }}>Embed Workflow</FormLabel>
|
||||
<Checkbox
|
||||
className="nopan"
|
||||
size="sm"
|
||||
onChange={handleChange}
|
||||
isChecked={embedWorkflow}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(EmbedWorkflowCheckbox);
|
@ -41,7 +41,7 @@ const InvocationNode = ({ nodeId, isOpen, label, type, selected }: Props) => {
|
||||
flexDirection: 'column',
|
||||
w: 'full',
|
||||
h: 'full',
|
||||
py: 1,
|
||||
py: 2,
|
||||
gap: 1,
|
||||
borderBottomRadius: withFooter ? 0 : 'base',
|
||||
}}
|
||||
|
@ -1,16 +1,8 @@
|
||||
import {
|
||||
Checkbox,
|
||||
Flex,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
Spacer,
|
||||
} from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useHasImageOutput } from 'features/nodes/hooks/useHasImageOutput';
|
||||
import { useIsIntermediate } from 'features/nodes/hooks/useIsIntermediate';
|
||||
import { fieldBooleanValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { DRAG_HANDLE_CLASSNAME } from 'features/nodes/types/constants';
|
||||
import { ChangeEvent, memo, useCallback } from 'react';
|
||||
import { memo } from 'react';
|
||||
import EmbedWorkflowCheckbox from './EmbedWorkflowCheckbox';
|
||||
import SaveToGalleryCheckbox from './SaveToGalleryCheckbox';
|
||||
|
||||
type Props = {
|
||||
nodeId: string;
|
||||
@ -27,48 +19,13 @@ const InvocationNodeFooter = ({ nodeId }: Props) => {
|
||||
px: 2,
|
||||
py: 0,
|
||||
h: 6,
|
||||
justifyContent: 'space-between',
|
||||
}}
|
||||
>
|
||||
<Spacer />
|
||||
<SaveImageCheckbox nodeId={nodeId} />
|
||||
<EmbedWorkflowCheckbox nodeId={nodeId} />
|
||||
<SaveToGalleryCheckbox nodeId={nodeId} />
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(InvocationNodeFooter);
|
||||
|
||||
const SaveImageCheckbox = memo(({ nodeId }: { nodeId: string }) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const hasImageOutput = useHasImageOutput(nodeId);
|
||||
const is_intermediate = useIsIntermediate(nodeId);
|
||||
const handleChangeIsIntermediate = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(
|
||||
fieldBooleanValueChanged({
|
||||
nodeId,
|
||||
fieldName: 'is_intermediate',
|
||||
value: !e.target.checked,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, nodeId]
|
||||
);
|
||||
|
||||
if (!hasImageOutput) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl as={Flex} sx={{ alignItems: 'center', gap: 2, w: 'auto' }}>
|
||||
<FormLabel sx={{ fontSize: 'xs', mb: '1px' }}>Save Output</FormLabel>
|
||||
<Checkbox
|
||||
className="nopan"
|
||||
size="sm"
|
||||
onChange={handleChangeIsIntermediate}
|
||||
isChecked={!is_intermediate}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
SaveImageCheckbox.displayName = 'SaveImageCheckbox';
|
||||
|
@ -1,7 +1,5 @@
|
||||
import {
|
||||
Flex,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
Icon,
|
||||
Modal,
|
||||
ModalBody,
|
||||
@ -14,16 +12,14 @@ import {
|
||||
Tooltip,
|
||||
useDisclosure,
|
||||
} from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import IAITextarea from 'common/components/IAITextarea';
|
||||
import { useNodeData } from 'features/nodes/hooks/useNodeData';
|
||||
import { useNodeLabel } from 'features/nodes/hooks/useNodeLabel';
|
||||
import { useNodeTemplate } from 'features/nodes/hooks/useNodeTemplate';
|
||||
import { useNodeTemplateTitle } from 'features/nodes/hooks/useNodeTemplateTitle';
|
||||
import { nodeNotesChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { isInvocationNodeData } from 'features/nodes/types/types';
|
||||
import { ChangeEvent, memo, useCallback } from 'react';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { FaInfoCircle } from 'react-icons/fa';
|
||||
import NotesTextarea from './NotesTextarea';
|
||||
|
||||
interface Props {
|
||||
nodeId: string;
|
||||
@ -80,13 +76,29 @@ const TooltipContent = memo(({ nodeId }: { nodeId: string }) => {
|
||||
const data = useNodeData(nodeId);
|
||||
const nodeTemplate = useNodeTemplate(nodeId);
|
||||
|
||||
const title = useMemo(() => {
|
||||
if (data?.label && nodeTemplate?.title) {
|
||||
return `${data.label} (${nodeTemplate.title})`;
|
||||
}
|
||||
|
||||
if (data?.label && !nodeTemplate) {
|
||||
return data.label;
|
||||
}
|
||||
|
||||
if (!data?.label && nodeTemplate) {
|
||||
return nodeTemplate.title;
|
||||
}
|
||||
|
||||
return 'Unknown Node';
|
||||
}, [data, nodeTemplate]);
|
||||
|
||||
if (!isInvocationNodeData(data)) {
|
||||
return <Text sx={{ fontWeight: 600 }}>Unknown Node</Text>;
|
||||
}
|
||||
|
||||
return (
|
||||
<Flex sx={{ flexDir: 'column' }}>
|
||||
<Text sx={{ fontWeight: 600 }}>{nodeTemplate?.title}</Text>
|
||||
<Text sx={{ fontWeight: 600 }}>{title}</Text>
|
||||
<Text sx={{ opacity: 0.7, fontStyle: 'oblique 5deg' }}>
|
||||
{nodeTemplate?.description}
|
||||
</Text>
|
||||
@ -96,29 +108,3 @@ const TooltipContent = memo(({ nodeId }: { nodeId: string }) => {
|
||||
});
|
||||
|
||||
TooltipContent.displayName = 'TooltipContent';
|
||||
|
||||
const NotesTextarea = memo(({ nodeId }: { nodeId: string }) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const data = useNodeData(nodeId);
|
||||
const handleNotesChanged = useCallback(
|
||||
(e: ChangeEvent<HTMLTextAreaElement>) => {
|
||||
dispatch(nodeNotesChanged({ nodeId, notes: e.target.value }));
|
||||
},
|
||||
[dispatch, nodeId]
|
||||
);
|
||||
if (!isInvocationNodeData(data)) {
|
||||
return null;
|
||||
}
|
||||
return (
|
||||
<FormControl>
|
||||
<FormLabel>Notes</FormLabel>
|
||||
<IAITextarea
|
||||
value={data?.notes}
|
||||
onChange={handleNotesChanged}
|
||||
rows={10}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
NotesTextarea.displayName = 'NodesTextarea';
|
||||
|
@ -0,0 +1,33 @@
|
||||
import { FormControl, FormLabel } from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import IAITextarea from 'common/components/IAITextarea';
|
||||
import { useNodeData } from 'features/nodes/hooks/useNodeData';
|
||||
import { nodeNotesChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { isInvocationNodeData } from 'features/nodes/types/types';
|
||||
import { ChangeEvent, memo, useCallback } from 'react';
|
||||
|
||||
const NotesTextarea = ({ nodeId }: { nodeId: string }) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const data = useNodeData(nodeId);
|
||||
const handleNotesChanged = useCallback(
|
||||
(e: ChangeEvent<HTMLTextAreaElement>) => {
|
||||
dispatch(nodeNotesChanged({ nodeId, notes: e.target.value }));
|
||||
},
|
||||
[dispatch, nodeId]
|
||||
);
|
||||
if (!isInvocationNodeData(data)) {
|
||||
return null;
|
||||
}
|
||||
return (
|
||||
<FormControl>
|
||||
<FormLabel>Notes</FormLabel>
|
||||
<IAITextarea
|
||||
value={data?.notes}
|
||||
onChange={handleNotesChanged}
|
||||
rows={10}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(NotesTextarea);
|
@ -0,0 +1,41 @@
|
||||
import { Checkbox, Flex, FormControl, FormLabel } from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useHasImageOutput } from 'features/nodes/hooks/useHasImageOutput';
|
||||
import { useIsIntermediate } from 'features/nodes/hooks/useIsIntermediate';
|
||||
import { nodeIsIntermediateChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { ChangeEvent, memo, useCallback } from 'react';
|
||||
|
||||
const SaveToGalleryCheckbox = ({ nodeId }: { nodeId: string }) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const hasImageOutput = useHasImageOutput(nodeId);
|
||||
const isIntermediate = useIsIntermediate(nodeId);
|
||||
const handleChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(
|
||||
nodeIsIntermediateChanged({
|
||||
nodeId,
|
||||
isIntermediate: !e.target.checked,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, nodeId]
|
||||
);
|
||||
|
||||
if (!hasImageOutput) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<FormControl as={Flex} sx={{ alignItems: 'center', gap: 2, w: 'auto' }}>
|
||||
<FormLabel sx={{ fontSize: 'xs', mb: '1px' }}>Save to Gallery</FormLabel>
|
||||
<Checkbox
|
||||
className="nopan"
|
||||
size="sm"
|
||||
onChange={handleChange}
|
||||
isChecked={!isIntermediate}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(SaveToGalleryCheckbox);
|
@ -0,0 +1,167 @@
|
||||
import {
|
||||
Editable,
|
||||
EditableInput,
|
||||
EditablePreview,
|
||||
Flex,
|
||||
Tooltip,
|
||||
forwardRef,
|
||||
useEditableControls,
|
||||
} from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useFieldLabel } from 'features/nodes/hooks/useFieldLabel';
|
||||
import { useFieldTemplateTitle } from 'features/nodes/hooks/useFieldTemplateTitle';
|
||||
import { fieldLabelChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { MouseEvent, memo, useCallback, useEffect, useState } from 'react';
|
||||
import FieldTooltipContent from './FieldTooltipContent';
|
||||
import { HANDLE_TOOLTIP_OPEN_DELAY } from 'features/nodes/types/constants';
|
||||
|
||||
interface Props {
|
||||
nodeId: string;
|
||||
fieldName: string;
|
||||
kind: 'input' | 'output';
|
||||
isMissingInput?: boolean;
|
||||
withTooltip?: boolean;
|
||||
}
|
||||
|
||||
const EditableFieldTitle = forwardRef((props: Props, ref) => {
|
||||
const {
|
||||
nodeId,
|
||||
fieldName,
|
||||
kind,
|
||||
isMissingInput = false,
|
||||
withTooltip = false,
|
||||
} = props;
|
||||
const label = useFieldLabel(nodeId, fieldName);
|
||||
