fix merge issues; likely nonfunctional

This commit is contained in:
Lincoln Stein 2024-04-15 21:16:21 -04:00
commit 7dd93cb810
214 changed files with 4032 additions and 2058 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 786 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

92
docs/features/GALLERY.md Normal file
View File

@ -0,0 +1,92 @@
---
title: InvokeAI Gallery Panel
---
# :material-web: InvokeAI Gallery Panel
## Quick guided walkthrough of the Gallery Panel's features
The Gallery Panel is a fast way to review, find, and make use of images you've
generated and loaded. The Gallery is divided into Boards. The Uncategorized board is always
present but you can create your own for better organization.
![image](../assets/gallery/gallery.png)
### Board Display and Settings
At the very top of the Gallery Panel are the boards disclosure and settings buttons.
![image](../assets/gallery/top_controls.png)
The disclosure button shows the name of the currently selected board and allows you to show and hide the board thumbnails (shown in the image below).
![image](../assets/gallery/board_thumbnails.png)
The settings button opens a list of options.
![image](../assets/gallery/board_settings.png)
- ***Image Size*** this slider lets you control the size of the image previews (images of three different sizes).
- ***Auto-Switch to New Images*** if you turn this on, whenever a new image is generated, it will automatically be loaded into the current image panel on the Text to Image tab and into the result panel on the [Image to Image](IMG2IMG.md) tab. This will happen invisibly if you are on any other tab when the image is generated.
- ***Auto-Assign Board on Click*** whenever an image is generated or saved, it always gets put in a board. The board it gets put into is marked with AUTO (image of board marked). Turning on Auto-Assign Board on Click will make whichever board you last selected be the destination when you click Invoke. That means you can click Invoke, select a different board, and then click Invoke again and the two images will be put in two different boards. (bold)It's the board selected when Invoke is clicked that's used, not the board that's selected when the image is finished generating.(bold) Turning this off, enables the Auto-Add Board drop down which lets you set one specific board to always put generated images into. This also enables and disables the Auto-add to this Board menu item described below.
- ***Always Show Image Size Badge*** this toggles whether to show image sizes for each image preview (show two images, one with sizes shown, one without)
Below these two buttons, you'll see the Search Boards text entry area. You use this to search for specific boards by the name of the board.
Next to it is the Add Board (+) button which lets you add new boards. Boards can be renamed by clicking on the name of the board under its thumbnail and typing in the new name.
### Board Thumbnail Menu
Each board has a context menu (ctrl+click / right-click).
![image](../assets/gallery/thumbnail_menu.png)
- ***Auto-add to this Board*** if you've disabled Auto-Assign Board on Click in the board settings, you can use this option to set this board to be where new images are put.
- ***Download Board*** this will add all the images in the board into a zip file and provide a link to it in a notification (image of notification)
- ***Delete Board*** this will delete the board
> [!CAUTION]
> This will delete all the images in the board and the board itself.
### Board Contents
Every board is organized by two tabs, Images and Assets.
![image](../assets/gallery/board_tabs.png)
Images are the Invoke-generated images that are placed into the board. Assets are images that you upload into Invoke to be used as an [Image Prompt](https://support.invoke.ai/support/solutions/articles/151000159340-using-the-image-prompt-adapter-ip-adapter-) or in the [Image to Image](IMG2IMG.md) tab.
### Image Thumbnail Menu
Every image generated by Invoke has its generation information stored as text inside the image file itself. This can be read directly by selecting the image and clicking on the Info button ![image](../assets/gallery/info_button.png) in any of the image result panels.
Each image also has a context menu (ctrl+click / right-click).
![image](../assets/gallery/image_menu.png)
The options are (items marked with an * will not work with images that lack generation information):
- ***Open in New Tab*** this will open the image alone in a new browser tab, separate from the Invoke interface.
- ***Download Image*** this will trigger your browser to download the image.
- ***Load Workflow **** this will load any workflow settings into the Workflow tab and automatically open it.
- ***Remix Image **** this will load all of the image's generation information, (bold)excluding its Seed, into the left hand control panel
- ***Use Prompt **** this will load only the image's text prompts into the left-hand control panel
- ***Use Seed **** this will load only the image's Seed into the left-hand control panel
- ***Use All **** this will load all of the image's generation information into the left-hand control panel
- ***Send to Image to Image*** this will put the image into the left-hand panel in the Image to Image tab ana automatically open it
- ***Send to Unified Canvas*** This will (bold)replace whatever is already present(bold) in the Unified Canvas tab with the image and automatically open the tab
- ***Change Board*** this will oipen a small window that will let you move the image to a different board. This is the same as dragging the image to that board's thumbnail.
- ***Star Image*** this will add the image to the board's list of starred images that are always kept at the top of the gallery. This is the same as clicking on the star on the top right-hand side of the image that appears when you hover over the image with the mouse
- ***Delete Image*** this will delete the image from the board
> [!CAUTION]
> This will delete the image entirely from Invoke.
## Summary
This walkthrough only covers the Gallery interface and Boards. Actually generating images is handled by [Prompts](PROMPTS.md), the [Image to Image](IMG2IMG.md) tab, and the [Unified Canvas](UNIFIED_CANVAS.md).
## Acknowledgements
A huge shout-out to the core team working to make the Web GUI a reality,
including [psychedelicious](https://github.com/psychedelicious),
[Kyle0654](https://github.com/Kyle0654) and
[blessedcoolant](https://github.com/blessedcoolant).
[hipsterusername](https://github.com/hipsterusername) was the team's unofficial
cheerleader and added tooltips/docs.

View File

@ -108,40 +108,6 @@ Can be used with .and():
Each will give you different results - try them out and see what you prefer! Each will give you different results - try them out and see what you prefer!
### Cross-Attention Control ('prompt2prompt')
Sometimes an image you generate is almost right, and you just want to change one
detail without affecting the rest. You could use a photo editor and inpainting
to overpaint the area, but that's a pain. Here's where `prompt2prompt` comes in
handy.
Generate an image with a given prompt, record the seed of the image, and then
use the `prompt2prompt` syntax to substitute words in the original prompt for
words in a new prompt. This works for `img2img` as well.
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because the words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
- `a cat playing with a ball in the forest`
- `a dog playing with a ball in the forest`
| `a cat playing with a ball in the forest` | `a dog playing with a ball in the forest` |
| --- | --- |
| img | img |
- For multiple word swaps, use parentheses: `a (fluffy cat).swap(barking dog) playing with a ball in the forest`.
- To swap a comma, use quotes: `a ("fluffy, grey cat").swap("big, barking dog") playing with a ball in the forest`.
- Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to (bloc97's)[(https://github.com/bloc97/CrossAttentionControl)] `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to
intuitively understand. `t_start` and `t_end` are used to control on which steps cross-attention control should run. With the default values `t_start=0` and `t_end=1`, cross-attention control is active on every step of image generation. Other values can be used to turn cross-attention control off for part of the image generation process.
- For example, if doing a diffusion with 10 steps for the prompt is `a cat.swap(dog, t_start=0.3, t_end=1.0) playing with a ball in the forest`, the first 3 steps will be run as `a cat playing with a ball in the forest`, while the last 7 steps will run as `a dog playing with a ball in the forest`, but the pixels that represent `dog` will be locked to the pixels that would have represented `cat` if the `cat` prompt had been used instead.
- Conversely, for `a cat.swap(dog, t_start=0, t_end=0.7) playing with a ball in the forest`, the first 7 steps will run as `a dog playing with a ball in the forest` with the pixels that represent `dog` locked to the same pixels that would have represented `cat` if the `cat` prompt was being used instead. The final 3 steps will just run `a cat playing with a ball in the forest`.
> For img2img, the step sequence does not start at 0 but instead at `(1.0-strength)` - so if the img2img `strength` is `0.7`, `t_start` and `t_end` must both be greater than `0.3` (`1.0-0.7`) to have any effect.
Prompt2prompt `.swap()` is not compatible with xformers, which will be temporarily disabled when doing a `.swap()` - so you should expect to use more VRAM and run slower that with xformers enabled.
The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
### Escaping parentheses and speech marks ### Escaping parentheses and speech marks
If the model you are using has parentheses () or speech marks "" as part of its If the model you are using has parentheses () or speech marks "" as part of its

View File

@ -54,7 +54,7 @@ main sections:
of buttons at the top lets you modify and manipulate the image in of buttons at the top lets you modify and manipulate the image in
various ways. various ways.
3. A **gallery** section on the left that contains a history of the images you 3. A **gallery** section on the right that contains a history of the images you
have generated. These images are read and written to the directory specified have generated. These images are read and written to the directory specified
in the `INVOKEAIROOT/invokeai.yaml` initialization file, usually a directory in the `INVOKEAIROOT/invokeai.yaml` initialization file, usually a directory
named `outputs` in `INVOKEAIROOT`. named `outputs` in `INVOKEAIROOT`.

View File

@ -18,12 +18,47 @@ Note that any releases marked as _pre-release_ are in a beta state. You may expe
The Model Manager tab in the UI provides a few ways to install models, including using your already-downloaded models. You'll see a popup directing you there on first startup. For more information, see the [model install docs]. The Model Manager tab in the UI provides a few ways to install models, including using your already-downloaded models. You'll see a popup directing you there on first startup. For more information, see the [model install docs].
## Missing models after updating to v4
If you find some models are missing after updating to v4, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
You can use the `Scan Folder` tab in the Model Manager UI to fix this. The models will either be in the old, now-unused `autoimport` folder, or your `models` folder.
- Find and copy your install's old `autoimport` folder path, install the main install folder.
- Go to the Model Manager and click `Scan Folder`.
- Paste the path and scan.
- IMPORTANT: Uncheck `Inplace install`.
- Click `Install All` to install all found models, or just install the models you want.
Next, find and copy your install's `models` folder path (this could be your custom models folder path, or the `models` folder inside the main install folder).
Follow the same steps to scan and import the missing models.
## Slow generation ## Slow generation
- Check the [system requirements] to ensure that your system is capable of generating images. - Check the [system requirements] to ensure that your system is capable of generating images.
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it. - Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well. - Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed. - Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
## Shared GPU Memory (Windows)
!!! tip "Nvidia GPUs with driver 536.40"
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
Here's how to get the python path required in the linked guide:
- Run `invoke.bat`.
- Select option 2 for developer console.
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
## Installer cannot find python (Windows) ## Installer cannot find python (Windows)

View File

@ -44,7 +44,7 @@ The installation process is simple, with a few prompts:
- Select the version to install. Unless you have a specific reason to install a specific version, select the default (the latest version). - Select the version to install. Unless you have a specific reason to install a specific version, select the default (the latest version).
