Get a rough version of FLUX inpainting working.

This commit is contained in:
Ryan Dick 2024-08-29 19:05:44 +00:00
parent e0f12c762e
commit 7d854f32b0
6 changed files with 160 additions and 85 deletions

View File

@ -185,7 +185,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.mask,
description=FieldDescriptions.denoise_mask,
input=Input.Connection,
ui_order=8,
)

View File

@ -181,7 +181,7 @@ class FieldDescriptions:
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
denoise_mask = "A mask of the region to apply the denoising process to."
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"

View File

@ -1,9 +1,12 @@
from typing import Optional
import torch
import torchvision.transforms as tv_transforms
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
Input,
@ -16,8 +19,15 @@ from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.sampling import denoise, get_noise, get_schedule, prepare_latent_img_patches, unpack
from invokeai.backend.flux.sampling_utils import (
generate_img_ids,
get_noise,
get_schedule,
pack,
unpack,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@ -41,6 +51,11 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.latents,
input=Input.Connection,
)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.denoise_mask,
input=Input.Connection,
)
denoising_start: float = InputField(
default=0.0,
ge=0,
@ -95,7 +110,7 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype)
# Prepare input noise.
x = get_noise(
noise = get_noise(
num_samples=1,
height=self.height,
width=self.width,
@ -107,14 +122,16 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=x.shape[1],
image_seq_len=image_seq_len,
shift=not is_schnell,
)
# Prepare inputs for image-to-image case.
# Prepare input latent image.
if self.denoising_start > EPS:
# If denoising_start > 0, we are doing image-to-image.
if init_latents is None:
raise ValueError("latents must be provided if denoising_start > 0.")
@ -125,13 +142,34 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * x + (1.0 - t_0) * init_latents
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
# We are not doing image-to-image, so we are starting from noise.
x = noise
x, img_ids = prepare_latent_img_patches(x)
# Prepare inpaint mask.
inpaint_mask = self._prep_inpaint_mask(context, x)
if inpaint_mask is not None:
assert init_latents is not None
# Expand the inpaint mask to the same shape as the init_latents so that when we pack inpaint_mask it lines
# up with the init_latents.
inpaint_mask = inpaint_mask.expand_as(init_latents)
b, _c, h, w = x.shape
img_ids = generate_img_ids(h=h, w=w, batch_size=b, device=x.device, dtype=x.dtype)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
with transformer_info as transformer:
assert isinstance(transformer, Flux)
@ -174,8 +212,33 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
timesteps=timesteps,
step_callback=step_callback,
guidance=self.guidance,
init_latents=init_latents,
noise=noise,
inpaint_mask=inpaint_mask,
)
x = unpack(x.float(), self.height, self.width)
return x
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
Loads the mask, resizes if necessary, casts to same device/dtype as latents.
Returns:
tuple[torch.Tensor | None, bool]: (mask, is_gradient_mask)
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
return mask

View File

@ -0,0 +1,55 @@
from typing import Callable
import torch
from tqdm import tqdm
from invokeai.backend.flux.inpaint import merge_intermediate_latents_with_init_latents
from invokeai.backend.flux.model import Flux
def denoise(
model: Flux,
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[], None],
guidance: float,
# For inpainting:
init_latents: torch.Tensor | None,
noise: torch.Tensor,
inpaint_mask: torch.Tensor | None,
):
# guidance_vec is ignored for schnell.
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
img = img + (t_prev - t_curr) * pred
if inpaint_mask is not None:
assert init_latents is not None
img = merge_intermediate_latents_with_init_latents(
init_latents=init_latents,
intermediate_latents=img,
timestep=t_prev,
noise=noise,
inpaint_mask=inpaint_mask,
)
step_callback()
return img

View File

@ -0,0 +1,15 @@
import torch
def merge_intermediate_latents_with_init_latents(
init_latents: torch.Tensor,
intermediate_latents: torch.Tensor,
timestep: float,
noise: torch.Tensor,
inpaint_mask: torch.Tensor,
) -> torch.Tensor:
# Noise the init_latents for the current timestep.
noised_init_latents = noise * timestep + (1.0 - timestep) * init_latents
# Merge the intermediate_latents with the noised_init_latents using the inpaint_mask.
return intermediate_latents * inpaint_mask + noised_init_latents * (1.0 - inpaint_mask)

View File

@ -6,10 +6,6 @@ from typing import Callable
import torch
from einops import rearrange, repeat
from torch import Tensor
from tqdm import tqdm
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.conditioner import HFEncoder
def get_noise(
@ -35,40 +31,6 @@ def get_noise(
).to(device=device, dtype=dtype)
def prepare(t5: HFEncoder, clip: HFEncoder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
@ -98,39 +60,6 @@ def get_schedule(
return timesteps.tolist()
def denoise(
model: Flux,
# model input
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
vec: Tensor,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[], None],
guidance: float = 4.0,
):
# guidance_vec is ignored for schnell.
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
img = img + (t_prev - t_curr) * pred
step_callback()
return img
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
@ -142,21 +71,34 @@ def unpack(x: Tensor, height: int, width: int) -> Tensor:
)
def prepare_latent_img_patches(latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
def pack(x: Tensor) -> Tensor:
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
return rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtype: torch.dtype) -> Tensor:
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
return img_ids
def prepare_latent_img_patches(img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Convert an input image in latent space to patches for diffusion.
This implementation was extracted from:
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
Args:
img (torch.Tensor): Input image in latent space.
Returns:
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
"""
bs, c, h, w = latent_img.shape
bs, c, h, w = img.shape
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img = pack(img)
# Generate patch position ids.
img_ids = torch.zeros(h // 2, w // 2, 3, device=img.device, dtype=img.dtype)