const fieldTemplateTitle = useFieldTemplateTitle(nodeId, fieldName, kind);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const [localTitle, setLocalTitle] = useState(
|
||||
label || fieldTemplateTitle || 'Unknown Field'
|
||||
);
|
||||
|
||||
const handleSubmit = useCallback(
|
||||
async (newTitle: string) => {
|
||||
if (newTitle && (newTitle === label || newTitle === fieldTemplateTitle)) {
|
||||
return;
|
||||
}
|
||||
setLocalTitle(newTitle || fieldTemplateTitle || 'Unknown Field');
|
||||
dispatch(fieldLabelChanged({ nodeId, fieldName, label: newTitle }));
|
||||
},
|
||||
[label, fieldTemplateTitle, dispatch, nodeId, fieldName]
|
||||
);
|
||||
|
||||
const handleChange = useCallback((newTitle: string) => {
|
||||
setLocalTitle(newTitle);
|
||||
}, []);
|
||||
|
||||
useEffect(() => {
|
||||
// Another component may change the title; sync local title with global state
|
||||
setLocalTitle(label || fieldTemplateTitle || 'Unknown Field');
|
||||
}, [label, fieldTemplateTitle]);
|
||||
|
||||
return (
|
||||
<Tooltip
|
||||
label={
|
||||
withTooltip ? (
|
||||
<FieldTooltipContent
|
||||
nodeId={nodeId}
|
||||
fieldName={fieldName}
|
||||
kind="input"
|
||||
/>
|
||||
) : undefined
|
||||
}
|
||||
openDelay={HANDLE_TOOLTIP_OPEN_DELAY}
|
||||
placement="top"
|
||||
hasArrow
|
||||
>
|
||||
<Flex
|
||||
ref={ref}
|
||||
sx={{
|
||||
position: 'relative',
|
||||
overflow: 'hidden',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'flex-start',
|
||||
gap: 1,
|
||||
h: 'full',
|
||||
}}
|
||||
>
|
||||
<Editable
|
||||
value={localTitle}
|
||||
onChange={handleChange}
|
||||
onSubmit={handleSubmit}
|
||||
as={Flex}
|
||||
sx={{
|
||||
position: 'relative',
|
||||
alignItems: 'center',
|
||||
h: 'full',
|
||||
}}
|
||||
>
|
||||
<EditablePreview
|
||||
sx={{
|
||||
p: 0,
|
||||
fontWeight: isMissingInput ? 600 : 400,
|
||||
textAlign: 'left',
|
||||
_hover: {
|
||||
fontWeight: '600 !important',
|
||||
},
|
||||
}}
|
||||
noOfLines={1}
|
||||
/>
|
||||
<EditableInput
|
||||
className="nodrag"
|
||||
sx={{
|
||||
p: 0,
|
||||
w: 'full',
|
||||
fontWeight: 600,
|
||||
color: 'base.900',
|
||||
_dark: {
|
||||
color: 'base.100',
|
||||
},
|
||||
_focusVisible: {
|
||||
p: 0,
|
||||
textAlign: 'left',
|
||||
boxShadow: 'none',
|
||||
},
|
||||
}}
|
||||
/>
|
||||
<EditableControls />
|
||||
</Editable>
|
||||
</Flex>
|
||||
</Tooltip>
|
||||
);
|
||||
});
|
||||
|
||||
export default memo(EditableFieldTitle);
|
||||
|
||||
const EditableControls = memo(() => {
|
||||
const { isEditing, getEditButtonProps } = useEditableControls();
|
||||
const handleClick = useCallback(
|
||||
(e: MouseEvent<HTMLDivElement>) => {
|
||||
const { onClick } = getEditButtonProps();
|
||||
if (!onClick) {
|
||||
return;
|
||||
}
|
||||
onClick(e);
|
||||
e.preventDefault();
|
||||
},
|
||||
[getEditButtonProps]
|
||||
);
|
||||
|
||||
if (isEditing) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<Flex
|
||||
onClick={handleClick}
|
||||
position="absolute"
|
||||
w="full"
|
||||
h="full"
|
||||
top={0}
|
||||
insetInlineStart={0}
|
||||
cursor="text"
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
EditableControls.displayName = 'EditableControls';
|
@ -1,16 +1,7 @@
|
||||
import {
|
||||
Editable,
|
||||
EditableInput,
|
||||
EditablePreview,
|
||||
Flex,
|
||||
forwardRef,
|
||||
useEditableControls,
|
||||
} from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { Flex, Text, forwardRef } from '@chakra-ui/react';
|
||||
import { useFieldLabel } from 'features/nodes/hooks/useFieldLabel';
|
||||
import { useFieldTemplateTitle } from 'features/nodes/hooks/useFieldTemplateTitle';
|
||||
import { fieldLabelChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { MouseEvent, memo, useCallback, useEffect, useState } from 'react';
|
||||
import { memo } from 'react';
|
||||
|
||||
interface Props {
|
||||
nodeId: string;
|
||||
@ -24,31 +15,6 @@ const FieldTitle = forwardRef((props: Props, ref) => {
|
||||
const label = useFieldLabel(nodeId, fieldName);
|
||||
const fieldTemplateTitle = useFieldTemplateTitle(nodeId, fieldName, kind);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const [localTitle, setLocalTitle] = useState(
|
||||
label || fieldTemplateTitle || 'Unknown Field'
|
||||
);
|
||||
|
||||
const handleSubmit = useCallback(
|
||||
async (newTitle: string) => {
|
||||
if (newTitle && (newTitle === label || newTitle === fieldTemplateTitle)) {
|
||||
return;
|
||||
}
|
||||
setLocalTitle(newTitle || fieldTemplateTitle || 'Unknown Field');
|
||||
dispatch(fieldLabelChanged({ nodeId, fieldName, label: newTitle }));
|
||||
},
|
||||
[label, fieldTemplateTitle, dispatch, nodeId, fieldName]
|
||||
);
|
||||
|
||||
const handleChange = useCallback((newTitle: string) => {
|
||||
setLocalTitle(newTitle);
|
||||
}, []);
|
||||
|
||||
useEffect(() => {
|
||||
// Another component may change the title; sync local title with global state
|
||||
setLocalTitle(label || fieldTemplateTitle || 'Unknown Field');
|
||||
}, [label, fieldTemplateTitle]);
|
||||
|
||||
return (
|
||||
<Flex
|
||||
ref={ref}
|
||||
@ -62,82 +28,11 @@ const FieldTitle = forwardRef((props: Props, ref) => {
|
||||
w: 'full',
|
||||
}}
|
||||
>
|
||||
<Editable
|
||||
value={localTitle}
|
||||
onChange={handleChange}
|
||||
onSubmit={handleSubmit}
|
||||
as={Flex}
|
||||
sx={{
|
||||
position: 'relative',
|
||||
alignItems: 'center',
|
||||
h: 'full',
|
||||
w: 'full',
|
||||
}}
|
||||
>
|
||||
<EditablePreview
|
||||
sx={{
|
||||
p: 0,
|
||||
fontWeight: isMissingInput ? 600 : 400,
|
||||
textAlign: 'left',
|
||||
_hover: {
|
||||
fontWeight: '600 !important',
|
||||
},
|
||||
}}
|
||||
noOfLines={1}
|
||||
/>
|
||||
<EditableInput
|
||||
className="nodrag"
|
||||
sx={{
|
||||
p: 0,
|
||||
fontWeight: 600,
|
||||
color: 'base.900',
|
||||
_dark: {
|
||||
color: 'base.100',
|
||||
},
|
||||
_focusVisible: {
|
||||
p: 0,
|
||||
textAlign: 'left',
|
||||
boxShadow: 'none',
|
||||
},
|
||||
}}
|
||||
/>
|
||||
<EditableControls />
|
||||
</Editable>
|
||||
<Text sx={{ fontWeight: isMissingInput ? 600 : 400 }}>
|
||||
{label || fieldTemplateTitle}
|
||||
</Text>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
export default memo(FieldTitle);
|
||||
|
||||
const EditableControls = memo(() => {
|
||||
const { isEditing, getEditButtonProps } = useEditableControls();
|
||||
const handleClick = useCallback(
|
||||
(e: MouseEvent<HTMLDivElement>) => {
|
||||
const { onClick } = getEditButtonProps();
|
||||
if (!onClick) {
|
||||
return;
|
||||
}
|
||||
onClick(e);
|
||||
e.preventDefault();
|
||||
},
|
||||
[getEditButtonProps]
|
||||
);
|
||||
|
||||
if (isEditing) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<Flex
|
||||
onClick={handleClick}
|
||||
position="absolute"
|
||||
w="full"
|
||||
h="full"
|
||||
top={0}
|
||||
insetInlineStart={0}
|
||||
cursor="text"
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
EditableControls.displayName = 'EditableControls';
|
||||
|
@ -34,6 +34,8 @@ const FieldTooltipContent = ({ nodeId, fieldName, kind }: Props) => {
|
||||
}
|
||||
|
||||
return 'Unknown Field';
|
||||
} else {
|
||||
return fieldTemplate?.title || 'Unknown Field';
|
||||
}
|
||||
}, [field, fieldTemplate]);
|
||||
|
||||
|
@ -1,16 +1,11 @@
|
||||
import { Box, Flex, FormControl, FormLabel, Tooltip } from '@chakra-ui/react';
|
||||
import SelectionOverlay from 'common/components/SelectionOverlay';
|
||||
import { Box, Flex, FormControl, FormLabel } from '@chakra-ui/react';
|
||||
import { useConnectionState } from 'features/nodes/hooks/useConnectionState';
|
||||
import { useDoesInputHaveValue } from 'features/nodes/hooks/useDoesInputHaveValue';
|
||||
import { useFieldInputKind } from 'features/nodes/hooks/useFieldInputKind';
|
||||
import { useFieldTemplate } from 'features/nodes/hooks/useFieldTemplate';
|
||||
import { useIsMouseOverField } from 'features/nodes/hooks/useIsMouseOverField';
|
||||
import { HANDLE_TOOLTIP_OPEN_DELAY } from 'features/nodes/types/constants';
|
||||
import { PropsWithChildren, memo, useMemo } from 'react';
|
||||
import EditableFieldTitle from './EditableFieldTitle';
|
||||
import FieldContextMenu from './FieldContextMenu';
|
||||
import FieldHandle from './FieldHandle';
|
||||
import FieldTitle from './FieldTitle';
|
||||
import FieldTooltipContent from './FieldTooltipContent';
|
||||
import InputFieldRenderer from './InputFieldRenderer';
|
||||
|
||||
interface Props {
|
||||
@ -21,7 +16,6 @@ interface Props {
|
||||
const InputField = ({ nodeId, fieldName }: Props) => {
|
||||
const fieldTemplate = useFieldTemplate(nodeId, fieldName, 'input');
|
||||
const doesFieldHaveValue = useDoesInputHaveValue(nodeId, fieldName);
|
||||
const input = useFieldInputKind(nodeId, fieldName);
|
||||
|
||||
const {
|
||||
isConnected,
|
||||
@ -51,11 +45,7 @@ const InputField = ({ nodeId, fieldName }: Props) => {
|
||||
|
||||
if (fieldTemplate?.fieldKind !== 'input') {
|
||||
return (
|
||||
<InputFieldWrapper
|
||||
nodeId={nodeId}
|
||||
fieldName={fieldName}
|
||||
shouldDim={shouldDim}
|
||||
>
|
||||
<InputFieldWrapper shouldDim={shouldDim}>
|
||||
<FormControl
|
||||
sx={{ color: 'error.400', textAlign: 'left', fontSize: 'sm' }}
|
||||
>
|
||||
@ -66,19 +56,14 @@ const InputField = ({ nodeId, fieldName }: Props) => {
|
||||
}
|
||||
|
||||
return (
|
||||
<InputFieldWrapper
|
||||
nodeId={nodeId}
|
||||
fieldName={fieldName}
|
||||