- Select location for the install. Be sure you have enough space in this folder for the base application, as described in the [installation requirements]. - Select location for the install. Be sure you have enough space in this folder for the base application, as described in the [installation requirements].
- Select a GPU device. If you are unsure, you can let the installer figure it out. - Select a GPU device.
!!! info "Slow Installation" !!! info "Slow Installation"

View File

@ -6,11 +6,7 @@
## Introduction ## Introduction
!!! tip "Conda" InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer and launcher that you'll need to manage manually, described in this guide.
As of InvokeAI v2.3.0 installation using the `conda` package manager is no longer being supported. It will likely still work, but we are not testing this installation method.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer that you'll need to manage manually, described in this guide.
### Requirements ### Requirements
@ -40,11 +36,11 @@ Before you start, go through the [installation requirements].
1. Enter the root (invokeai) directory and create a virtual Python environment within it named `.venv`. 1. Enter the root (invokeai) directory and create a virtual Python environment within it named `.venv`.
!!! info "Virtual Environment Location" !!! warning "Virtual Environment Location"
While you may create the virtual environment anywhere in the file system, we recommend that you create it within the root directory as shown here. This allows the application to automatically detect its data directories. While you may create the virtual environment anywhere in the file system, we recommend that you create it within the root directory as shown here. This allows the application to automatically detect its data directories.
If you choose a different location for the venv, then you must set the `INVOKEAI_ROOT` environment variable or pass the directory using the `--root` CLI arg. If you choose a different location for the venv, then you _must_ set the `INVOKEAI_ROOT` environment variable or specify the root directory using the `--root` CLI arg.
```terminal ```terminal
cd $INVOKEAI_ROOT cd $INVOKEAI_ROOT
@ -81,31 +77,23 @@ Before you start, go through the [installation requirements].
python3 -m pip install --upgrade pip python3 -m pip install --upgrade pip
``` ```
1. Install the InvokeAI Package. The `--extra-index-url` option is used to select the correct `torch` backend: 1. Install the InvokeAI Package. The base command is `pip install InvokeAI --use-pep517`, but you may need to change this depending on your system and the desired features.
=== "CUDA (NVidia)" - You may need to provide an [extra index URL]. Select your platform configuration using [this tool on the PyTorch website]. Copy the `--extra-index-url` string from this and append it to your install command.
```bash !!! example "Install with an extra index URL"
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
=== "ROCm (AMD)" ```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
```bash - If you have a CUDA GPU and want to install with `xformers`, you need to add an option to the package name. Note that `xformers` is not necessary. PyTorch includes an implementation of the SDP attention algorithm with the same performance.
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
```
=== "CPU (Intel Macs & non-GPU systems)" !!! example "Install with `xformers`"
```bash ```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu pip install "InvokeAI[xformers]" --use-pep517
``` ```
=== "MPS (Apple Silicon)"
```bash
pip install InvokeAI --use-pep517
```
1. Deactivate and reactivate your runtime directory so that the invokeai-specific commands become available in the environment: 1. Deactivate and reactivate your runtime directory so that the invokeai-specific commands become available in the environment:
@ -126,37 +114,6 @@ Before you start, go through the [installation requirements].
Run `invokeai-web` to start the UI. You must activate the virtual environment before running the app. Run `invokeai-web` to start the UI. You must activate the virtual environment before running the app.
If the virtual environment you selected is NOT inside `INVOKEAI_ROOT`, then you must specify the path to the root directory by adding !!! warning
`--root_dir \path\to\invokeai`.
!!! tip If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root_dir \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.
You can permanently set the location of the runtime directory
by setting the environment variable `INVOKEAI_ROOT` to the
path of the directory. As mentioned previously, this is
recommended if your virtual environment is located outside of
your runtime directory.
## Unsupported Conda Install
Congratulations, you found the "secret" Conda installation instructions. If you really **really** want to use Conda with InvokeAI, you can do so using this unsupported recipe:
```sh
mkdir ~/invokeai
conda create -n invokeai python=3.11
conda activate invokeai
# Adjust this as described above for the appropriate torch backend
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
invokeai-web --root ~/invokeai
```
The `pip install` command shown in this recipe is for Linux/Windows
systems with an NVIDIA GPU. See step (6) above for the command to use
with other platforms/GPU combinations. If you don't wish to pass the
`--root` argument to `invokeai` with each launch, you may set the
environment variable `INVOKEAI_ROOT` to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!
[installation requirements]: INSTALL_REQUIREMENTS.md

View File

@ -23,6 +23,7 @@ If you have an interest in how InvokeAI works, or you would like to add features
1. [Fork and clone] the [InvokeAI repo]. 1. [Fork and clone] the [InvokeAI repo].
1. Follow the [manual installation] docs to create a new virtual environment for the development install. 1. Follow the [manual installation] docs to create a new virtual environment for the development install.
- Create a new folder outside the repo root for the installation and create the venv inside that folder.
- When installing the InvokeAI package, add `-e` to the command so you get an [editable install]. - When installing the InvokeAI package, add `-e` to the command so you get an [editable install].
1. Install the [frontend dev toolchain] and do a production build of the UI as described. 1. Install the [frontend dev toolchain] and do a production build of the UI as described.
1. You can now run the app as described in the [manual installation] docs. 1. You can now run the app as described in the [manual installation] docs.
@ -32,5 +33,5 @@ As described in the [frontend dev toolchain] docs, you can run the UI using a de
[Fork and clone]: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo [Fork and clone]: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
[InvokeAI repo]: https://github.com/invoke-ai/InvokeAI [InvokeAI repo]: https://github.com/invoke-ai/InvokeAI
[frontend dev toolchain]: ../contributing/frontend/OVERVIEW.md [frontend dev toolchain]: ../contributing/frontend/OVERVIEW.md
[manual installation]: installation/020_INSTALL_MANUAL.md [manual installation]: ./020_INSTALL_MANUAL.md
[editable install]: https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-e [editable install]: https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-e

View File

@ -3,6 +3,7 @@
InvokeAI installer script InvokeAI installer script
""" """
import locale
import os import os
import platform import platform
import re import re
@ -316,7 +317,9 @@ def upgrade_pip(venv_path: Path) -> str | None:
python = str(venv_path.expanduser().resolve() / python) python = str(venv_path.expanduser().resolve() / python)
try: try:
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode() result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode(
encoding=locale.getpreferredencoding()
)
except subprocess.CalledProcessError as e: except subprocess.CalledProcessError as e:
print(e) print(e)
result = None result = None
@ -404,22 +407,29 @@ def get_torch_source() -> Tuple[str | None, str | None]:
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect" # device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
device = select_gpu() device = select_gpu()
# The correct extra index URLs for torch are inconsistent, see https://pytorch.org/get-started/locally/#start-locally
url = None url = None
optional_modules = "[onnx]" optional_modules: str | None = None
if OS == "Linux": if OS == "Linux":
if device.value == "rocm": if device.value == "rocm":
url = "https://download.pytorch.org/whl/rocm5.6" url = "https://download.pytorch.org/whl/rocm5.6"
elif device.value == "cpu": elif device.value == "cpu":
url = "https://download.pytorch.org/whl/cpu" url = "https://download.pytorch.org/whl/cpu"
elif device.value == "cuda":
# CUDA uses the default PyPi index
optional_modules = "[xformers,onnx-cuda]"
elif OS == "Windows": elif OS == "Windows":
if device.value == "cuda": if device.value == "cuda":
url = "https://download.pytorch.org/whl/cu121" url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-cuda]" optional_modules = "[xformers,onnx-cuda]"
if device.value == "cuda_and_dml": elif device.value == "cpu":
url = "https://download.pytorch.org/whl/cu121" # CPU uses the default PyPi index, no optional modules
optional_modules = "[xformers,onnx-directml]" pass
elif OS == "Darwin":
# macOS uses the default PyPi index, no optional modules
pass
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13 # Fall back to defaults
return (url, optional_modules) return (url, optional_modules)

View File

@ -207,10 +207,8 @@ def dest_path(dest: Optional[str | Path] = None) -> Path | None:
class GpuType(Enum): class GpuType(Enum):
CUDA = "cuda" CUDA = "cuda"
CUDA_AND_DML = "cuda_and_dml"
ROCM = "rocm" ROCM = "rocm"
CPU = "cpu" CPU = "cpu"
AUTODETECT = "autodetect"
def select_gpu() -> GpuType: def select_gpu() -> GpuType:
@ -226,10 +224,6 @@ def select_gpu() -> GpuType:
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)", "an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
GpuType.CUDA, GpuType.CUDA,
) )
nvidia_with_dml = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
GpuType.CUDA_AND_DML,
)
amd = ( amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)", "an [gold1 b]AMD[/] GPU (using ROCm™)",
GpuType.ROCM, GpuType.ROCM,
@ -238,27 +232,19 @@ def select_gpu() -> GpuType:
"Do not install any GPU support, use CPU for generation (slow)", "Do not install any GPU support, use CPU for generation (slow)",
GpuType.CPU, GpuType.CPU,
) )
autodetect = (
"I'm not sure what to choose",
GpuType.AUTODETECT,
)
options = [] options = []
if OS == "Windows": if OS == "Windows":
options = [nvidia, nvidia_with_dml, cpu] options = [nvidia, cpu]
if OS == "Linux": if OS == "Linux":
options = [nvidia, amd, cpu] options = [nvidia, amd, cpu]
elif OS == "Darwin": elif OS == "Darwin":
options = [cpu] options = [cpu]
# future CoreML?
if len(options) == 1: if len(options) == 1:
print(f'Your platform [gold1]{OS}-{ARCH}[/] only supports the "{options[0][1]}" driver. Proceeding with that.') print(f'Your platform [gold1]{OS}-{ARCH}[/] only supports the "{options[0][1]}" driver. Proceeding with that.')
return options[0][1] return options[0][1]
# "I don't know" is always added the last option
options.append(autodetect) # type: ignore
options = {str(i): opt for i, opt in enumerate(options, 1)} options = {str(i): opt for i, opt in enumerate(options, 1)}
console.rule(":space_invader: GPU (Graphics Card) selection :space_invader:") console.rule(":space_invader: GPU (Graphics Card) selection :space_invader:")
@ -292,11 +278,6 @@ def select_gpu() -> GpuType:
), ),
) )
if options[choice][1] is GpuType.AUTODETECT:
console.print(
"No problem. We will install CUDA support first :crossed_fingers: If Invoke does not detect a GPU, please re-run the installer and select one of the other GPU types."
)
return options[choice][1] return options[choice][1]

View File

@ -12,7 +12,7 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.upscale import ESRGAN_MODELS from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.patchmatch import PatchMatch from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.util.logging import logging from invokeai.backend.util.logging import logging
from invokeai.version import __version__ from invokeai.version import __version__
@ -100,7 +100,7 @@ async def get_app_deps() -> AppDependencyVersions:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig) @app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig: async def get_config() -> AppConfig:
infill_methods = ["tile", "lama", "cv2"] infill_methods = ["tile", "lama", "cv2", "color"] # TODO: add mosaic back
if PatchMatch.patchmatch_available(): if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch") infill_methods.append("patchmatch")

View File

@ -219,28 +219,13 @@ async def scan_for_models(
non_core_model_paths = [p for p in found_model_paths if not p.is_relative_to(core_models_path)] non_core_model_paths = [p for p in found_model_paths if not p.is_relative_to(core_models_path)]
installed_models = ApiDependencies.invoker.services.model_manager.store.search_by_attr() installed_models = ApiDependencies.invoker.services.model_manager.store.search_by_attr()
resolved_installed_model_paths: list[str] = []
installed_model_sources: list[str] = []
# This call lists all installed models.
for model in installed_models:
path = pathlib.Path(model.path)
# If the model has a source, we need to add it to the list of installed sources.
if model.source:
installed_model_sources.append(model.source)
# If the path is not absolute, that means it is in the app models directory, and we need to join it with
# the models path before resolving.
if not path.is_absolute():
resolved_installed_model_paths.append(str(pathlib.Path(models_path, path).resolve()))
continue
resolved_installed_model_paths.append(str(path.resolve()))
scan_results: list[FoundModel] = [] scan_results: list[FoundModel] = []
# Check if the model is installed by comparing the resolved paths, appending to the scan result. # Check if the model is installed by comparing paths, appending to the scan result.
for p in non_core_model_paths: for p in non_core_model_paths:
path = str(p) path = str(p)
is_installed = path in resolved_installed_model_paths or path in installed_model_sources is_installed = any(str(models_path / m.path) == path for m in installed_models)
found_model = FoundModel(path=path, is_installed=is_installed) found_model = FoundModel(path=path, is_installed=is_installed)
scan_results.append(found_model) scan_results.append(found_model)
except Exception as e: except Exception as e:

View File

@ -28,7 +28,7 @@ from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.config.config_default import get_config from invokeai.app.services.config.config_default import get_config
from invokeai.app.services.session_processor.session_processor_common import ProgressImage from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.backend.util.devices import get_torch_device_name from invokeai.backend.util.devices import TorchDevice
from ..backend.util.logging import InvokeAILogger from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies from .api.dependencies import ApiDependencies
@ -63,7 +63,7 @@ logger = InvokeAILogger.get_logger(config=app_config)
mimetypes.add_type("application/javascript", ".js") mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css") mimetypes.add_type("text/css", ".css")
torch_device_name = get_torch_device_name() torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}") logger.info(f"Using torch device: {torch_device_name}")

View File

@ -5,7 +5,15 @@ from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIComponent from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
OutputField,
TensorField,
UIComponent,
)
from invokeai.app.invocations.primitives import ConditioningOutput from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list from invokeai.app.util.ti_utils import generate_ti_list
@ -14,10 +22,9 @@ from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ( from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo, BasicConditioningInfo,
ConditioningFieldData, ConditioningFieldData,
ExtraConditioningInfo,
SDXLConditioningInfo, SDXLConditioningInfo,
) )
from invokeai.backend.util.devices import torch_dtype from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import CLIPField from .model import CLIPField
@ -36,7 +43,7 @@ from .model import CLIPField
title="Prompt", title="Prompt",
tags=["prompt", "compel"], tags=["prompt", "compel"],
category="conditioning", category="conditioning",
version="1.1.1", version="1.2.0",
) )
class CompelInvocation(BaseInvocation): class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -51,6 +58,9 @@ class CompelInvocation(BaseInvocation):
description=FieldDescriptions.clip, description=FieldDescriptions.clip,
input=Input.Connection, input=Input.Connection,
) )
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
@ -70,52 +80,44 @@ class CompelInvocation(BaseInvocation):
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context) ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with text_encoder_info as text_encoder: with (
with ( ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_model, text_encoder, ti_list) as ( tokenizer,
tokenizer, ti_manager,
ti_manager, ),
), text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching. # Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()), ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers. # Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers), ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
): ):
assert isinstance(text_encoder, CLIPTextModel) assert isinstance(text_encoder, CLIPTextModel)
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_encoder, text_encoder=text_encoder,
textual_inversion_manager=ti_manager, textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype, dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False, truncate_long_prompts=False,
)
conjunction = Compel.parse_prompt_string(self.prompt)
if context.config.get().log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
ec = ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
c = c.detach().to("cpu")
conditioning_data = ConditioningFieldData(
conditionings=[
BasicConditioningInfo(
embeds=c,
extra_conditioning=ec,
)
]
) )
conditioning_name = context.conditioning.save(conditioning_data) conjunction = Compel.parse_prompt_string(self.prompt)
return ConditioningOutput.build(conditioning_name) if context.config.get().log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
c, _options = compel.build_conditioning_tensor_for_conjunction(conjunction)
c = c.detach().to("cpu")
conditioning_data = ConditioningFieldData(conditionings=[BasicConditioningInfo(embeds=c)])
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
mask=self.mask,
)
)
class SDXLPromptInvocationBase: class SDXLPromptInvocationBase:
@ -129,7 +131,7 @@ class SDXLPromptInvocationBase:
get_pooled: bool, get_pooled: bool,
lora_prefix: str, lora_prefix: str,
zero_on_empty: bool, zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]: ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
tokenizer_info = context.models.load(clip_field.tokenizer) tokenizer_info = context.models.load(clip_field.tokenizer)
tokenizer_model = tokenizer_info.model tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer) assert isinstance(tokenizer_model, CLIPTokenizer)
@ -155,7 +157,7 @@ class SDXLPromptInvocationBase:
) )
else: else:
c_pooled = None c_pooled = None
return c, c_pooled, None return c, c_pooled
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]: def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_field.loras: for lora in clip_field.loras:
@ -170,28 +172,28 @@ class SDXLPromptInvocationBase:
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context) ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
with text_encoder_info as text_encoder: with (
with ( ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_model, text_encoder, ti_list) as ( tokenizer,
tokenizer, ti_manager,
ti_manager, ),
), text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching. # Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix), ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers. # Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers), ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
): ):
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)) assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
text_encoder = cast(CLIPTextModel, text_encoder) text_encoder = cast(CLIPTextModel, text_encoder)
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_encoder, text_encoder=text_encoder,
textual_inversion_manager=ti_manager, textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype, dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False, # TODO: truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled, requires_pooled=get_pooled,
) )
conjunction = Compel.parse_prompt_string(prompt) conjunction = Compel.parse_prompt_string(prompt)
@ -199,28 +201,23 @@ class SDXLPromptInvocationBase:
# TODO: better logging for and syntax # TODO: better logging for and syntax
log_tokenization_for_conjunction(conjunction, tokenizer) log_tokenization_for_conjunction(conjunction, tokenizer)
# TODO: ask for optimizations? to not run text_encoder twice # TODO: ask for optimizations? to not run text_encoder twice
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction) c, _options = compel.build_conditioning_tensor_for_conjunction(conjunction)
if get_pooled: if get_pooled:
c_pooled = compel.conditioning_provider.get_pooled_embeddings([prompt]) c_pooled = compel.conditioning_provider.get_pooled_embeddings([prompt])
else: else:
c_pooled = None c_pooled = None
ec = ExtraConditioningInfo( del tokenizer
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction), del text_encoder
cross_attention_control_args=options.get("cross_attention_control", None), del tokenizer_info
) del text_encoder_info
del tokenizer c = c.detach().to("cpu")
del text_encoder if c_pooled is not None:
del tokenizer_info c_pooled = c_pooled.detach().to("cpu")
del text_encoder_info
c = c.detach().to("cpu") return c, c_pooled
if c_pooled is not None:
c_pooled = c_pooled.detach().to("cpu")
return c, c_pooled, ec
@invocation( @invocation(
@ -228,7 +225,7 @@ class SDXLPromptInvocationBase:
title="SDXL Prompt", title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"], tags=["sdxl", "compel", "prompt"],
category="conditioning", category="conditioning",
version="1.1.1", version="1.2.0",
) )
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -251,20 +248,19 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
target_height: int = InputField(default=1024, description="") target_height: int = InputField(default=1024, description="")
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1") clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2") clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
c1, c1_pooled, ec1 = self.run_clip_compel( c1, c1_pooled = self.run_clip_compel(context, self.clip, self.prompt, False, "lora_te1_", zero_on_empty=True)
context, self.clip, self.prompt, False, "lora_te1_", zero_on_empty=True
)
if self.style.strip() == "": if self.style.strip() == "":
c2, c2_pooled, ec2 = self.run_clip_compel( c2, c2_pooled = self.run_clip_compel(
context, self.clip2, self.prompt, True, "lora_te2_", zero_on_empty=True context, self.clip2, self.prompt, True, "lora_te2_", zero_on_empty=True
) )
else: else:
c2, c2_pooled, ec2 = self.run_clip_compel( c2, c2_pooled = self.run_clip_compel(context, self.clip2, self.style, True, "lora_te2_", zero_on_empty=True)
context, self.clip2, self.style, True, "lora_te2_", zero_on_empty=True
)
original_size = (self.original_height, self.original_width) original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left) crop_coords = (self.crop_top, self.crop_left)
@ -303,17 +299,19 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[
SDXLConditioningInfo( SDXLConditioningInfo(
embeds=torch.cat([c1, c2], dim=-1), embeds=torch.cat([c1, c2], dim=-1), pooled_embeds=c2_pooled, add_time_ids=add_time_ids
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec1,
) )
] ]
) )
conditioning_name = context.conditioning.save(conditioning_data) conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput.build(conditioning_name) return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
mask=self.mask,
)
)
@invocation( @invocation(
@ -341,7 +339,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
# TODO: if there will appear lora for refiner - write proper prefix # TODO: if there will appear lora for refiner - write proper prefix
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "<NONE>", zero_on_empty=False) c2, c2_pooled = self.run_clip_compel(context, self.clip2, self.style, True, "<NONE>", zero_on_empty=False)
original_size = (self.original_height, self.original_width) original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left) crop_coords = (self.crop_top, self.crop_left)
@ -350,14 +348,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
assert c2_pooled is not None assert c2_pooled is not None
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[SDXLConditioningInfo(embeds=c2, pooled_embeds=c2_pooled, add_time_ids=add_time_ids)]
SDXLConditioningInfo(
embeds=c2,
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None
)
]
) )
conditioning_name = context.conditioning.save(conditioning_data) conditioning_name = context.conditioning.save(conditioning_data)

View File

@ -3,6 +3,7 @@ Invoke-managed custom node loader. See README.md for more information.