shouldDim={shouldDim}
|
||||
>
|
||||
<InputFieldWrapper shouldDim={shouldDim}>
|
||||
<FormControl
|
||||
as={Flex}
|
||||
isInvalid={isMissingInput}
|
||||
isDisabled={isConnected}
|
||||
sx={{
|
||||
alignItems: 'stretch',
|
||||
justifyContent: 'space-between',
|
||||
ps: 2,
|
||||
ps: fieldTemplate.input === 'direct' ? 0 : 2,
|
||||
gap: 2,
|
||||
h: 'full',
|
||||
w: 'full',
|
||||
@ -86,42 +71,27 @@ const InputField = ({ nodeId, fieldName }: Props) => {
|
||||
>
|
||||
<FieldContextMenu nodeId={nodeId} fieldName={fieldName} kind="input">
|
||||
{(ref) => (
|
||||
<Tooltip
|
||||
label={
|
||||
<FieldTooltipContent
|
||||
nodeId={nodeId}
|
||||
fieldName={fieldName}
|
||||
kind="input"
|
||||
/>
|
||||
}
|
||||
openDelay={HANDLE_TOOLTIP_OPEN_DELAY}
|
||||
placement="top"
|
||||
hasArrow
|
||||
<FormLabel
|
||||
sx={{
|
||||
display: 'flex',
|
||||
alignItems: 'center',
|
||||
mb: 0,
|
||||
px: 1,
|
||||
gap: 2,
|
||||
}}
|
||||
>
|
||||
<FormLabel
|
||||
sx={{
|
||||
mb: 0,
|
||||
width: input === 'connection' ? 'auto' : '25%',
|
||||
flexShrink: 0,
|
||||
flexGrow: 0,
|
||||
}}
|
||||
>
|
||||
<FieldTitle
|
||||
ref={ref}
|
||||
nodeId={nodeId}
|
||||
fieldName={fieldName}
|
||||
kind="input"
|
||||
isMissingInput={isMissingInput}
|
||||
/>
|
||||
</FormLabel>
|
||||
</Tooltip>
|
||||
<EditableFieldTitle
|
||||
ref={ref}
|
||||
nodeId={nodeId}
|
||||
fieldName={fieldName}
|
||||
kind="input"
|
||||
isMissingInput={isMissingInput}
|
||||
withTooltip
|
||||
/>
|
||||
</FormLabel>
|
||||
)}
|
||||
</FieldContextMenu>
|
||||
<Box
|
||||
sx={{
|
||||
width: input === 'connection' ? 'auto' : '75%',
|
||||
}}
|
||||
>
|
||||
<Box>
|
||||
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} />
|
||||
</Box>
|
||||
</FormControl>
|
||||
@ -143,19 +113,12 @@ export default memo(InputField);
|
||||
|
||||
type InputFieldWrapperProps = PropsWithChildren<{
|
||||
shouldDim: boolean;
|
||||
nodeId: string;
|
||||
fieldName: string;
|
||||
}>;
|
||||
|
||||
const InputFieldWrapper = memo(
|
||||
({ shouldDim, nodeId, fieldName, children }: InputFieldWrapperProps) => {
|
||||
const { isMouseOverField, handleMouseOver, handleMouseOut } =
|
||||
useIsMouseOverField(nodeId, fieldName);
|
||||
|
||||
({ shouldDim, children }: InputFieldWrapperProps) => {
|
||||
return (
|
||||
<Flex
|
||||
onMouseOver={handleMouseOver}
|
||||
onMouseOut={handleMouseOut}
|
||||
sx={{
|
||||
position: 'relative',
|
||||
minH: 8,
|
||||
@ -169,7 +132,6 @@ const InputFieldWrapper = memo(
|
||||
}}
|
||||
>
|
||||
{children}
|
||||
<SelectionOverlay isSelected={false} isHovered={isMouseOverField} />
|
||||
</Flex>
|
||||
);
|
||||
}
|
||||
|
@ -1,13 +1,20 @@
|
||||
import { Flex, FormControl, FormLabel, Icon, Tooltip } from '@chakra-ui/react';
|
||||
import {
|
||||
Flex,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
Icon,
|
||||
Spacer,
|
||||
Tooltip,
|
||||
} from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import SelectionOverlay from 'common/components/SelectionOverlay';
|
||||
import { useIsMouseOverField } from 'features/nodes/hooks/useIsMouseOverField';
|
||||
import NodeSelectionOverlay from 'common/components/NodeSelectionOverlay';
|
||||
import { useMouseOverNode } from 'features/nodes/hooks/useMouseOverNode';
|
||||
import { workflowExposedFieldRemoved } from 'features/nodes/store/nodesSlice';
|
||||
import { HANDLE_TOOLTIP_OPEN_DELAY } from 'features/nodes/types/constants';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { FaInfoCircle, FaTrash } from 'react-icons/fa';
|
||||
import FieldTitle from './FieldTitle';
|
||||
import EditableFieldTitle from './EditableFieldTitle';
|
||||
import FieldTooltipContent from './FieldTooltipContent';
|
||||
import InputFieldRenderer from './InputFieldRenderer';
|
||||
|
||||
@ -18,8 +25,8 @@ type Props = {
|
||||
|
||||
const LinearViewField = ({ nodeId, fieldName }: Props) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { isMouseOverField, handleMouseOut, handleMouseOver } =
|
||||
useIsMouseOverField(nodeId, fieldName);
|
||||
const { isMouseOverNode, handleMouseOut, handleMouseOver } =
|
||||
useMouseOverNode(nodeId);
|
||||
|
||||
const handleRemoveField = useCallback(() => {
|
||||
dispatch(workflowExposedFieldRemoved({ nodeId, fieldName }));
|
||||
@ -27,8 +34,8 @@ const LinearViewField = ({ nodeId, fieldName }: Props) => {
|
||||
|
||||
return (
|
||||
<Flex
|
||||
onMouseOver={handleMouseOver}
|
||||
onMouseOut={handleMouseOut}
|
||||
onMouseEnter={handleMouseOver}
|
||||
onMouseLeave={handleMouseOut}
|
||||
layerStyle="second"
|
||||
sx={{
|
||||
position: 'relative',
|
||||
@ -42,11 +49,15 @@ const LinearViewField = ({ nodeId, fieldName }: Props) => {
|
||||
sx={{
|
||||
display: 'flex',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'space-between',
|
||||
mb: 0,
|
||||
}}
|
||||
>
|
||||
<FieldTitle nodeId={nodeId} fieldName={fieldName} kind="input" />
|
||||
<EditableFieldTitle
|
||||
nodeId={nodeId}
|
||||
fieldName={fieldName}
|
||||
kind="input"
|
||||
/>
|
||||
<Spacer />
|
||||
<Tooltip
|
||||
label={
|
||||
<FieldTooltipContent
|
||||
@ -74,7 +85,7 @@ const LinearViewField = ({ nodeId, fieldName }: Props) => {
|
||||
</FormLabel>
|
||||
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} />
|
||||
</FormControl>
|
||||
<SelectionOverlay isSelected={false} isHovered={isMouseOverField} />
|
||||
<NodeSelectionOverlay isSelected={false} isHovered={isMouseOverNode} />
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -92,6 +92,7 @@ const ControlNetModelInputFieldComponent = (
|
||||
error={!selectedModel}
|
||||
data={data}
|
||||
onChange={handleValueChanged}
|
||||
sx={{ width: '100%' }}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
@ -101,8 +101,10 @@ const LoRAModelInputFieldComponent = (
|
||||
item.label?.toLowerCase().includes(value.toLowerCase().trim()) ||
|
||||
item.value.toLowerCase().includes(value.toLowerCase().trim())
|
||||
}
|
||||
error={!selectedLoRAModel}
|
||||
onChange={handleChange}
|
||||
sx={{
|
||||
width: '100%',
|
||||
'.mantine-Select-dropdown': {
|
||||
width: '16rem !important',
|
||||
},
|
||||
|
@ -134,6 +134,7 @@ const MainModelInputFieldComponent = (
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
sx={{
|
||||
width: '100%',
|
||||
'.mantine-Select-dropdown': {
|
||||
width: '16rem !important',
|
||||
},
|
||||
|
@ -1,12 +1,12 @@
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
|
||||
import { fieldRefinerModelValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import {
|
||||
FieldComponentProps,
|
||||
SDXLRefinerModelInputFieldTemplate,
|
||||
SDXLRefinerModelInputFieldValue,
|
||||
FieldComponentProps,
|
||||
} from 'features/nodes/types/types';
|
||||
import { MODEL_TYPE_MAP } from 'features/parameters/types/constants';
|
||||
import { modelIdToMainModelParam } from 'features/parameters/util/modelIdToMainModelParam';
|
||||
@ -101,20 +101,17 @@ const RefinerModelInputFieldComponent = (
|
||||
value={selectedModel?.id}
|
||||
placeholder={data.length > 0 ? 'Select a model' : 'No models available'}
|
||||
data={data}
|
||||
error={data.length === 0}
|
||||
error={!selectedModel}
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
sx={{
|
||||
width: '100%',
|
||||
'.mantine-Select-dropdown': {
|
||||
width: '16rem !important',
|
||||
},
|
||||
}}
|
||||
/>
|
||||
{isSyncModelEnabled && (
|
||||
<Box mt={7}>
|
||||
<SyncModelsButton className="nodrag" iconMode />
|
||||
</Box>
|
||||
)}
|
||||
{isSyncModelEnabled && <SyncModelsButton className="nodrag" iconMode />}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -128,10 +128,11 @@ const ModelInputFieldComponent = (
|
||||
value={selectedModel?.id}
|
||||
placeholder={data.length > 0 ? 'Select a model' : 'No models available'}
|
||||
data={data}
|
||||
error={data.length === 0}
|
||||
error={!selectedModel}
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
sx={{
|
||||
width: '100%',
|
||||
'.mantine-Select-dropdown': {
|
||||
width: '16rem !important',
|
||||
},
|
||||
|
@ -4,9 +4,9 @@ import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSe
|
||||
import IAIMantineSelectItemWithTooltip from 'common/components/IAIMantineSelectItemWithTooltip';
|
||||
import { fieldVaeModelValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import {
|
||||
FieldComponentProps,
|
||||
VaeModelInputFieldTemplate,
|
||||
VaeModelInputFieldValue,
|
||||
FieldComponentProps,
|
||||
} from 'features/nodes/types/types';
|
||||
import { MODEL_TYPE_MAP } from 'features/parameters/types/constants';
|
||||
import { modelIdToVAEModelParam } from 'features/parameters/util/modelIdToVAEModelParam';
|
||||
@ -88,17 +88,15 @@ const VaeModelInputFieldComponent = (
|
||||
className="nowheel nodrag"
|
||||
itemComponent={IAIMantineSelectItemWithTooltip}
|
||||
tooltip={selectedVaeModel?.description}
|
||||
label={
|
||||
selectedVaeModel?.base_model &&
|
||||
MODEL_TYPE_MAP[selectedVaeModel?.base_model]
|
||||
}
|
||||
value={selectedVaeModel?.id ?? 'default'}
|
||||
placeholder="Default"
|
||||
data={data}
|
||||
onChange={handleChangeModel}
|
||||
disabled={data.length === 0}
|
||||
error={!selectedVaeModel}
|
||||
clearable
|
||||
sx={{
|
||||
width: '100%',
|
||||
'.mantine-Select-dropdown': {
|
||||
width: '16rem !important',
|
||||
},
|
||||
|
@ -27,9 +27,11 @@ const NodeTitle = ({ nodeId, title }: Props) => {