""" """
import sys import sys
import traceback
from importlib.util import module_from_spec, spec_from_file_location from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path from pathlib import Path
@ -41,11 +42,15 @@ for d in Path(__file__).parent.iterdir():
logger.info(f"Loading node pack {module_name}") logger.info(f"Loading node pack {module_name}")
module = module_from_spec(spec) try:
sys.modules[spec.name] = module module = module_from_spec(spec)
spec.loader.exec_module(module) sys.modules[spec.name] = module
spec.loader.exec_module(module)
loaded_count += 1 loaded_count += 1
except Exception:
full_error = traceback.format_exc()
logger.error(f"Failed to load node pack {module_name}:\n{full_error}")
del init, module_name del init, module_name

View File

@ -203,6 +203,12 @@ class DenoiseMaskField(BaseModel):
gradient: bool = Field(default=False, description="Used for gradient inpainting") gradient: bool = Field(default=False, description="Used for gradient inpainting")
class TensorField(BaseModel):
"""A tensor primitive field."""
tensor_name: str = Field(description="The name of a tensor.")
class LatentsField(BaseModel): class LatentsField(BaseModel):
"""A latents tensor primitive field""" """A latents tensor primitive field"""
@ -226,7 +232,11 @@ class ConditioningField(BaseModel):
"""A conditioning tensor primitive value""" """A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor") conditioning_name: str = Field(description="The name of conditioning tensor")
# endregion mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class MetadataField(RootModel[dict[str, Any]]): class MetadataField(RootModel[dict[str, Any]]):

View File

@ -1,154 +1,91 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team from abc import abstractmethod
from typing import Literal, get_args
import math from PIL import Image
from typing import Literal, Optional, get_args
import numpy as np
from PIL import Image, ImageOps
from invokeai.app.invocations.fields import ColorField, ImageField from invokeai.app.invocations.fields import ColorField, ImageField
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.app.util.misc import SEED_MAX from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint from invokeai.backend.image_util.infill_methods.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA from invokeai.backend.image_util.infill_methods.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch from invokeai.backend.image_util.infill_methods.mosaic import infill_mosaic
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, infill_patchmatch
from invokeai.backend.image_util.infill_methods.tile import infill_tile
from invokeai.backend.util.logging import InvokeAILogger
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata from .fields import InputField, WithBoard, WithMetadata
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
logger = InvokeAILogger.get_logger()
def infill_methods() -> list[str]:
methods = ["tile", "solid", "lama", "cv2"] def get_infill_methods():
methods = Literal["tile", "color", "lama", "cv2"] # TODO: add mosaic back
if PatchMatch.patchmatch_available(): if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch") methods = Literal["patchmatch", "tile", "color", "lama", "cv2"] # TODO: add mosaic back
return methods return methods
INFILL_METHODS = Literal[tuple(infill_methods())] INFILL_METHODS = get_infill_methods()
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile" DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
def infill_lama(im: Image.Image) -> Image.Image: class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
lama = LaMA() """Base class for invocations that preprocess images for Infilling"""
return lama(im)
image: ImageField = InputField(description="The image to process")
def infill_patchmatch(im: Image.Image) -> Image.Image: @abstractmethod
if im.mode != "RGBA": def infill(self, image: Image.Image) -> Image.Image:
return im """Infill the image with the specified method"""
pass
# Skip patchmatch if patchmatch isn't available def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
if not PatchMatch.patchmatch_available(): """Process the image to have an alpha channel before being infilled"""
return im image = context.images.get_pil(self.image.image_name)
has_alpha = True if image.mode == "RGBA" else False
return image, has_alpha
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though) def invoke(self, context: InvocationContext) -> ImageOutput:
im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3) # Retrieve and process image to be infilled
im_patched = Image.fromarray(im_patched_np, mode="RGB") input_image, has_alpha = self.load_image(context)
return im_patched
# If the input image has no alpha channel, return it
if has_alpha is False:
return ImageOutput.build(context.images.get_dto(self.image.image_name))
def infill_cv2(im: Image.Image) -> Image.Image: # Perform Infill action
return cv2_inpaint(im) infilled_image = self.infill(input_image)
# Create ImageDTO for Infilled Image
infilled_image_dto = context.images.save(image=infilled_image)
def get_tile_images(image: np.ndarray, width=8, height=8): # Return Infilled Image
_nrows, _ncols, depth = image.shape return ImageOutput.build(infilled_image_dto)
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum() # noqa: E712
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2") @invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class InfillColorInvocation(BaseInvocation, WithMetadata, WithBoard): class InfillColorInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with a solid color""" """Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill")
color: ColorField = InputField( color: ColorField = InputField(
default=ColorField(r=127, g=127, b=127, a=255), default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill", description="The color to use to infill",
) )
def invoke(self, context: InvocationContext) -> ImageOutput: def infill(self, image: Image.Image):
image = context.images.get_pil(self.image.image_name)
solid_bg = Image.new("RGBA", image.size, self.color.tuple()) solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA")) infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1]) infilled.paste(image, (0, 0), image.split()[-1])
return infilled
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.3") @invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.3")
class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard): class InfillTileInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with tiles of the image""" """Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill")
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)") tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
seed: int = InputField( seed: int = InputField(
default=0, default=0,
@ -157,92 +94,74 @@ class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard):
description="The seed to use for tile generation (omit for random)", description="The seed to use for tile generation (omit for random)",
) )
def invoke(self, context: InvocationContext) -> ImageOutput: def infill(self, image: Image.Image):
image = context.images.get_pil(self.image.image_name) output = infill_tile(image, seed=self.seed, tile_size=self.tile_size)
return output.infilled
infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
@invocation( @invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2" "infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2"
) )
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata, WithBoard): class InfillPatchMatchInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm""" """Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill")
downscale: float = InputField(default=2.0, gt=0, description="Run patchmatch on downscaled image to speedup infill") downscale: float = InputField(default=2.0, gt=0, description="Run patchmatch on downscaled image to speedup infill")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode") resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput: def infill(self, image: Image.Image):
image = context.images.get_pil(self.image.image_name).convert("RGBA")
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode] resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
infill_image = image.copy()
width = int(image.width / self.downscale) width = int(image.width / self.downscale)
height = int(image.height / self.downscale) height = int(image.height / self.downscale)
infill_image = infill_image.resize(
infilled = image.resize(
(width, height), (width, height),
resample=resample_mode, resample=resample_mode,
) )
infilled = infill_patchmatch(image)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(infill_image)
else:
raise ValueError("PatchMatch is not available on this system")
infilled = infilled.resize( infilled = infilled.resize(
(image.width, image.height), (image.width, image.height),
resample=resample_mode, resample=resample_mode,
) )
infilled.paste(image, (0, 0), mask=image.split()[-1]) infilled.paste(image, (0, 0), mask=image.split()[-1])
# image.paste(infilled, (0, 0), mask=image.split()[-1])
image_dto = context.images.save(image=infilled) return infilled
return ImageOutput.build(image_dto)
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2") @invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class LaMaInfillInvocation(BaseInvocation, WithMetadata, WithBoard): class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model""" """Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill") def infill(self, image: Image.Image):
lama = LaMA()
def invoke(self, context: InvocationContext) -> ImageOutput: return lama(image)
image = context.images.get_pil(self.image.image_name)
# Downloads the LaMa model if it doesn't already exist
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=context.config.get().models_path / "core/misc/lama/lama.pt",
)
infilled = infill_lama(image.copy())
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2") @invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class CV2InfillInvocation(BaseInvocation, WithMetadata, WithBoard): class CV2InfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using OpenCV Inpainting""" """Infills transparent areas of an image using OpenCV Inpainting"""
def infill(self, image: Image.Image):
return cv2_inpaint(image)
# @invocation(
# "infill_mosaic", title="Mosaic Infill", tags=["image", "inpaint", "outpaint"], category="inpaint", version="1.0.0"
# )
class MosaicInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with a mosaic pattern drawing colors from the rest of the image"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
tile_width: int = InputField(default=64, description="Width of the tile")
tile_height: int = InputField(default=64, description="Height of the tile")
min_color: ColorField = InputField(
default=ColorField(r=0, g=0, b=0, a=255),
description="The min threshold for color",
)
max_color: ColorField = InputField(
default=ColorField(r=255, g=255, b=255, a=255),
description="The max threshold for color",
)
def invoke(self, context: InvocationContext) -> ImageOutput: def infill(self, image: Image.Image):
image = context.images.get_pil(self.image.image_name) return infill_mosaic(image, (self.tile_width, self.tile_height), self.min_color.tuple(), self.max_color.tuple())
infilled = infill_cv2(image.copy())
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)

View File

@ -1,5 +1,5 @@
from builtins import float from builtins import float
from typing import List, Union from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field, field_validator, model_validator from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self from typing_extensions import Self
@ -10,25 +10,43 @@ from invokeai.app.invocations.baseinvocation import (
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
OutputField,
TensorField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, IPAdapterConfig, ModelType from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
ModelType,
)
class IPAdapterField(BaseModel): class IPAdapterField(BaseModel):
image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).") image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.") ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.")
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.") image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") weight: Union[float, List[float]] = Field(default=1, description="The weight given to the IP-Adapter.")
begin_step_percent: float = Field( begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
) )
end_step_percent: float = Field( end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
) )
mask: Optional[TensorField] = Field(
default=None,
description="The bool mask associated with this IP-Adapter. Excluded regions should be set to False, included "
"regions should be set to True.",
)
@field_validator("weight") @field_validator("weight")
@classmethod @classmethod
@ -48,12 +66,15 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter") ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.2.2") CLIP_VISION_MODEL_MAP = {"ViT-H": "ip_adapter_sd_image_encoder", "ViT-G": "ip_adapter_sdxl_image_encoder"}
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.3.0")
class IPAdapterInvocation(BaseInvocation): class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes.""" """Collects IP-Adapter info to pass to other nodes."""
# Inputs # Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).") image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).", ui_order=1)
ip_adapter_model: ModelIdentifierField = InputField( ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.", description="The IP-Adapter model.",
title="IP-Adapter Model", title="IP-Adapter Model",
@ -61,7 +82,11 @@ class IPAdapterInvocation(BaseInvocation):
ui_order=-1, ui_order=-1,
ui_type=UIType.IPAdapterModel, ui_type=UIType.IPAdapterModel,
) )
clip_vision_model: Literal["ViT-H", "ViT-G"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",
default="ViT-H",
ui_order=2,
)
weight: Union[float, List[float]] = InputField( weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight" default=1, description="The weight given to the IP-Adapter", title="Weight"
) )
@ -71,6 +96,9 @@ class IPAdapterInvocation(BaseInvocation):
end_step_percent: float = InputField( end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
) )
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this IP-Adapter applies to."
)
@field_validator("weight") @field_validator("weight")
@classmethod @classmethod
@ -86,10 +114,16 @@ class IPAdapterInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IPAdapterOutput: def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model. # Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key) ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, IPAdapterConfig) assert isinstance(ip_adapter_info, (IPAdapterInvokeAIConfig, IPAdapterCheckpointConfig))
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip() if isinstance(ip_adapter_info, IPAdapterInvokeAIConfig):
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
else:
image_encoder_model_name = CLIP_VISION_MODEL_MAP[self.clip_vision_model]
image_encoder_model = self._get_image_encoder(context, image_encoder_model_name) image_encoder_model = self._get_image_encoder(context, image_encoder_model_name)
return IPAdapterOutput( return IPAdapterOutput(
ip_adapter=IPAdapterField( ip_adapter=IPAdapterField(
image=self.image, image=self.image,
@ -98,23 +132,30 @@ class IPAdapterInvocation(BaseInvocation):
weight=self.weight, weight=self.weight,
begin_step_percent=self.begin_step_percent, begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent, end_step_percent=self.end_step_percent,
mask=self.mask,
), ),
) )
def _get_image_encoder(self, context: InvocationContext, image_encoder_model_name: str) -> AnyModelConfig: def _get_image_encoder(self, context: InvocationContext, image_encoder_model_name: str) -> AnyModelConfig:
found = False image_encoder_models = context.models.search_by_attrs(
while not found: name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
if not len(image_encoder_models) > 0:
context.logger.warning(
f"The image encoder required by this IP Adapter ({image_encoder_model_name}) is not installed. \
Downloading and installing now. This may take a while."
)
installer = context._services.model_manager.install
job = installer.heuristic_import(f"InvokeAI/{image_encoder_model_name}")
installer.wait_for_job(job, timeout=600) # Wait for up to 10 minutes
image_encoder_models = context.models.search_by_attrs( image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
) )
found = len(image_encoder_models) > 0
if not found: if len(image_encoder_models) == 0:
context.logger.warning( context.logger.error("Error while fetching CLIP Vision Image Encoder")
f"The image encoder required by this IP Adapter ({image_encoder_model_name}) is not installed." assert len(image_encoder_models) == 1
)
context.logger.warning("Downloading and installing now. This may take a while.")
installer = context._services.model_manager.install
job = installer.heuristic_import(f"InvokeAI/{image_encoder_model_name}")
installer.wait_for_job(job, timeout=600) # wait up to 10 minutes - then raise a TimeoutException
assert len(image_encoder_models) == 1
return image_encoder_models[0] return image_encoder_models[0]

View File

@ -1,5 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import inspect
import math import math
from contextlib import ExitStack from contextlib import ExitStack
from functools import singledispatchmethod from functools import singledispatchmethod
@ -9,6 +9,7 @@ import einops
import numpy as np import numpy as np
import numpy.typing as npt import numpy.typing as npt
import torch import torch
import torchvision
import torchvision.transforms as T import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin from diffusers.configuration_utils import ConfigMixin
@ -43,11 +44,7 @@ from invokeai.app.invocations.fields import (
WithMetadata, WithMetadata,
) )
from invokeai.app.invocations.ip_adapter import IPAdapterField from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.primitives import ( from invokeai.app.invocations.primitives import DenoiseMaskOutput, ImageOutput, LatentsOutput
DenoiseMaskOutput,
ImageOutput,
LatentsOutput,
)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
@ -56,31 +53,31 @@ from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
IPAdapterData,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.util.mask import to_standard_float_mask
from invokeai.backend.util.silence_warnings import SilenceWarnings from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.stable_diffusion.diffusers_pipeline import ( from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData, ControlNetData,
IPAdapterData,
StableDiffusionGeneratorPipeline, StableDiffusionGeneratorPipeline,
T2IAdapterData, T2IAdapterData,
image_resized_to_grid_as_tensor, image_resized_to_grid_as_tensor,
) )
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device from ...backend.util.devices import TorchDevice
from .baseinvocation import ( from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .controlnet_image_processors import ControlField from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField, VAEField from .model import ModelIdentifierField, UNetField, VAEField
if choose_torch_device() == torch.device("mps"): DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()
from torch import mps
DEFAULT_PRECISION = choose_precision(choose_torch_device())
@invocation_output("scheduler_output") @invocation_output("scheduler_output")
@ -284,10 +281,10 @@ def get_scheduler(
class DenoiseLatentsInvocation(BaseInvocation): class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images""" """Denoises noisy latents to decodable images"""
positive_conditioning: ConditioningField = InputField( positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0 description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
) )
negative_conditioning: ConditioningField = InputField( negative_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1 description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
) )
noise: Optional[LatentsField] = InputField( noise: Optional[LatentsField] = InputField(
@ -365,33 +362,168 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1") raise ValueError("cfg_scale must be greater than 1")
return v return v
def _get_text_embeddings_and_masks(
self,
cond_list: list[ConditioningField],
context: InvocationContext,
device: torch.device,
dtype: torch.dtype,
) -> tuple[Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]], list[Optional[torch.Tensor]]]:
"""Get the text embeddings and masks from the input conditioning fields."""
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
text_embeddings_masks: list[Optional[torch.Tensor]] = []
for cond in cond_list:
cond_data = context.conditioning.load(cond.conditioning_name)
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
mask = cond.mask
if mask is not None:
mask = context.tensors.load(mask.tensor_name)
text_embeddings_masks.append(mask)
return text_embeddings, text_embeddings_masks
def _preprocess_regional_prompt_mask(
self, mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, target_height, target_width).
"""
if mask is None:
return torch.ones((1, 1, target_height, target_width), dtype=dtype)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(target_height, target_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
return resized_mask
def _concat_regional_text_embeddings(
self,
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> tuple[Union[BasicConditioningInfo, SDXLConditioningInfo], Optional[TextConditioningRegions]]:
"""Concatenate regional text embeddings into a single embedding and track the region masks accordingly."""
if masks is None:
masks = [None] * len(text_conditionings)
assert len(text_conditionings) == len(masks)
is_sdxl = type(text_conditionings[0]) is SDXLConditioningInfo
all_masks_are_none = all(mask is None for mask in masks)
text_embedding = []
pooled_embedding = None
add_time_ids = None
cur_text_embedding_len = 0
processed_masks = []
embedding_ranges = []
for prompt_idx, text_embedding_info in enumerate(text_conditionings):
mask = masks[prompt_idx]
if is_sdxl:
# We choose a random SDXLConditioningInfo's pooled_embeds and add_time_ids here, with a preference for
# prompts without a mask. We prefer prompts without a mask, because they are more likely to contain
# global prompt information. In an ideal case, there should be exactly one global prompt without a
# mask, but we don't enforce this.
# HACK(ryand): The fact that we have to choose a single pooled_embedding and add_time_ids here is a
# fundamental interface issue. The SDXL Compel nodes are not designed to be used in the way that we use
# them for regional prompting. Ideally, the DenoiseLatents invocation should accept a single
# pooled_embeds tensor and a list of standard text embeds with region masks. This change would be a
# pretty major breaking change to a popular node, so for now we use this hack.
if pooled_embedding is None or mask is None:
pooled_embedding = text_embedding_info.pooled_embeds
if add_time_ids is None or mask is None:
add_time_ids = text_embedding_info.add_time_ids
text_embedding.append(text_embedding_info.embeds)
if not all_masks_are_none:
embedding_ranges.append(
Range(
start=cur_text_embedding_len, end=cur_text_embedding_len + text_embedding_info.embeds.shape[1]
)
)
processed_masks.append(
self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
)
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
text_embedding = torch.cat(text_embedding, dim=1)
assert len(text_embedding.shape) == 3 # batch_size, seq_len, token_len
regions = None
if not all_masks_are_none:
regions = TextConditioningRegions(
masks=torch.cat(processed_masks, dim=1),
ranges=embedding_ranges,
)
if is_sdxl:
return SDXLConditioningInfo(
embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids
), regions
return BasicConditioningInfo(embeds=text_embedding), regions
def get_conditioning_data( def get_conditioning_data(
self, self,
context: InvocationContext, context: InvocationContext,
scheduler: Scheduler,
unet: UNet2DConditionModel, unet: UNet2DConditionModel,
seed: int, latent_height: int,
) -> ConditioningData: latent_width: int,
positive_cond_data = context.conditioning.load(self.positive_conditioning.conditioning_name) ) -> TextConditioningData:
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype) # Normalize self.positive_conditioning and self.negative_conditioning to lists.
cond_list = self.positive_conditioning
if not isinstance(cond_list, list):
cond_list = [cond_list]
uncond_list = self.negative_conditioning
if not isinstance(uncond_list, list):
uncond_list = [uncond_list]
negative_cond_data = context.conditioning.load(self.negative_conditioning.conditioning_name) cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype) cond_list, context, unet.device, unet.dtype
)
conditioning_data = ConditioningData( uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
unconditioned_embeddings=uc, uncond_list, context, unet.device, unet.dtype
text_embeddings=c,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
) )
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( # FIXME cond_text_embedding, cond_regions = self._concat_regional_text_embeddings(
scheduler, text_conditionings=cond_text_embeddings,
# for ddim scheduler masks=cond_text_embedding_masks,
eta=0.0, # ddim_eta latent_height=latent_height,
# for ancestral and sde schedulers latent_width=latent_width,
# flip all bits to have noise different from initial dtype=unet.dtype,
generator=torch.Generator(device=unet.device).manual_seed(seed ^ 0xFFFFFFFF), )
uncond_text_embedding, uncond_regions = self._concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
) )
if conditioning_data.unconditioned_embeddings.embeds.device != conditioning_data.text_embeddings.embeds.device: if conditioning_data.unconditioned_embeddings.embeds.device != conditioning_data.text_embeddings.embeds.device:
@ -502,8 +634,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
self, self,
context: InvocationContext, context: InvocationContext,
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]], ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]],
conditioning_data: ConditioningData,
exit_stack: ExitStack, exit_stack: ExitStack,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> Optional[list[IPAdapterData]]: ) -> Optional[list[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings """If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
to the `conditioning_data` (in-place). to the `conditioning_data` (in-place).