|
||||
const handleSubmit = useCallback(
|
||||
async (newTitle: string) => {
|
||||
dispatch(nodeLabelChanged({ nodeId, label: newTitle }));
|
||||
setLocalTitle(newTitle || title || 'Problem Setting Title');
|
||||
setLocalTitle(
|
||||
newTitle || title || templateTitle || 'Problem Setting Title'
|
||||
);
|
||||
},
|
||||
[nodeId, dispatch, title]
|
||||
[dispatch, nodeId, title, templateTitle]
|
||||
);
|
||||
|
||||
const handleChange = useCallback((newTitle: string) => {
|
||||
|
@ -7,6 +7,8 @@ import {
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import NodeSelectionOverlay from 'common/components/NodeSelectionOverlay';
|
||||
import { useMouseOverNode } from 'features/nodes/hooks/useMouseOverNode';
|
||||
import {
|
||||
DRAG_HANDLE_CLASSNAME,
|
||||
NODE_WIDTH,
|
||||
@ -23,6 +25,8 @@ type NodeWrapperProps = PropsWithChildren & {
|
||||
|
||||
const NodeWrapper = (props: NodeWrapperProps) => {
|
||||
const { nodeId, width, children, selected } = props;
|
||||
const { isMouseOverNode, handleMouseOut, handleMouseOver } =
|
||||
useMouseOverNode(nodeId);
|
||||
|
||||
const selectIsInProgress = useMemo(
|
||||
() =>
|
||||
@ -36,25 +40,16 @@ const NodeWrapper = (props: NodeWrapperProps) => {
|
||||
|
||||
const isInProgress = useAppSelector(selectIsInProgress);
|
||||
|
||||
const [
|
||||
nodeSelectedLight,
|
||||
nodeSelectedDark,
|
||||
nodeInProgressLight,
|
||||
nodeInProgressDark,
|
||||
shadowsXl,
|
||||
shadowsBase,
|
||||
] = useToken('shadows', [
|
||||
'nodeSelected.light',
|
||||
'nodeSelected.dark',
|
||||
'nodeInProgress.light',
|
||||
'nodeInProgress.dark',
|
||||
'shadows.xl',
|
||||
'shadows.base',
|
||||
]);
|
||||
const [nodeInProgressLight, nodeInProgressDark, shadowsXl, shadowsBase] =
|
||||
useToken('shadows', [
|
||||
'nodeInProgress.light',
|
||||
'nodeInProgress.dark',
|
||||
'shadows.xl',
|
||||
'shadows.base',
|
||||
]);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const selectedShadow = useColorModeValue(nodeSelectedLight, nodeSelectedDark);
|
||||
const inProgressShadow = useColorModeValue(
|
||||
nodeInProgressLight,
|
||||
nodeInProgressDark
|
||||
@ -69,6 +64,8 @@ const NodeWrapper = (props: NodeWrapperProps) => {
|
||||
return (
|
||||
<Box
|
||||
onClick={handleClick}
|
||||
onMouseEnter={handleMouseOver}
|
||||
onMouseLeave={handleMouseOut}
|
||||
className={DRAG_HANDLE_CLASSNAME}
|
||||
sx={{
|
||||
h: 'full',
|
||||
@ -77,11 +74,6 @@ const NodeWrapper = (props: NodeWrapperProps) => {
|
||||
w: width ?? NODE_WIDTH,
|
||||
transitionProperty: 'common',
|
||||
transitionDuration: '0.1s',
|
||||
shadow: selected
|
||||
? isInProgress
|
||||
? undefined
|
||||
: selectedShadow
|
||||
: undefined,
|
||||
cursor: 'grab',
|
||||
opacity,
|
||||
}}
|
||||
@ -116,6 +108,7 @@ const NodeWrapper = (props: NodeWrapperProps) => {
|
||||
}}
|
||||
/>
|
||||
{children}
|
||||
<NodeSelectionOverlay isSelected={selected} isHovered={isMouseOverNode} />
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
@ -2,12 +2,12 @@ import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import { useWorkflow } from 'features/nodes/hooks/useWorkflow';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { FaSave } from 'react-icons/fa';
|
||||
import { FaDownload } from 'react-icons/fa';
|
||||
|
||||
const SaveWorkflowButton = () => {
|
||||
const DownloadWorkflowButton = () => {
|
||||
const { t } = useTranslation();
|
||||
const workflow = useWorkflow();
|
||||
const handleSave = useCallback(() => {
|
||||
const handleDownload = useCallback(() => {
|
||||
const blob = new Blob([JSON.stringify(workflow, null, 2)]);
|
||||
const a = document.createElement('a');
|
||||
a.href = URL.createObjectURL(blob);
|
||||
@ -18,12 +18,12 @@ const SaveWorkflowButton = () => {
|
||||
}, [workflow]);
|
||||
return (
|
||||
<IAIIconButton
|
||||
icon={<FaSave />}
|
||||
tooltip={t('nodes.saveWorkflow')}
|
||||
aria-label={t('nodes.saveWorkflow')}
|
||||
onClick={handleSave}
|
||||
icon={<FaDownload />}
|
||||
tooltip={t('nodes.downloadWorkflow')}
|
||||
aria-label={t('nodes.downloadWorkflow')}
|
||||
onClick={handleDownload}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(SaveWorkflowButton);
|
||||
export default memo(DownloadWorkflowButton);
|
@ -2,7 +2,7 @@ import { Flex } from '@chakra-ui/layout';
|
||||
import { memo } from 'react';
|
||||
import LoadWorkflowButton from './LoadWorkflowButton';
|
||||
import ResetWorkflowButton from './ResetWorkflowButton';
|
||||
import SaveWorkflowButton from './SaveWorkflowButton';
|
||||
import DownloadWorkflowButton from './DownloadWorkflowButton';
|
||||
|
||||
const TopCenterPanel = () => {
|
||||
return (
|
||||
@ -15,7 +15,7 @@ const TopCenterPanel = () => {
|
||||
transform: 'translate(-50%)',
|
||||
}}
|
||||
>
|
||||
<SaveWorkflowButton />
|
||||
<DownloadWorkflowButton />
|
||||
<LoadWorkflowButton />
|
||||
<ResetWorkflowButton />
|
||||
</Flex>
|
||||
|
@ -0,0 +1,74 @@
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
|
||||
import { InvocationTemplate, NodeData } from 'features/nodes/types/types';
|
||||
import { memo } from 'react';
|
||||
import NotesTextarea from '../../flow/nodes/Invocation/NotesTextarea';
|
||||
import NodeTitle from '../../flow/nodes/common/NodeTitle';
|
||||
import ScrollableContent from '../ScrollableContent';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
({ nodes }) => {
|
||||
const lastSelectedNodeId =
|
||||
nodes.selectedNodes[nodes.selectedNodes.length - 1];
|
||||
|
||||
const lastSelectedNode = nodes.nodes.find(
|
||||
(node) => node.id === lastSelectedNodeId
|
||||
);
|
||||
|
||||
const lastSelectedNodeTemplate = lastSelectedNode
|
||||
? nodes.nodeTemplates[lastSelectedNode.data.type]
|
||||
: undefined;
|
||||
|
||||
return {
|
||||
data: lastSelectedNode?.data,
|
||||
template: lastSelectedNodeTemplate,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const InspectorDetailsTab = () => {
|
||||
const { data, template } = useAppSelector(selector);
|
||||
|
||||
if (!template || !data) {
|
||||
return <IAINoContentFallback label="No node selected" icon={null} />;
|
||||
}
|
||||
|
||||
return <Content data={data} template={template} />;
|
||||
};
|
||||
|
||||
export default memo(InspectorDetailsTab);
|
||||
|
||||
const Content = (props: { data: NodeData; template: InvocationTemplate }) => {
|
||||
const { data } = props;
|
||||
|
||||
return (
|
||||
<Box
|
||||
sx={{
|
||||
position: 'relative',
|
||||
w: 'full',
|
||||
h: 'full',
|
||||
}}
|
||||
>
|
||||
<ScrollableContent>
|
||||
<Flex
|
||||
sx={{
|
||||
flexDir: 'column',
|
||||
position: 'relative',
|
||||
p: 1,
|
||||
gap: 2,
|
||||
w: 'full',
|
||||
}}
|
||||
>
|
||||
<NodeTitle nodeId={data.id} />
|
||||
<NotesTextarea nodeId={data.id} />
|
||||
</Flex>
|
||||
</ScrollableContent>
|
||||
</Box>
|
||||
);
|
||||
};
|
@ -4,12 +4,13 @@ import { stateSelector } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
|
||||
import DataViewer from 'features/gallery/components/ImageMetadataViewer/DataViewer';
|
||||
import { isInvocationNode } from 'features/nodes/types/types';
|
||||
import { memo } from 'react';
|
||||
import ImageOutputPreview from './outputs/ImageOutputPreview';
|
||||
import ScrollableContent from '../ScrollableContent';
|
||||
import { ImageOutput } from 'services/api/types';
|
||||
import { AnyResult } from 'services/events/types';
|
||||
import StringOutputPreview from './outputs/StringOutputPreview';
|
||||
import NumberOutputPreview from './outputs/NumberOutputPreview';
|
||||
import ScrollableContent from '../ScrollableContent';
|
||||
import ImageOutputPreview from './outputs/ImageOutputPreview';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
@ -21,11 +22,16 @@ const selector = createSelector(
|
||||
(node) => node.id === lastSelectedNodeId
|
||||
);
|
||||
|
||||
const lastSelectedNodeTemplate = lastSelectedNode
|
||||
? nodes.nodeTemplates[lastSelectedNode.data.type]
|
||||
: undefined;
|
||||
|
||||
const nes =
|
||||
nodes.nodeExecutionStates[lastSelectedNodeId ?? '__UNKNOWN_NODE__'];
|
||||
|
||||
return {
|
||||
node: lastSelectedNode,
|
||||
template: lastSelectedNodeTemplate,
|
||||
nes,
|
||||
};
|
||||
},
|
||||
@ -33,9 +39,9 @@ const selector = createSelector(
|
||||
);
|
||||
|
||||
const InspectorOutputsTab = () => {
|
||||
const { node, nes } = useAppSelector(selector);
|
||||
const { node, template, nes } = useAppSelector(selector);
|
||||
|
||||
if (!node || !nes) {
|
||||
if (!node || !nes || !isInvocationNode(node)) {
|
||||
return <IAINoContentFallback label="No node selected" icon={null} />;
|
||||
}
|
||||
|
||||
@ -63,33 +69,16 @@ const InspectorOutputsTab = () => {
|
||||
w: 'full',
|
||||
}}
|
||||
>
|
||||
{nes.outputs.map((result, i) => {
|
||||
if (result.type === 'string_output') {
|
||||
return (
|
||||
<StringOutputPreview key={getKey(result, i)} output={result} />
|
||||
);
|
||||
}
|
||||
if (result.type === 'float_output') {
|
||||
return (
|
||||
<NumberOutputPreview key={getKey(result, i)} output={result} />
|
||||
);
|
||||
}
|
||||
if (result.type === 'integer_output') {
|
||||
return (
|
||||
<NumberOutputPreview key={getKey(result, i)} output={result} />
|
||||
);
|
||||
}
|
||||
if (result.type === 'image_output') {
|
||||
return (
|
||||
<ImageOutputPreview key={getKey(result, i)} output={result} />
|
||||