@ -519,7 +653,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
return None return None
ip_adapter_data_list = [] ip_adapter_data_list = []
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter: for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context( ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.models.load(single_ip_adapter.ip_adapter_model) context.models.load(single_ip_adapter.ip_adapter_model)
@ -542,9 +675,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
single_ipa_images, image_encoder_model single_ipa_images, image_encoder_model
) )
conditioning_data.ip_adapter_conditioning.append( mask = single_ip_adapter.mask
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds) if mask is not None:
) mask = context.tensors.load(mask.tensor_name)
mask = self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
ip_adapter_data_list.append( ip_adapter_data_list.append(
IPAdapterData( IPAdapterData(
@ -552,6 +686,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
weight=single_ip_adapter.weight, weight=single_ip_adapter.weight,
begin_step_percent=single_ip_adapter.begin_step_percent, begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent, end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
mask=mask,
) )
) )
@ -641,6 +777,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
steps: int, steps: int,
denoising_start: float, denoising_start: float,
denoising_end: float, denoising_end: float,
seed: int,
) -> Tuple[int, List[int], int]: ) -> Tuple[int, List[int], int]:
assert isinstance(scheduler, ConfigMixin) assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False): if scheduler.config.get("cpu_only", False):
@ -669,7 +806,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx] timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order num_inference_steps = len(timesteps) // scheduler.order
return num_inference_steps, timesteps, init_timestep scheduler_step_kwargs = {}
scheduler_step_signature = inspect.signature(scheduler.step)
if "generator" in scheduler_step_signature.parameters:
# At some point, someone decided that schedulers that accept a generator should use the original seed with
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
# reproducibility.
scheduler_step_kwargs = {"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)}
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
def prep_inpaint_mask( def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor self, context: InvocationContext, latents: torch.Tensor
@ -762,7 +907,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
) )
pipeline = self.create_pipeline(unet, scheduler) pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler, unet, seed)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
)
controlnet_data = self.prep_control_data( controlnet_data = self.prep_control_data(
context=context, context=context,
@ -776,16 +925,19 @@ class DenoiseLatentsInvocation(BaseInvocation):
ip_adapter_data = self.prep_ip_adapter_data( ip_adapter_data = self.prep_ip_adapter_data(
context=context, context=context,
ip_adapter=self.ip_adapter, ip_adapter=self.ip_adapter,
conditioning_data=conditioning_data,
exit_stack=exit_stack, exit_stack=exit_stack,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
) )
num_inference_steps, timesteps, init_timestep = self.init_scheduler( num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler, scheduler,
device=unet.device, device=unet.device,
steps=self.steps, steps=self.steps,
denoising_start=self.denoising_start, denoising_start=self.denoising_start,
denoising_end=self.denoising_end, denoising_end=self.denoising_end,
seed=seed,
) )
result_latents = pipeline.latents_from_embeddings( result_latents = pipeline.latents_from_embeddings(
@ -798,6 +950,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
masked_latents=masked_latents, masked_latents=masked_latents,
gradient_mask=gradient_mask, gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps, num_inference_steps=num_inference_steps,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data, conditioning_data=conditioning_data,
control_data=controlnet_data, control_data=controlnet_data,
ip_adapter_data=ip_adapter_data, ip_adapter_data=ip_adapter_data,
@ -807,12 +960,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu") result_latents = result_latents.to("cpu")
torch.cuda.empty_cache() TorchDevice.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
name = context.tensors.save(tensor=result_latents) name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=seed) return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
@invocation( @invocation(
@ -876,9 +1027,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.disable_tiling() vae.disable_tiling()
# clear memory as vae decode can request a lot # clear memory as vae decode can request a lot
torch.cuda.empty_cache() TorchDevice.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
with torch.inference_mode(): with torch.inference_mode():
# copied from diffusers pipeline # copied from diffusers pipeline
@ -890,9 +1039,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
image = VaeImageProcessor.numpy_to_pil(np_image)[0] image = VaeImageProcessor.numpy_to_pil(np_image)[0]
torch.cuda.empty_cache() TorchDevice.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
image_dto = context.images.save(image=image) image_dto = context.images.save(image=image)
@ -931,9 +1078,7 @@ class ResizeLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name) latents = context.tensors.load(self.latents.latents_name)
device = TorchDevice.choose_torch_device()
# TODO:
device = choose_torch_device()
resized_latents = torch.nn.functional.interpolate( resized_latents = torch.nn.functional.interpolate(
latents.to(device), latents.to(device),
@ -944,9 +1089,8 @@ class ResizeLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu") resized_latents = resized_latents.to("cpu")
torch.cuda.empty_cache()
if device == torch.device("mps"): TorchDevice.empty_cache()
mps.empty_cache()
name = context.tensors.save(tensor=resized_latents) name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed) return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@ -973,8 +1117,7 @@ class ScaleLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name) latents = context.tensors.load(self.latents.latents_name)
# TODO: device = TorchDevice.choose_torch_device()
device = choose_torch_device()
# resizing # resizing
resized_latents = torch.nn.functional.interpolate( resized_latents = torch.nn.functional.interpolate(
@ -986,9 +1129,7 @@ class ScaleLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu") resized_latents = resized_latents.to("cpu")
torch.cuda.empty_cache() TorchDevice.empty_cache()
if device == torch.device("mps"):
mps.empty_cache()
name = context.tensors.save(tensor=resized_latents) name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed) return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@ -1120,8 +1261,7 @@ class BlendLatentsInvocation(BaseInvocation):
if latents_a.shape != latents_b.shape: if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.") raise Exception("Latents to blend must be the same size.")
# TODO: device = TorchDevice.choose_torch_device()
device = choose_torch_device()
def slerp( def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here? t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
@ -1174,9 +1314,8 @@ class BlendLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu") blended_latents = blended_latents.to("cpu")
torch.cuda.empty_cache()
if device == torch.device("mps"): TorchDevice.empty_cache()
mps.empty_cache()
name = context.tensors.save(tensor=blended_latents) name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents) return LatentsOutput.build(latents_name=name, latents=blended_latents)
@ -1267,7 +1406,7 @@ class IdealSizeInvocation(BaseInvocation):
return tuple((x - x % multiple_of) for x in args) return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput: def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(**self.unet.unet.model_dump()) unet_config = context.models.get_config(self.unet.unet.key)
aspect = self.width / self.height aspect = self.width / self.height
dimension: float = 512 dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2: if unet_config.base == BaseModelType.StableDiffusion2:

View File

@ -0,0 +1,36 @@
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, InvocationContext, invocation
from invokeai.app.invocations.fields import InputField, TensorField, WithMetadata
from invokeai.app.invocations.primitives import MaskOutput
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.1",
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a rectangular mask."""
width: int = InputField(description="The width of the entire mask.")
height: int = InputField(description="The height of the entire mask.")
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
mask[:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width] = (
True
)
mask_tensor_name = context.tensors.save(mask)
return MaskOutput(
mask=TensorField(tensor_name=mask_tensor_name),
width=self.width,
height=self.height,
)

View File

@ -2,16 +2,8 @@ from typing import Any, Literal, Optional, Union
from pydantic import BaseModel, ConfigDict, Field from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
BaseInvocation, from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import (
CONTROLNET_MODE_VALUES,
CONTROLNET_RESIZE_VALUES,
)
from invokeai.app.invocations.fields import ( from invokeai.app.invocations.fields import (
FieldDescriptions, FieldDescriptions,
ImageField, ImageField,
@ -43,6 +35,7 @@ class IPAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The IP-Adapter image prompt.") image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model.") ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model.")
clip_vision_model: Literal["ViT-H", "ViT-G"] = Field(description="The CLIP Vision model")
weight: Union[float, list[float]] = Field(description="The weight given to the IP-Adapter") weight: Union[float, list[float]] = Field(description="The weight given to the IP-Adapter")
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)") begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)") end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")

View File

@ -9,7 +9,7 @@ from invokeai.app.invocations.fields import FieldDescriptions, InputField, Laten
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX from invokeai.app.util.misc import SEED_MAX
from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.util.devices import TorchDevice
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
@ -46,7 +46,7 @@ def get_noise(
height // downsampling_factor, height // downsampling_factor,
width // downsampling_factor, width // downsampling_factor,
], ],
dtype=torch_dtype(device), dtype=TorchDevice.choose_torch_dtype(device=device),
device=noise_device_type, device=noise_device_type,
generator=generator, generator=generator,
).to("cpu") ).to("cpu")
@ -111,14 +111,14 @@ class NoiseInvocation(BaseInvocation):
@field_validator("seed", mode="before") @field_validator("seed", mode="before")
def modulo_seed(cls, v): def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range.""" """Return the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1) return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> NoiseOutput: def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise( noise = get_noise(
width=self.width, width=self.width,
height=self.height, height=self.height,
device=choose_torch_device(), device=TorchDevice.choose_torch_device(),
seed=self.seed, seed=self.seed,
use_cpu=self.use_cpu, use_cpu=self.use_cpu,
) )

View File

@ -15,6 +15,7 @@ from invokeai.app.invocations.fields import (
InputField, InputField,
LatentsField, LatentsField,
OutputField, OutputField,
TensorField,
UIComponent, UIComponent,
) )
from invokeai.app.services.images.images_common import ImageDTO from invokeai.app.services.images.images_common import ImageDTO
@ -405,9 +406,19 @@ class ColorInvocation(BaseInvocation):
# endregion # endregion
# region Conditioning # region Conditioning
@invocation_output("mask_output")
class MaskOutput(BaseInvocationOutput):
"""A torch mask tensor."""
mask: TensorField = OutputField(description="The mask.")
width: int = OutputField(description="The width of the mask in pixels.")
height: int = OutputField(description="The height of the mask in pixels.")
@invocation_output("conditioning_output") @invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput): class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor""" """Base class for nodes that output a single conditioning tensor"""

View File

@ -4,7 +4,6 @@ from typing import Literal
import cv2 import cv2
import numpy as np import numpy as np
import torch
from PIL import Image from PIL import Image
from pydantic import ConfigDict from pydantic import ConfigDict
@ -14,7 +13,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata from .fields import InputField, WithBoard, WithMetadata
@ -35,9 +34,6 @@ ESRGAN_MODEL_URLS: dict[str, str] = {
"RealESRGAN_x2plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth", "RealESRGAN_x2plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
} }
if choose_torch_device() == torch.device("mps"):
from torch import mps
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.2") @invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.2")
class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard): class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
@ -120,9 +116,7 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
upscaled_image = upscaler.upscale(cv2_image) upscaled_image = upscaler.upscale(cv2_image)
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA") pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
torch.cuda.empty_cache() TorchDevice.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
image_dto = context.images.save(image=pil_image) image_dto = context.images.save(image=pil_image)

View File

@ -3,6 +3,7 @@
from __future__ import annotations from __future__ import annotations
import locale
import os import os
import re import re
import shutil import shutil
@ -24,13 +25,13 @@ DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init") LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_RAM_CACHE = 10.0 DEFAULT_RAM_CACHE = 10.0
DEFAULT_CONVERT_CACHE = 20.0 DEFAULT_CONVERT_CACHE = 20.0
DEVICE = Literal["auto", "cpu", "cuda:0", "cuda:1", "cuda:2", "cuda:3", "cuda:4", "cuda:5", "mps"] DEVICE = Literal["auto", "cpu", "cuda:0", "cuda:1", "cuda:2", "cuda:3", "cuda:4", "cuda:5", "cuda:6", "cuda:7", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32", "autocast"] PRECISION = Literal["auto", "float16", "bfloat16", "float32", "autocast"]
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"] LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"] LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
CONFIG_SCHEMA_VERSION = "4.0.0" CONFIG_SCHEMA_VERSION = "4.0.1"
def get_default_ram_cache_size() -> float: def get_default_ram_cache_size() -> float:
@ -100,9 +101,9 @@ class InvokeAIAppConfig(BaseSettings):
ram: Maximum memory amount used by memory model cache for rapid switching (GB). ram: Maximum memory amount used by memory model cache for rapid switching (GB).
convert_cache: Maximum size of on-disk converted models cache (GB). convert_cache: Maximum size of on-disk converted models cache (GB).
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour. log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda:0`, `cuda:1`, `cuda:2`, `cuda:3`, `cuda:4`, `cuda:5`, `mps` device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda:0`, `cuda:1`, `cuda:2`, `cuda:3`, `cuda:4`, `cuda:5`, `cuda:6`, `cuda:7`, `cuda:8`, `mps`
devices: List of execution devices; will override default device selected. devices: List of execution devices to use in a multi-GPU environment; will override default device selected.
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`, `autocast` precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements. sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
attention_type: Attention type.<br>Valid values: `auto`, `normal`, `xformers`, `sliced`, `torch-sdp` attention_type: Attention type.<br>Valid values: `auto`, `normal`, `xformers`, `sliced`, `torch-sdp`
attention_slice_size: Slice size, valid when attention_type=="sliced".<br>Valid values: `auto`, `balanced`, `max`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8` attention_slice_size: Slice size, valid when attention_type=="sliced".<br>Valid values: `auto`, `balanced`, `max`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`
@ -316,11 +317,10 @@ class InvokeAIAppConfig(BaseSettings):
@staticmethod @staticmethod
def find_root() -> Path: def find_root() -> Path:
"""Choose the runtime root directory when not specified on command line or init file.""" """Choose the runtime root directory when not specified on command line or init file."""
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"): if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ["INVOKEAI_ROOT"]) root = Path(os.environ["INVOKEAI_ROOT"])
elif any((venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]): elif venv := os.environ.get("VIRTUAL_ENV", None):
root = (venv.parent).resolve() root = Path(venv).parent.resolve()
else: else:
root = Path("~/invokeai").expanduser().resolve() root = Path("~/invokeai").expanduser().resolve()
return root return root
@ -366,16 +366,25 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
# `max_cache_size` was renamed to `ram` some time in v3, but both names were used # `max_cache_size` was renamed to `ram` some time in v3, but both names were used
if k == "max_cache_size" and "ram" not in category_dict: if k == "max_cache_size" and "ram" not in category_dict:
parsed_config_dict["ram"] = v parsed_config_dict["ram"] = v
# `max_vram_cache_size` was renamed to `vram` some time in v3, but both names were used
if k == "max_vram_cache_size" and "vram" not in category_dict:
parsed_config_dict["vram"] = v
# autocast was removed in v4.0.1
if k == "precision" and v == "autocast":
parsed_config_dict["precision"] = "auto"
if k == "conf_path": if k == "conf_path":
parsed_config_dict["legacy_models_yaml_path"] = v parsed_config_dict["legacy_models_yaml_path"] = v
if k == "legacy_conf_dir": if k == "legacy_conf_dir":
# The old default for this was "configs/stable-diffusion". If if the incoming config has that as the value, we won't set it. # The old default for this was "configs/stable-diffusion" ("configs\stable-diffusion" on Windows).
# Else if the path ends in "stable-diffusion", we assume the parent is the new correct path. if v == "configs/stable-diffusion" or v == "configs\\stable-diffusion":
# Else we do not attempt to migrate this setting # If if the incoming config has the default value, skip
if v != "configs/stable-diffusion": continue
parsed_config_dict["legacy_conf_dir"] = v
elif Path(v).name == "stable-diffusion": elif Path(v).name == "stable-diffusion":
# Else if the path ends in "stable-diffusion", we assume the parent is the new correct path.
parsed_config_dict["legacy_conf_dir"] = str(Path(v).parent) parsed_config_dict["legacy_conf_dir"] = str(Path(v).parent)
else:
# Else we do not attempt to migrate this setting
parsed_config_dict["legacy_conf_dir"] = v
elif k in InvokeAIAppConfig.model_fields: elif k in InvokeAIAppConfig.model_fields:
# skip unknown fields # skip unknown fields
parsed_config_dict[k] = v parsed_config_dict[k] = v
@ -385,6 +394,28 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
return config return config
def migrate_v4_0_0_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
"""Migrate v4.0.0 config dictionary to a current config object.
Args:
config_dict: A dictionary of settings from a v4.0.0 config file.
Returns:
An instance of `InvokeAIAppConfig` with the migrated settings.
"""
parsed_config_dict: dict[str, Any] = {}
for k, v in config_dict.items():
# autocast was removed from precision in v4.0.1
if k == "precision" and v == "autocast":
parsed_config_dict["precision"] = "auto"
else:
parsed_config_dict[k] = v
if k == "schema_version":
parsed_config_dict[k] = CONFIG_SCHEMA_VERSION
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
return config
def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig: def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
"""Load and migrate a config file to the latest version. """Load and migrate a config file to the latest version.
@ -395,7 +426,7 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
An instance of `InvokeAIAppConfig` with the loaded and migrated settings. An instance of `InvokeAIAppConfig` with the loaded and migrated settings.
""" """
assert config_path.suffix == ".yaml" assert config_path.suffix == ".yaml"
with open(config_path) as file: with open(config_path, "rt", encoding=locale.getpreferredencoding()) as file:
loaded_config_dict = yaml.safe_load(file) loaded_config_dict = yaml.safe_load(file)
assert isinstance(loaded_config_dict, dict) assert isinstance(loaded_config_dict, dict)
@ -411,17 +442,21 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e
migrated_config.write_file(config_path) migrated_config.write_file(config_path)
return migrated_config return migrated_config
else:
# Attempt to load as a v4 config file if loaded_config_dict["schema_version"] == "4.0.0":
try: loaded_config_dict = migrate_v4_0_0_config_dict(loaded_config_dict)
# Meta is not included in the model fields, so we need to validate it separately loaded_config_dict.write_file(config_path)
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
assert ( # Attempt to load as a v4 config file
config.schema_version == CONFIG_SCHEMA_VERSION try:
), f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}" # Meta is not included in the model fields, so we need to validate it separately
return config config = InvokeAIAppConfig.model_validate(loaded_config_dict)
except Exception as e: assert (
raise RuntimeError(f"Failed to load config file {config_path}: {e}") from e config.schema_version == CONFIG_SCHEMA_VERSION
), f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
return config
except Exception as e:
raise RuntimeError(f"Failed to load config file {config_path}: {e}") from e
@lru_cache(maxsize=1) @lru_cache(maxsize=1)

View File

@ -1,5 +1,6 @@
"""Model installation class.""" """Model installation class."""
import locale
import os import os
import re import re
import signal import signal
@ -12,6 +13,7 @@ from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Union from typing import Any, Dict, List, Optional, Union
import torch
import yaml import yaml
from huggingface_hub import HfFolder from huggingface_hub import HfFolder
from pydantic.networks import AnyHttpUrl from pydantic.networks import AnyHttpUrl
@ -41,7 +43,7 @@ from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMet
from invokeai.backend.model_manager.probe import ModelProbe from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import InvokeAILogger from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.devices import choose_precision, choose_torch_device from invokeai.backend.util.devices import TorchDevice
from .model_install_base import ( from .model_install_base import (
MODEL_SOURCE_TO_TYPE_MAP, MODEL_SOURCE_TO_TYPE_MAP,
@ -323,7 +325,8 @@ class ModelInstallService(ModelInstallServiceBase):
legacy_models_yaml_path = Path(self._app_config.root_path, legacy_models_yaml_path) legacy_models_yaml_path = Path(self._app_config.root_path, legacy_models_yaml_path)
if legacy_models_yaml_path.exists(): if legacy_models_yaml_path.exists():
legacy_models_yaml = yaml.safe_load(legacy_models_yaml_path.read_text()) with open(legacy_models_yaml_path, "rt", encoding=locale.getpreferredencoding()) as file:
legacy_models_yaml = yaml.safe_load(file)
yaml_metadata = legacy_models_yaml.pop("__metadata__") yaml_metadata = legacy_models_yaml.pop("__metadata__")
yaml_version = yaml_metadata.get("version") yaml_version = yaml_metadata.get("version")
@ -564,7 +567,7 @@ class ModelInstallService(ModelInstallServiceBase):
# The model is not in the models directory - we don't need to move it. # The model is not in the models directory - we don't need to move it.
return model return model
new_path = (models_dir / model.base.value / model.type.value / model.name).with_suffix(old_path.suffix) new_path = models_dir / model.base.value / model.type.value / old_path.name
if old_path == new_path or new_path.exists() and old_path == new_path.resolve(): if old_path == new_path or new_path.exists() and old_path == new_path.resolve():
return model return model
@ -632,11 +635,10 @@ class ModelInstallService(ModelInstallServiceBase):
self._next_job_id += 1 self._next_job_id += 1
return id return id
@staticmethod def _guess_variant(self) -> Optional[ModelRepoVariant]:
def _guess_variant() -> Optional[ModelRepoVariant]:
"""Guess the best HuggingFace variant type to download.""" """Guess the best HuggingFace variant type to download."""
precision = choose_precision(choose_torch_device()) precision = TorchDevice.choose_torch_dtype()
return ModelRepoVariant.FP16 if precision == "float16" else None return ModelRepoVariant.FP16 if precision == torch.float16 else None
def _import_local_model(self, source: LocalModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob: def _import_local_model(self, source: LocalModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
return ModelInstallJob( return ModelInstallJob(

View File

@ -1,11 +1,14 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team # Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
"""Implementation of ModelManagerServiceBase.""" """Implementation of ModelManagerServiceBase."""