);
|
||||
}
|
||||
return (
|
||||
<pre key={getKey(result, i)}>
|
||||
{JSON.stringify(result, null, 2)}
|
||||
</pre>
|
||||
);
|
||||
})}
|
||||
{template?.outputType === 'image_output' ? (
|
||||
nes.outputs.map((result, i) => (
|
||||
<ImageOutputPreview
|
||||
key={getKey(result, i)}
|
||||
output={result as ImageOutput}
|
||||
/>
|
||||
))
|
||||
) : (
|
||||
<DataViewer data={nes.outputs} label="Node Outputs" />
|
||||
)}
|
||||
</Flex>
|
||||
</ScrollableContent>
|
||||
</Box>
|
||||
|
@ -10,6 +10,7 @@ import { memo } from 'react';
|
||||
import InspectorDataTab from './InspectorDataTab';
|
||||
import InspectorOutputsTab from './InspectorOutputsTab';
|
||||
import InspectorTemplateTab from './InspectorTemplateTab';
|
||||
// import InspectorDetailsTab from './InspectorDetailsTab';
|
||||
|
||||
const InspectorPanel = () => {
|
||||
return (
|
||||
@ -29,12 +30,16 @@ const InspectorPanel = () => {
|
||||
sx={{ display: 'flex', flexDir: 'column', w: 'full', h: 'full' }}
|
||||
>
|
||||
<TabList>
|
||||
{/* <Tab>Details</Tab> */}
|
||||
<Tab>Outputs</Tab>
|
||||
<Tab>Data</Tab>
|
||||
<Tab>Template</Tab>
|
||||
</TabList>
|
||||
|
||||
<TabPanels>
|
||||
{/* <TabPanel>
|
||||
<InspectorDetailsTab />
|
||||
</TabPanel> */}
|
||||
<TabPanel>
|
||||
<InspectorOutputsTab />
|
||||
</TabPanel>
|
||||
|
@ -1,13 +0,0 @@
|
||||
import { Text } from '@chakra-ui/react';
|
||||
import { memo } from 'react';
|
||||
import { FloatOutput, IntegerOutput } from 'services/api/types';
|
||||
|
||||
type Props = {
|
||||
output: IntegerOutput | FloatOutput;
|
||||
};
|
||||
|
||||
const NumberOutputPreview = ({ output }: Props) => {
|
||||
return <Text>{output.value}</Text>;
|
||||
};
|
||||
|
||||
export default memo(NumberOutputPreview);
|
@ -1,13 +0,0 @@
|
||||
import { Text } from '@chakra-ui/react';
|
||||
import { memo } from 'react';
|
||||
import { StringOutput } from 'services/api/types';
|
||||
|
||||
type Props = {
|
||||
output: StringOutput;
|
||||
};
|
||||
|
||||
const StringOutputPreview = ({ output }: Props) => {
|
||||
return <Text>{output.value}</Text>;
|
||||
};
|
||||
|
||||
export default memo(StringOutputPreview);
|
@ -22,6 +22,7 @@ export const useAnyOrDirectInputFieldNames = (nodeId: string) => {
|
||||
}
|
||||
return map(nodeTemplate.inputs)
|
||||
.filter((field) => ['any', 'direct'].includes(field.input))
|
||||
.filter((field) => !field.ui_hidden)
|
||||
.sort((a, b) => (a.ui_order ?? 0) - (b.ui_order ?? 0))
|
||||
.map((field) => field.name)
|
||||
.filter((fieldName) => fieldName !== 'is_intermediate');
|
||||
|
@ -143,6 +143,8 @@ export const useBuildNodeData = () => {
|
||||
isOpen: true,
|
||||
label: '',
|
||||
notes: '',
|
||||
embedWorkflow: false,
|
||||
isIntermediate: true,
|
||||
},
|
||||
};
|
||||
|
||||
|
@ -22,6 +22,7 @@ export const useConnectionInputFieldNames = (nodeId: string) => {
|
||||
}
|
||||
return map(nodeTemplate.inputs)
|
||||
.filter((field) => field.input === 'connection')
|
||||
.filter((field) => !field.ui_hidden)
|
||||
.sort((a, b) => (a.ui_order ?? 0) - (b.ui_order ?? 0))
|
||||
.map((field) => field.name)
|
||||
.filter((fieldName) => fieldName !== 'is_intermediate');
|
||||
|
@ -0,0 +1,27 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { useMemo } from 'react';
|
||||
import { isInvocationNode } from '../types/types';
|
||||
|
||||
export const useEmbedWorkflow = (nodeId: string) => {
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createSelector(
|
||||
stateSelector,
|
||||
({ nodes }) => {
|
||||
const node = nodes.nodes.find((node) => node.id === nodeId);
|
||||
if (!isInvocationNode(node)) {
|
||||
return false;
|
||||
}
|
||||
return node.data.embedWorkflow;
|
||||
},
|
||||
defaultSelectorOptions
|
||||
),
|
||||
[nodeId]
|
||||
);
|
||||
|
||||
const embedWorkflow = useAppSelector(selector);
|
||||
return embedWorkflow;
|
||||
};
|
@ -15,7 +15,7 @@ export const useIsIntermediate = (nodeId: string) => {
|
||||
if (!isInvocationNode(node)) {
|
||||
return false;
|
||||
}
|
||||
return Boolean(node.data.inputs.is_intermediate?.value);
|
||||
return node.data.isIntermediate;
|
||||
},
|
||||
defaultSelectorOptions
|
||||
),
|
||||
|
@ -3,7 +3,7 @@ import { useLogger } from 'app/logging/useLogger';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { workflowLoaded } from 'features/nodes/store/nodesSlice';
|
||||
import { zWorkflow } from 'features/nodes/types/types';
|
||||
import { zValidatedWorkflow } from 'features/nodes/types/types';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { makeToast } from 'features/system/util/makeToast';
|
||||
import { memo, useCallback } from 'react';
|
||||
@ -24,52 +24,65 @@ export const useLoadWorkflowFromFile = () => {
|
||||
|
||||
try {
|
||||
const parsedJSON = JSON.parse(String(rawJSON));
|
||||
const result = zWorkflow.safeParse(parsedJSON);
|
||||
const result = zValidatedWorkflow.safeParse(parsedJSON);
|
||||
|
||||
if (!result.success) {
|
||||
const message = fromZodError(result.error, {
|
||||
const { message } = fromZodError(result.error, {
|
||||
prefix: 'Workflow Validation Error',
|
||||
}).toString();
|
||||
});
|
||||
|
||||
logger.error({ error: parseify(result.error) }, message);
|
||||
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Unable to Validate Workflow',
|
||||
description: (
|
||||
<WorkflowValidationErrorContent error={result.error} />
|
||||
),
|
||||
status: 'error',
|
||||
duration: 5000,
|
||||
})
|
||||
)
|
||||
);
|
||||
reader.abort();
|
||||
return;
|
||||
}
|
||||
dispatch(workflowLoaded(result.data.workflow));
|
||||
|
||||
dispatch(workflowLoaded(result.data));
|
||||
if (!result.data.warnings.length) {
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Workflow Loaded',
|
||||
status: 'success',
|
||||
})
|
||||
)
|
||||
);
|
||||
reader.abort();
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Workflow Loaded',
|
||||
status: 'success',
|
||||
title: 'Workflow Loaded with Warnings',
|
||||
status: 'warning',
|
||||
})
|
||||
)
|
||||
);
|
||||
result.data.warnings.forEach(({ message, ...rest }) => {
|
||||
logger.warn(rest, message);
|
||||
});
|
||||
|
||||
reader.abort();
|
||||
} catch (error) {
|
||||
} catch {
|
||||
// file reader error
|
||||
if (error) {
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Unable to Load Workflow',
|
||||
status: 'error',
|
||||
})
|
||||
)
|
||||
);
|
||||
}
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Unable to Load Workflow',
|
||||
status: 'error',
|
||||
})
|
||||
)
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -0,0 +1,31 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
import { mouseOverNodeChanged } from '../store/nodesSlice';
|
||||
|
||||
export const useMouseOverNode = (nodeId: string) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createSelector(
|
||||
stateSelector,
|
||||
({ nodes }) => nodes.mouseOverNode === nodeId,
|
||||
defaultSelectorOptions
|
||||
),
|
||||
[nodeId]
|
||||
);
|
||||
|
||||
const isMouseOverNode = useAppSelector(selector);
|
||||
|
||||
const handleMouseOver = useCallback(() => {
|
||||
!isMouseOverNode && dispatch(mouseOverNodeChanged(nodeId));
|
||||
}, [dispatch, nodeId, isMouseOverNode]);
|
||||
|
||||
const handleMouseOut = useCallback(() => {
|
||||
isMouseOverNode && dispatch(mouseOverNodeChanged(null));
|
||||
}, [dispatch, isMouseOverNode]);
|
||||
|
||||
return { isMouseOverNode, handleMouseOver, handleMouseOut };
|
||||
};
|
@ -21,6 +21,7 @@ export const useOutputFieldNames = (nodeId: string) => {
|
||||
return [];
|
||||
}
|
||||
return map(nodeTemplate.outputs)
|
||||
.filter((field) => !field.ui_hidden)
|
||||
.sort((a, b) => (a.ui_order ?? 0) - (b.ui_order ?? 0))
|
||||
.map((field) => field.name)
|
||||
.filter((fieldName) => fieldName !== 'is_intermediate');
|
||||
|
@ -1,5 +1,5 @@
|
||||
import { createSlice, PayloadAction } from '@reduxjs/toolkit';
|
||||
import { cloneDeep, forEach, isEqual, uniqBy } from 'lodash-es';
|
||||
import { cloneDeep, forEach, isEqual, map, uniqBy } from 'lodash-es';
|
||||
import {
|
||||
addEdge,
|
||||
applyEdgeChanges,
|
||||
@ -18,7 +18,7 @@ import {
|
||||
Viewport,
|
||||
} from 'reactflow';
|
||||
import { receivedOpenAPISchema } from 'services/api/thunks/schema';
|
||||
import { sessionInvoked } from 'services/api/thunks/session';
|
||||
import { sessionCanceled, sessionInvoked } from 'services/api/thunks/session';
|
||||
import { ImageField } from 'services/api/types';
|
||||
import {
|
||||
appSocketGeneratorProgress,
|
||||
@ -102,6 +102,7 @@ export const initialNodesState: NodesState = {
|
||||
nodeExecutionStates: {},
|
||||
viewport: { x: 0, y: 0, zoom: 1 },
|
||||
mouseOverField: null,
|
||||
mouseOverNode: null,
|
||||
nodesToCopy: [],
|
||||
edgesToCopy: [],
|
||||
selectionMode: SelectionMode.Partial,
|
||||
@ -245,6 +246,34 @@ const nodesSlice = createSlice({
|
||||
}
|
||||
field.label = label;
|
||||
},
|
||||
nodeEmbedWorkflowChanged: (
|
||||
state,
|
||||
action: PayloadAction<{ nodeId: string; embedWorkflow: boolean }>
|
||||
) => {
|
||||
const { nodeId, embedWorkflow } = action.payload;
|
||||
const nodeIndex = state.nodes.findIndex((n) => n.id === nodeId);
|
||||
|
||||
const node = state.nodes?.[nodeIndex];
|
||||
|
||||
if (!isInvocationNode(node)) {
|
||||
return;
|
||||
}
|
||||
node.data.embedWorkflow = embedWorkflow;
|
||||
},
|
||||
nodeIsIntermediateChanged: (
|
||||
state,
|
||||
action: PayloadAction<{ nodeId: string; isIntermediate: boolean }>
|
||||
) => {
|
||||
const { nodeId, isIntermediate } = action.payload;
|
||||
const nodeIndex = state.nodes.findIndex((n) => n.id === nodeId);
|
||||
|
||||
const node = state.nodes?.[nodeIndex];
|
||||
|
||||
if (!isInvocationNode(node)) {
|
||||
return;
|
||||
}
|
||||
node.data.isIntermediate = isIntermediate;
|
||||
},
|
||||
nodeIsOpenChanged: (
|
||||
state,
|
||||
action: PayloadAction<{ nodeId: string; isOpen: boolean }>
|
||||
@ -561,7 +590,7 @@ const nodesSlice = createSlice({
|
||||
nodeEditorReset: (state) => {
|
||||
state.nodes = [];
|
||||
state.edges = [];
|
||||
state.workflow.exposedFields = [];
|
||||
state.workflow = cloneDeep(initialWorkflow);
|
||||
},
|
||||
shouldValidateGraphChanged: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldValidateGraph = action.payload;
|
||||
@ -637,6 +666,9 @@ const nodesSlice = createSlice({
|
||||
) => {
|
||||
state.mouseOverField = action.payload;
|
||||
},
|
||||
mouseOverNodeChanged: (state, action: PayloadAction<string | null>) => {
|
||||
state.mouseOverNode = action.payload;
|
||||
},
|
||||
selectedAll: (state) => {
|
||||
state.nodes = applyNodeChanges(
|
||||
state.nodes.map((n) => ({ id: n.id, type: 'select', selected: true })),
|
||||
@ -790,6 +822,13 @@ const nodesSlice = createSlice({
|
||||
nes.outputs = [];
|
||||
});
|
||||
});
|
||||
builder.addCase(sessionCanceled.fulfilled, (state) => {
|
||||
map(state.nodeExecutionStates, (nes) => {
|
||||
if (nes.status === NodeStatus.IN_PROGRESS) {
|
||||
nes.status = NodeStatus.PENDING;
|
||||
}
|
||||
});
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
@ -850,6 +889,9 @@ export const {
|
||||
addNodePopoverClosed,
|
||||
addNodePopoverToggled,
|
||||
selectionModeChanged,
|
||||
nodeEmbedWorkflowChanged,
|
||||
nodeIsIntermediateChanged,
|
||||
mouseOverNodeChanged,
|
||||
} = nodesSlice.actions;
|
||||
|
||||
export default nodesSlice.reducer;
|
||||
|
@ -35,6 +35,7 @@ export type NodesState = {
|
||||
viewport: Viewport;
|
||||
isReady: boolean;
|
||||
mouseOverField: FieldIdentifier | null;
|
||||
mouseOverNode: string | null;
|
||||
nodesToCopy: Node<NodeData>[];
|
||||
edgesToCopy: Edge<InvocationEdgeExtra>[];
|
||||
isAddNodePopoverOpen: boolean;
|
||||
|
@ -62,7 +62,7 @@ export const FIELDS: Record<FieldType, FieldUIConfig> = {
|
||||
DenoiseMaskField: {
|
||||
title: 'Denoise Mask',
|
||||
description: 'Denoise Mask may be passed between nodes',
|
||||
color: 'red.700',
|
||||
color: 'base.500',
|
||||
},
|
||||
LatentsField: {
|
||||
title: 'Latents',
|
||||
@ -174,11 +174,6 @@ export const FIELDS: Record<FieldType, FieldUIConfig> = {
|
||||
title: 'Color Collection',
|
||||
description: 'A collection of colors.',
|
||||
},
|
||||
FilePath: {
|
||||
color: 'base.500',
|
||||
title: 'File Path',
|
||||
description: 'A path to a file.',
|
||||
},
|
||||
ONNXModelField: {
|
||||
color: 'base.500',
|
||||
title: 'ONNX Model',
|
||||
|
@ -1,9 +1,13 @@
|
||||
import {
|
||||
SchedulerParam,
|
||||
zBaseModel,
|
||||
zMainModel,
|
||||
zMainOrOnnxModel,
|
||||
zOnnxModel,
|
||||
zSDXLRefinerModel,
|
||||
zScheduler,
|
||||
} from 'features/parameters/types/parameterSchemas';
|
||||
import { keyBy } from 'lodash-es';
|
||||
import { OpenAPIV3 } from 'openapi-types';
|
||||
import { RgbaColor } from 'react-colorful';
|
||||
import { Node } from 'reactflow';
|
||||
@ -14,6 +18,7 @@ import {
|
||||
ProgressImage,
|
||||
} from 'services/events/types';
|
||||
import { O } from 'ts-toolbelt';
|
||||
import { JsonObject } from 'type-fest';
|
||||
import { z } from 'zod';
|
||||
|
||||
export type NonNullableGraph = O.Required<Graph, 'nodes' | 'edges'>;
|
||||
@ -98,7 +103,6 @@ export const zFieldType = z.enum([
|
||||
// endregion
|
||||
|
||||
// region Misc
|
||||
'FilePath',
|
||||
'enum',
|
||||
'Scheduler',
|
||||
// endregion
|
||||
@ -106,8 +110,17 @@ export const zFieldType = z.enum([
|
||||
|
||||
export type FieldType = z.infer<typeof zFieldType>;
|
||||
|
||||
export const zReservedFieldType = z.enum([
|
||||
'WorkflowField',
|
||||
'IsIntermediate',
|
||||
'MetadataField',
|
||||
]);
|
||||
|
||||
export type ReservedFieldType = z.infer<typeof zReservedFieldType>;
|
||||
|
||||
export const isFieldType = (value: unknown): value is FieldType =>
|
||||
zFieldType.safeParse(value).success;
|
||||
zFieldType.safeParse(value).success ||
|
||||
zReservedFieldType.safeParse(value).success;
|
||||
|
||||
/**
|
||||
* An input field template is generated on each page load from the OpenAPI schema.
|
||||
@ -215,7 +228,7 @@ export type DenoiseMaskFieldValue = z.infer<typeof zDenoiseMaskField>;
|
||||
|
||||
export const zIntegerInputFieldValue = zInputFieldValueBase.extend({
|
||||
type: z.literal('integer'),
|
||||
value: z.number().optional(),
|
||||
value: z.number().int().optional(),
|
||||
});
|
||||
export type IntegerInputFieldValue = z.infer<typeof zIntegerInputFieldValue>;
|
||||
|
||||
@ -268,7 +281,7 @@ export type ConditioningInputFieldValue = z.infer<
|
||||
export const zControlNetModel = zModelIdentifier;
|
||||
export type ControlNetModel = z.infer<typeof zControlNetModel>;
|
||||
|
||||
export const zControlField = zInputFieldValueBase.extend({
|
||||
export const zControlField = z.object({
|
||||
image: zImageField,
|
||||
control_model: zControlNetModel,
|
||||
control_weight: z.union([z.number(), z.array(z.number())]).optional(),
|
||||
@ -283,11 +296,11 @@ export const zControlField = zInputFieldValueBase.extend({
|
||||
});
|
||||
export type ControlField = z.infer<typeof zControlField>;
|
||||
|
||||
export const zControlInputFieldTemplate = zInputFieldValueBase.extend({
|
||||
export const zControlInputFieldValue = zInputFieldValueBase.extend({
|
||||
type: z.literal('ControlField'),
|
||||
value: zControlField.optional(),
|
||||
});
|
||||
export type ControlInputFieldValue = z.infer<typeof zControlInputFieldTemplate>;
|
||||
export type ControlInputFieldValue = z.infer<typeof zControlInputFieldValue>;
|
||||
|
||||
export const zModelType = z.enum([
|
||||
'onnx',
|
||||
@ -480,7 +493,7 @@ export const zInputFieldValue = z.discriminatedUnion('type', [
|
||||
zUNetInputFieldValue,
|
||||
zClipInputFieldValue,
|
||||
zVaeInputFieldValue,
|
||||
zControlInputFieldTemplate,
|
||||
zControlInputFieldValue,
|
||||
zEnumInputFieldValue,
|
||||
zMainModelInputFieldValue,
|
||||
zSDXLMainModelInputFieldValue,
|
||||
@ -641,6 +654,11 @@ export type SchedulerInputFieldTemplate = InputFieldTemplateBase & {
|
||||
type: 'Scheduler';
|
||||
};
|
||||
|
||||
export type WorkflowInputFieldTemplate = InputFieldTemplateBase & {
|
||||
default: undefined;
|
||||
type: 'WorkflowField';
|
||||
};
|
||||
|
||||
export const isInputFieldValue = (
|
||||
field?: InputFieldValue | OutputFieldValue
|
||||
): field is InputFieldValue => Boolean(field && field.fieldKind === 'input');
|
||||
@ -661,6 +679,7 @@ export type TypeHints = {
|
||||
export type InvocationSchemaExtra = {
|
||||
output: OpenAPIV3.ReferenceObject; // the output of the invocation
|
||||
title: string;
|
||||
category?: string;
|
||||
tags?: string[];
|
||||
properties: Omit<
|
||||
NonNullable<OpenAPIV3.SchemaObject['properties']> &
|
||||
@ -737,6 +756,50 @@ export const isInvocationFieldSchema = (
|
||||
|
||||
export type InvocationEdgeExtra = { type: 'default' | 'collapsed' };
|
||||
|
||||
export const zCoreMetadata = z
|
||||
.object({
|
||||
app_version: z.string().nullish(),
|
||||
generation_mode: z.string().nullish(),
|
||||
created_by: z.string().nullish(),
|
||||
positive_prompt: z.string().nullish(),
|
||||
negative_prompt: z.string().nullish(),
|
||||
width: z.number().int().nullish(),
|
||||
height: z.number().int().nullish(),
|
||||
seed: z.number().int().nullish(),
|
||||
rand_device: z.string().nullish(),
|
||||
cfg_scale: z.number().nullish(),
|
||||
steps: z.number().int().nullish(),
|
||||
scheduler: z.string().nullish(),
|
||||
clip_skip: z.number().int().nullish(),
|
||||
model: z
|
||||
.union([zMainModel.deepPartial(), zOnnxModel.deepPartial()])
|
||||
.nullish(),
|
||||
controlnets: z.array(zControlField.deepPartial()).nullish(),
|
||||
loras: z
|
||||
.array(
|
||||
z.object({
|
||||
lora: zLoRAModelField.deepPartial(),
|
||||
weight: z.number(),
|
||||
})
|
||||
)
|
||||
.nullish(),
|
||||
vae: zVaeModelField.nullish(),
|
||||
strength: z.number().nullish(),
|
||||
init_image: z.string().nullish(),
|
||||
positive_style_prompt: z.string().nullish(),
|
||||
negative_style_prompt: z.string().nullish(),
|
||||
refiner_model: zSDXLRefinerModel.deepPartial().nullish(),
|
||||
refiner_cfg_scale: z.number().nullish(),
|
||||
refiner_steps: z.number().int().nullish(),
|
||||
refiner_scheduler: z.string().nullish(),
|
||||
refiner_positive_aesthetic_score: z.number().nullish(),
|
||||
refiner_negative_aesthetic_score: z.number().nullish(),
|
||||
refiner_start: z.number().nullish(),
|
||||
})
|
||||
.passthrough();
|
||||
|
||||
export type CoreMetadata = z.infer<typeof zCoreMetadata>;
|
||||
|
||||
export const zInvocationNodeData = z.object({
|
||||
id: z.string().trim().min(1),
|
||||
// no easy way to build this dynamically, and we don't want to anyways, because this will be used
|
||||
@ -747,6 +810,8 @@ export const zInvocationNodeData = z.object({
|
||||
label: z.string(),
|
||||
isOpen: z.boolean(),
|
||||
notes: z.string(),
|
||||
embedWorkflow: z.boolean(),
|
||||
isIntermediate: z.boolean(),
|
||||
});
|
||||
|
||||
// Massage this to get better type safety while developing
|
||||
@ -767,28 +832,38 @@ export const zNotesNodeData = z.object({
|
||||
|
||||
export type NotesNodeData = z.infer<typeof zNotesNodeData>;
|
||||
|
||||
const zPosition = z
|
||||
.object({
|
||||
x: z.number(),
|
||||
y: z.number(),
|
||||
})
|
||||
.default({ x: 0, y: 0 });
|
||||
|
||||
const zDimension = z.number().gt(0).nullish();
|
||||
|
||||
export const zWorkflowInvocationNode = z.object({
|
||||
id: z.string().trim().min(1),
|
||||
type: z.literal('invocation'),
|
||||
data: zInvocationNodeData,
|
||||
width: z.number().gt(0),
|
||||
height: z.number().gt(0),
|
||||
position: z.object({
|
||||
x: z.number(),
|
||||
y: z.number(),
|
||||
}),
|
||||
width: zDimension,
|
||||
height: zDimension,
|
||||
position: zPosition,
|
||||
});
|
||||
|
||||
export type WorkflowInvocationNode = z.infer<typeof zWorkflowInvocationNode>;
|
||||
|
||||
export const isWorkflowInvocationNode = (
|
||||
val: unknown
|
||||
): val is WorkflowInvocationNode =>
|
||||
zWorkflowInvocationNode.safeParse(val).success;
|
||||
|
||||
export const zWorkflowNotesNode = z.object({
|
||||
id: z.string().trim().min(1),
|
||||
type: z.literal('notes'),
|
||||
data: zNotesNodeData,
|
||||
width: z.number().gt(0),
|
||||
height: z.number().gt(0),
|
||||
position: z.object({
|
||||
x: z.number(),
|
||||
y: z.number(),
|
||||
}),
|
||||
width: zDimension,
|
||||
height: zDimension,
|
||||
position: zPosition,
|
||||
});
|
||||
|
||||
export const zWorkflowNode = z.discriminatedUnion('type', [
|
||||
@ -798,14 +873,25 @@ export const zWorkflowNode = z.discriminatedUnion('type', [
|
||||
|
||||
export type WorkflowNode = z.infer<typeof zWorkflowNode>;
|
||||
|
||||
export const zWorkflowEdge = z.object({
|
||||
export const zDefaultWorkflowEdge = z.object({
|
||||
source: z.string().trim().min(1),
|
||||
sourceHandle: z.string().trim().min(1),
|
||||
target: z.string().trim().min(1),
|
||||
targetHandle: z.string().trim().min(1),
|
||||
id: z.string().trim().min(1),
|
||||
type: z.enum(['default', 'collapsed']),
|
||||
type: z.literal('default'),
|
||||
});
|
||||
export const zCollapsedWorkflowEdge = z.object({
|
||||
source: z.string().trim().min(1),
|
||||
target: z.string().trim().min(1),
|
||||
id: z.string().trim().min(1),
|
||||
type: z.literal('collapsed'),
|
||||
});
|
||||
|
||||
export const zWorkflowEdge = z.union([
|
||||
zDefaultWorkflowEdge,
|
||||
zCollapsedWorkflowEdge,
|
||||
]);
|
||||
|
||||
export const zFieldIdentifier = z.object({
|
||||
nodeId: z.string().trim().min(1),
|
||||
@ -828,21 +914,80 @@ export const zSemVer = z.string().refine((val) => {
|
||||
|
||||
export type SemVer = z.infer<typeof zSemVer>;
|
||||
|
||||
export type WorkflowWarning = {
|
||||
message: string;
|
||||
issues: string[];
|
||||
data: JsonObject;
|
||||
};
|
||||
|
||||
export const zWorkflow = z.object({
|
||||
name: z.string(),
|
||||
author: z.string(),
|
||||
description: z.string(),
|
||||
version: z.string(),
|
||||
contact: z.string(),
|
||||
tags: z.string(),
|
||||
notes: z.string(),
|
||||
nodes: z.array(zWorkflowNode),
|
||||
edges: z.array(zWorkflowEdge),
|
||||
exposedFields: z.array(zFieldIdentifier),
|
||||
name: z.string().default(''),
|
||||
author: z.string().default(''),
|
||||
description: z.string().default(''),
|
||||
version: z.string().default(''),
|
||||
contact: z.string().default(''),
|
||||
tags: z.string().default(''),
|
||||
notes: z.string().default(''),
|
||||
nodes: z.array(zWorkflowNode).default([]),
|
||||
edges: z.array(zWorkflowEdge).default([]),
|
||||
exposedFields: z.array(zFieldIdentifier).default([]),
|
||||
meta: z
|
||||
.object({
|
||||
version: zSemVer,
|
||||
})
|
||||
.default({ version: '1.0.0' }),
|
||||
});
|
||||
|
||||
export const zValidatedWorkflow = zWorkflow.transform((workflow) => {
|
||||
const { nodes, edges } = workflow;
|
||||
const warnings: WorkflowWarning[] = [];
|
||||
const invocationNodes = nodes.filter(isWorkflowInvocationNode);
|
||||
const keyedNodes = keyBy(invocationNodes, 'id');
|
||||
edges.forEach((edge, i) => {
|
||||
const sourceNode = keyedNodes[edge.source];
|
||||
const targetNode = keyedNodes[edge.target];
|
||||
const issues: string[] = [];
|
||||
if (!sourceNode) {
|
||||
issues.push(`Output node ${edge.source} does not exist`);
|
||||
} else if (
|
||||
edge.type === 'default' &&
|
||||
!(edge.sourceHandle in sourceNode.data.outputs)
|
||||
) {
|
||||
issues.push(
|
||||
`Output field "${edge.source}.${edge.sourceHandle}" does not exist`
|
||||
);
|
||||
}
|
||||
if (!targetNode) {
|
||||
issues.push(`Input node ${edge.target} does not exist`);
|
||||
} else if (
|
||||
edge.type === 'default' &&
|
||||
!(edge.targetHandle in targetNode.data.inputs)
|
||||
) {
|
||||
issues.push(
|
||||
`Input field "${edge.target}.${edge.targetHandle}" does not exist`
|
||||
);
|
||||
}
|
||||
if (issues.length) {
|
||||
delete edges[i];
|
||||
const src = edge.type === 'default' ? edge.sourceHandle : edge.source;
|
||||
const tgt = edge.type === 'default' ? edge.targetHandle : edge.target;
|
||||
warnings.push({
|
||||
message: `Edge "${src} -> ${tgt}" skipped`,
|
||||
issues,
|
||||
data: edge,
|
||||
});
|
||||
}
|
||||
});
|
||||
return { workflow, warnings };
|
||||
});
|
||||
|
||||
export type Workflow = z.infer<typeof zWorkflow>;
|
||||
|
||||
export type ImageMetadataAndWorkflow = {
|
||||
metadata?: CoreMetadata;
|
||||
workflow?: Workflow;
|
||||
};
|
||||
|
||||
export type CurrentImageNodeData = {
|
||||
id: string;
|
||||
type: 'current_image';
|
||||
|
@ -1,7 +1,8 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { NodesState } from '../store/types';
|
||||
import { Workflow, zWorkflowEdge, zWorkflowNode } from '../types/types';
|
||||
import { fromZodError } from 'zod-validation-error';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
|
||||
export const buildWorkflow = (nodesState: NodesState): Workflow => {
|
||||
const { workflow: workflowMeta, nodes, edges } = nodesState;
|
||||
@ -11,17 +12,29 @@ export const buildWorkflow = (nodesState: NodesState): Workflow => {
|
||||
edges: [],
|
||||
};
|
||||
|
||||
nodes.forEach((node) => {
|
||||
const result = zWorkflowNode.safeParse(node);
|
||||
if (!result.success) {
|
||||
return;
|
||||
}
|
||||
workflow.nodes.push(result.data);
|
||||
});
|
||||
nodes
|
||||
.filter((n) =>
|
||||
['invocation', 'notes'].includes(n.type ?? '__UNKNOWN_NODE_TYPE__')
|
||||
)
|
||||
.forEach((node) => {
|
||||
const result = zWorkflowNode.safeParse(node);
|
||||
if (!result.success) {
|
||||
const { message } = fromZodError(result.error, {
|
||||
prefix: 'Unable to parse node',
|
||||
});
|
||||
logger('nodes').warn({ node: parseify(node) }, message);
|
||||
return;
|
||||
}
|
||||
workflow.nodes.push(result.data);
|
||||
});
|
||||
|
||||
edges.forEach((edge) => {
|
||||
const result = zWorkflowEdge.safeParse(edge);
|
||||
if (!result.success) {
|
||||
const { message } = fromZodError(result.error, {
|
||||
prefix: 'Unable to parse edge',
|
||||
});
|
||||
logger('nodes').warn({ edge: parseify(edge) }, message);
|
||||
return;
|
||||
}
|
||||
workflow.edges.push(result.data);
|
||||
@ -29,7 +42,3 @@ export const buildWorkflow = (nodesState: NodesState): Workflow => {
|
||||
|
||||
return workflow;
|
||||
};
|
||||
|
||||
export const workflowSelector = createSelector(stateSelector, ({ nodes }) =>
|
||||
buildWorkflow(nodes)
|
||||
);
|
||||
|
@ -28,7 +28,6 @@ import {
|
||||
UNetInputFieldTemplate,
|
||||
VaeInputFieldTemplate,
|
||||
VaeModelInputFieldTemplate,
|
||||
isFieldType,
|
||||
} from '../types/types';
|
||||
|
||||
export type BaseFieldProperties = 'name' | 'title' | 'description';
|
||||
@ -422,9 +421,7 @@ const buildSchedulerInputFieldTemplate = ({
|
||||
return template;
|
||||
};
|
||||
|
||||
export const getFieldType = (
|
||||
schemaObject: InvocationFieldSchema
|
||||
): FieldType => {
|
||||
export const getFieldType = (schemaObject: InvocationFieldSchema): string => {
|
||||
let fieldType = '';
|
||||
|
||||
const { ui_type } = schemaObject;
|
||||
@ -460,10 +457,6 @@ export const getFieldType = (
|
||||
}
|
||||
}
|
||||
|
||||
if (!isFieldType(fieldType)) {
|
||||
throw `Field type "${fieldType}" is unknown!`;
|
||||
}
|
||||
|
||||
return fieldType;
|
||||
};
|
||||
|
||||
@ -475,12 +468,9 @@ export const getFieldType = (
|
||||
export const buildInputFieldTemplate = (
|
||||
nodeSchema: InvocationSchemaObject,
|
||||
fieldSchema: InvocationFieldSchema,
|
||||
name: string
|
||||
name: string,
|
||||
fieldType: FieldType
|
||||
) => {
|
||||
// console.log('input', schemaObject);
|
||||
const fieldType = getFieldType(fieldSchema);
|
||||
// console.log('input fieldType', fieldType);
|
||||
|
||||
const { input, ui_hidden, ui_component, ui_type, ui_order } = fieldSchema;
|
||||
|
||||
const extra = {
|
||||
|
@ -0,0 +1,45 @@
|
||||
import * as png from '@stevebel/png';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import {
|
||||
ImageMetadataAndWorkflow,
|
||||
zCoreMetadata,
|
||||
zWorkflow,
|
||||
} from 'features/nodes/types/types';
|
||||
import { get } from 'lodash-es';
|
||||
|
||||
export const getMetadataAndWorkflowFromImageBlob = async (
|
||||
image: Blob
|
||||
): Promise<ImageMetadataAndWorkflow> => {
|
||||
const data: ImageMetadataAndWorkflow = {};
|
||||
const buffer = await image.arrayBuffer();
|
||||
const text = png.decode(buffer).text;
|
||||
|
||||
const rawMetadata = get(text, 'invokeai_metadata');
|
||||
if (rawMetadata) {
|
||||
const metadataResult = zCoreMetadata.safeParse(JSON.parse(rawMetadata));
|
||||
if (metadataResult.success) {
|
||||
data.metadata = metadataResult.data;
|
||||
} else {
|
||||
logger('system').error(
|
||||
{ error: parseify(metadataResult.error) },
|
||||
'Problem reading metadata from image'
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
const rawWorkflow = get(text, 'invokeai_workflow');
|
||||
if (rawWorkflow) {
|
||||
const workflowResult = zWorkflow.safeParse(JSON.parse(rawWorkflow));
|
||||
if (workflowResult.success) {
|
||||
data.workflow = workflowResult.data;
|
||||
} else {
|
||||
logger('system').error(
|
||||
{ error: parseify(workflowResult.error) },
|
||||
'Problem reading workflow from image'
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
return data;
|
||||
};
|
@ -11,10 +11,10 @@ import {
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_INPAINT_GRAPH,
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
|
||||
@ -41,7 +41,9 @@ export const addSDXLLoRAsToGraph = (
|
||||
// Handle Seamless Plugs
|
||||
const unetLoaderId = modelLoaderNodeId;
|
||||
let clipLoaderId = modelLoaderNodeId;
|
||||
if ([SEAMLESS, REFINER_SEAMLESS].includes(modelLoaderNodeId)) {
|
||||
if (
|
||||
[SEAMLESS, SDXL_REFINER_INPAINT_CREATE_MASK].includes(modelLoaderNodeId)
|
||||
) {
|
||||
clipLoaderId = SDXL_MODEL_LOADER;
|
||||
}
|
||||
|
||||
|
@ -1,24 +1,28 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import {
|
||||
CreateDenoiseMaskInvocation,
|
||||
ImageDTO,
|
||||
MetadataAccumulatorInvocation,
|
||||
SeamlessModeInvocation,
|
||||
} from 'services/api/types';
|
||||
import { NonNullableGraph } from '../../types/types';
|
||||
import {
|
||||
CANVAS_OUTPUT,
|
||||
INPAINT_IMAGE_RESIZE_UP,
|
||||
LATENTS_TO_IMAGE,
|
||||
MASK_BLUR,
|
||||
METADATA_ACCUMULATOR,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_CANVAS_INPAINT_GRAPH,
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
SDXL_CANVAS_TEXT_TO_IMAGE_GRAPH,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_REFINER_DENOISE_LATENTS,
|
||||
SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
SDXL_REFINER_MODEL_LOADER,
|
||||
SDXL_REFINER_NEGATIVE_CONDITIONING,
|
||||
SDXL_REFINER_POSITIVE_CONDITIONING,
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
|
||||
@ -26,7 +30,8 @@ export const addSDXLRefinerToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string,
|
||||
modelLoaderNodeId?: string
|
||||
modelLoaderNodeId?: string,
|
||||
canvasInitImage?: ImageDTO
|
||||
): void => {
|
||||
const {
|
||||
refinerModel,
|
||||
@ -38,7 +43,12 @@ export const addSDXLRefinerToGraph = (
|
||||
refinerStart,
|
||||
} = state.sdxl;
|
||||
|
||||
const { seamlessXAxis, seamlessYAxis } = state.generation;
|
||||
const { seamlessXAxis, seamlessYAxis, vaePrecision } = state.generation;
|
||||
const { boundingBoxScaleMethod } = state.canvas;
|
||||
|
||||
const isUsingScaledDimensions = ['auto', 'manual'].includes(
|
||||
boundingBoxScaleMethod
|
||||
);
|
||||
|
||||
if (!refinerModel) {
|
||||
return;
|
||||
@ -50,9 +60,9 @@ export const addSDXLRefinerToGraph = (
|
||||
|
||||
if (metadataAccumulator) {
|
||||
metadataAccumulator.refiner_model = refinerModel;
|
||||
metadataAccumulator.refiner_positive_aesthetic_store =
|
||||
metadataAccumulator.refiner_positive_aesthetic_score =
|
||||
refinerPositiveAestheticScore;
|
||||
metadataAccumulator.refiner_negative_aesthetic_store =
|
||||
metadataAccumulator.refiner_negative_aesthetic_score =
|
||||
refinerNegativeAestheticScore;
|
||||
metadataAccumulator.refiner_cfg_scale = refinerCFGScale;
|
||||
metadataAccumulator.refiner_scheduler = refinerScheduler;
|
||||
@ -108,8 +118,8 @@ export const addSDXLRefinerToGraph = (
|
||||
|
||||
// Add Seamless To Refiner
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
graph.nodes[REFINER_SEAMLESS] = {
|
||||
id: REFINER_SEAMLESS,
|
||||
graph.nodes[SDXL_REFINER_SEAMLESS] = {
|
||||
id: SDXL_REFINER_SEAMLESS,
|
||||
type: 'seamless',
|
||||
seamless_x: seamlessXAxis,
|
||||
seamless_y: seamlessYAxis,
|
||||
@ -122,13 +132,23 @@ export const addSDXLRefinerToGraph = (
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: REFINER_SEAMLESS,
|
||||
node_id: SDXL_REFINER_SEAMLESS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: REFINER_SEAMLESS,
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_SEAMLESS,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_SEAMLESS,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@ -203,6 +223,61 @@ export const addSDXLRefinerToGraph = (
|
||||
}
|
||||
);
|
||||
|
||||
if (
|
||||
graph.id === SDXL_CANVAS_INPAINT_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_OUTPAINT_GRAPH
|
||||
) {
|
||||
graph.nodes[SDXL_REFINER_INPAINT_CREATE_MASK] = {
|
||||
type: 'create_denoise_mask',
|
||||
id: SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
is_intermediate: true,
|
||||
fp32: vaePrecision === 'fp32' ? true : false,
|
||||
};
|
||||
|
||||
if (isUsingScaledDimensions) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: INPAINT_IMAGE_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
} else {
|
||||
graph.nodes[SDXL_REFINER_INPAINT_CREATE_MASK] = {
|
||||
...(graph.nodes[
|
||||
SDXL_REFINER_INPAINT_CREATE_MASK
|
||||
] as CreateDenoiseMaskInvocation),
|
||||
image: canvasInitImage,
|
||||
};
|
||||
}
|
||||
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
field: 'mask',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
field: 'denoise_mask',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_DENOISE_LATENTS,
|
||||
field: 'denoise_mask',
|
||||
},
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
if (
|
||||
graph.id === SDXL_CANVAS_TEXT_TO_IMAGE_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH
|
||||
@ -213,7 +288,7 @@ export const addSDXLRefinerToGraph = (
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: CANVAS_OUTPUT,
|
||||
node_id: isUsingScaledDimensions ? LATENTS_TO_IMAGE : CANVAS_OUTPUT,
|
||||
field: 'latents',
|
||||
},
|
||||
});
|
||||
@ -229,20 +304,4 @@ export const addSDXLRefinerToGraph = (
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
if (
|
||||
graph.id === SDXL_CANVAS_INPAINT_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_OUTPAINT_GRAPH
|
||||
) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: MASK_BLUR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_DENOISE_LATENTS,
|
||||
field: 'mask',
|
||||
},
|
||||
});
|
||||
}
|
||||
};
|
||||
|
@ -20,6 +20,7 @@ import {
|
||||
SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
SDXL_CANVAS_TEXT_TO_IMAGE_GRAPH,
|
||||
SDXL_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
SDXL_TEXT_TO_IMAGE_GRAPH,
|
||||
TEXT_TO_IMAGE_GRAPH,
|
||||
VAE_LOADER,
|
||||
@ -32,6 +33,7 @@ export const addVAEToGraph = (
|
||||
): void => {
|
||||
const { vae } = state.generation;
|
||||
const { boundingBoxScaleMethod } = state.canvas;
|
||||
const { shouldUseSDXLRefiner } = state.sdxl;
|
||||
|
||||
const isUsingScaledDimensions = ['auto', 'manual'].includes(
|
||||
boundingBoxScaleMethod
|
||||
@ -146,6 +148,24 @@ export const addVAEToGraph = (
|
||||
);
|
||||
}
|
||||
|
||||
if (shouldUseSDXLRefiner) {
|
||||
if (
|
||||
graph.id === SDXL_CANVAS_INPAINT_GRAPH ||
|
||||
graph.id === SDXL_CANVAS_OUTPAINT_GRAPH
|
||||
) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: isAutoVae ? modelLoaderNodeId : VAE_LOADER,
|
||||
field: isAutoVae && isOnnxModel ? 'vae_decoder' : 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_INPAINT_CREATE_MASK,
|
||||
field: 'vae',
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
if (vae && metadataAccumulator) {
|
||||
metadataAccumulator.vae = vae;
|
||||
}
|
||||
|
@ -20,10 +20,10 @@ import {
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
@ -367,8 +367,15 @@ export const buildCanvasSDXLImageToImageGraph = (
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
addSDXLRefinerToGraph(
|
||||
state,
|
||||
graph,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
modelLoaderNodeId
|
||||
);
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
modelLoaderNodeId = SDXL_REFINER_SEAMLESS;
|
||||
}
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
|
@ -36,10 +36,10 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
REFINER_SEAMLESS,
|
||||
SDXL_CANVAS_INPAINT_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
SEAMLESS,
|
||||
} from './constants';
|
||||
import { craftSDXLStylePrompt } from './helpers/craftSDXLStylePrompt';
|
||||
@ -628,9 +628,12 @@ export const buildCanvasSDXLInpaintGraph = (
|
||||
state,
|
||||
graph,
|
||||
CANVAS_COHERENCE_DENOISE_LATENTS,
|
||||
modelLoaderNodeId
|
||||
modelLoaderNodeId,
|
||||
canvasInitImage
|
||||
);
|
||||
modelLoaderNodeId = REFINER_SEAMLESS;
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
modelLoaderNodeId = SDXL_REFINER_SEAMLESS;
|
||||
}
|
||||
}
|
||||
|
||||
// optionally add custom VAE
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user