from typing import Optional
import torch import torch
from typing_extensions import Self from typing_extensions import Self
from invokeai.app.services.invoker import Invoker from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
from ..config import InvokeAIAppConfig from ..config import InvokeAIAppConfig
@ -86,6 +89,8 @@ class ModelManagerService(ModelManagerServiceBase):
max_cache_size=app_config.ram, max_cache_size=app_config.ram,
logger=logger, logger=logger,
execution_devices=execution_devices, execution_devices=execution_devices,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
) )
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache) convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)
loader = ModelLoadService( loader = ModelLoadService(

View File

@ -98,6 +98,12 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._poll_now() self._poll_now()
elif event_name == "batch_enqueued": elif event_name == "batch_enqueued":
self._poll_now() self._poll_now()
elif event_name == "queue_item_status_changed" and event[1]["data"]["queue_item"]["status"] in [
"completed",
"failed",
"canceled",
]:
self._poll_now()
def resume(self) -> SessionProcessorStatus: def resume(self) -> SessionProcessorStatus:
if not self._resume_event.is_set(): if not self._resume_event.is_set():
@ -188,11 +194,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
invocation = session.session.next() invocation = session.session.next()
# Loop over invocations until the session is complete or canceled # Loop over invocations until the session is complete or canceled
while invocation is not None: while invocation is not None and not self._cancel_event.is_set():
if self._stop_event.is_set():
break
self._resume_event.wait()
self._process_next_invocation(session, invocation, stats_service) self._process_next_invocation(session, invocation, stats_service)
# The session is complete if all invocations are complete or there was an error # The session is complete if all invocations are complete or there was an error

View File

@ -245,6 +245,18 @@ class ImagesInterface(InvocationContextInterface):
""" """
return self._services.images.get_dto(image_name) return self._services.images.get_dto(image_name)
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
"""Gets the internal path to an image or thumbnail.
Args:
image_name: The name of the image to get the path of.
thumbnail: Get the path of the thumbnail instead of the full image
Returns:
The local path of the image or thumbnail.
"""
return self._services.images.get_path(image_name, thumbnail)
class TensorsInterface(InvocationContextInterface): class TensorsInterface(InvocationContextInterface):
def save(self, tensor: Tensor) -> str: def save(self, tensor: Tensor) -> str:

View File

@ -11,6 +11,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_5 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_6 import build_migration_6 from invokeai.app.services.shared.sqlite_migrator.migrations.migration_6 import build_migration_6
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import build_migration_7 from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import build_migration_7
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8 from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@ -39,6 +40,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_6()) migrator.register_migration(build_migration_6())
migrator.register_migration(build_migration_7()) migrator.register_migration(build_migration_7())
migrator.register_migration(build_migration_8(app_config=config)) migrator.register_migration(build_migration_8(app_config=config))
migrator.register_migration(build_migration_9())
migrator.run_migrations() migrator.run_migrations()
return db return db

View File

@ -0,0 +1,29 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration9Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._empty_session_queue(cursor)
def _empty_session_queue(self, cursor: sqlite3.Cursor) -> None:
"""Empties the session queue. This is done to prevent any lingering session queue items from causing pydantic errors due to changed schemas."""
cursor.execute("DELETE FROM session_queue;")
def build_migration_9() -> Migration:
"""
Build the migration from database version 8 to 9.
This migration does the following:
- Empties the session queue. This is done to prevent any lingering session queue items from causing pydantic errors due to changed schemas.
"""
migration_9 = Migration(
from_version=8,
to_version=9,
callback=Migration9Callback(),
)
return migration_9

View File

@ -1,4 +1,6 @@
import sqlite3 import sqlite3
from contextlib import closing
from datetime import datetime
from pathlib import Path from pathlib import Path
from typing import Optional from typing import Optional
@ -32,6 +34,7 @@ class SqliteMigrator:
self._db = db self._db = db
self._logger = db.logger self._logger = db.logger
self._migration_set = MigrationSet() self._migration_set = MigrationSet()
self._backup_path: Optional[Path] = None
def register_migration(self, migration: Migration) -> None: def register_migration(self, migration: Migration) -> None:
"""Registers a migration.""" """Registers a migration."""
@ -55,6 +58,18 @@ class SqliteMigrator:
return False return False
self._logger.info("Database update needed") self._logger.info("Database update needed")
# Make a backup of the db if it needs to be updated and is a file db
if self._db.db_path is not None:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
self._backup_path = self._db.db_path.parent / f"{self._db.db_path.stem}_backup_{timestamp}.db"
self._logger.info(f"Backing up database to {str(self._backup_path)}")
# Use SQLite to do the backup
with closing(sqlite3.connect(self._backup_path)) as backup_conn:
self._db.conn.backup(backup_conn)
else:
self._logger.info("Using in-memory database, no backup needed")
next_migration = self._migration_set.get(from_version=self._get_current_version(cursor)) next_migration = self._migration_set.get(from_version=self._get_current_version(cursor))
while next_migration is not None: while next_migration is not None:
self._run_migration(next_migration) self._run_migration(next_migration)

View File

@ -2,7 +2,7 @@
Initialization file for invokeai.backend.image_util methods. Initialization file for invokeai.backend.image_util methods.
""" """
from .patchmatch import PatchMatch # noqa: F401 from .infill_methods.patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401 from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401 from .seamless import configure_model_padding # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401 from .util import InitImageResizer, make_grid # noqa: F401

View File

@ -13,7 +13,7 @@ from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2 from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
config = get_config() config = get_config()
@ -56,7 +56,7 @@ class DepthAnythingDetector:
def __init__(self) -> None: def __init__(self) -> None:
self.model = None self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None self.model_size: Union[Literal["large", "base", "small"], None] = None
self.device = choose_torch_device() self.device = TorchDevice.choose_torch_device()
def load_model(self, model_size: Literal["large", "base", "small"] = "small"): def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
DEPTH_ANYTHING_MODEL_PATH = config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"] DEPTH_ANYTHING_MODEL_PATH = config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"]
@ -81,7 +81,7 @@ class DepthAnythingDetector:
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu")) self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval() self.model.eval()
self.model.to(choose_torch_device()) self.model.to(self.device)
return self.model return self.model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image: def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
@ -94,7 +94,7 @@ class DepthAnythingDetector:
image_height, image_width = np_image.shape[:2] image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"] np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(choose_torch_device()) tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad(): with torch.no_grad():
depth = self.model(tensor_image) depth = self.model(tensor_image)

View File

@ -7,7 +7,7 @@ import onnxruntime as ort
from invokeai.app.services.config.config_default import get_config from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import TorchDevice
from .onnxdet import inference_detector from .onnxdet import inference_detector
from .onnxpose import inference_pose from .onnxpose import inference_pose
@ -28,9 +28,9 @@ config = get_config()
class Wholebody: class Wholebody:
def __init__(self): def __init__(self):
device = choose_torch_device() device = TorchDevice.choose_torch_device()
providers = ["CUDAExecutionProvider"] if device == "cuda" else ["CPUExecutionProvider"] providers = ["CUDAExecutionProvider"] if device.type == "cuda" else ["CPUExecutionProvider"]
DET_MODEL_PATH = config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"] DET_MODEL_PATH = config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"]
download_with_progress_bar("yolox_l.onnx", DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH) download_with_progress_bar("yolox_l.onnx", DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)

View File

@ -7,7 +7,8 @@ from PIL import Image
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config from invokeai.app.services.config.config_default import get_config
from invokeai.backend.util.devices import choose_torch_device from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import TorchDevice
def norm_img(np_img): def norm_img(np_img):
@ -28,8 +29,16 @@ def load_jit_model(url_or_path, device):
class LaMA: class LaMA:
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any: def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = choose_torch_device() device = TorchDevice.choose_torch_device()
model_location = get_config().models_path / "core/misc/lama/lama.pt" model_location = get_config().models_path / "core/misc/lama/lama.pt"
if not model_location.exists():
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=model_location,
)
model = load_jit_model(model_location, device) model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB")) image = np.asarray(input_image.convert("RGB"))

View File

@ -0,0 +1,60 @@
from typing import Tuple
import numpy as np
from PIL import Image
def infill_mosaic(
image: Image.Image,
tile_shape: Tuple[int, int] = (64, 64),
min_color: Tuple[int, int, int, int] = (0, 0, 0, 0),
max_color: Tuple[int, int, int, int] = (255, 255, 255, 0),
) -> Image.Image:
"""
image:PIL - A PIL Image
tile_shape: Tuple[int,int] - Tile width & Tile Height
min_color: Tuple[int,int,int] - RGB values for the lowest color to clip to (0-255)
max_color: Tuple[int,int,int] - RGB values for the highest color to clip to (0-255)
"""
np_image = np.array(image) # Convert image to np array
alpha = np_image[:, :, 3] # Get the mask from the alpha channel of the image
non_transparent_pixels = np_image[alpha != 0, :3] # List of non-transparent pixels
# Create color tiles to paste in the empty areas of the image
tile_width, tile_height = tile_shape
# Clip the range of colors in the image to a particular spectrum only
r_min, g_min, b_min, _ = min_color
r_max, g_max, b_max, _ = max_color
non_transparent_pixels[:, 0] = np.clip(non_transparent_pixels[:, 0], r_min, r_max)
non_transparent_pixels[:, 1] = np.clip(non_transparent_pixels[:, 1], g_min, g_max)
non_transparent_pixels[:, 2] = np.clip(non_transparent_pixels[:, 2], b_min, b_max)
tiles = []
for _ in range(256):
color = non_transparent_pixels[np.random.randint(len(non_transparent_pixels))]
tile = np.zeros((tile_height, tile_width, 3), dtype=np.uint8)
tile[:, :] = color
tiles.append(tile)
# Fill the transparent area with tiles
filled_image = np.zeros((image.height, image.width, 3), dtype=np.uint8)
for x in range(image.width):
for y in range(image.height):
tile = tiles[np.random.randint(len(tiles))]
try:
filled_image[
y - (y % tile_height) : y - (y % tile_height) + tile_height,
x - (x % tile_width) : x - (x % tile_width) + tile_width,
] = tile
except ValueError:
# Need to handle edge cases - literally
pass
filled_image = Image.fromarray(filled_image) # Convert the filled tiles image to PIL
image = Image.composite(
image, filled_image, image.split()[-1]
) # Composite the original image on top of the filled tiles
return image

View File

@ -0,0 +1,67 @@
"""
This module defines a singleton object, "patchmatch" that
wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.
"""
patch_match = None
tried_load: bool = False
def __init__(self):
super().__init__()
@classmethod
def _load_patch_match(cls):
if cls.tried_load:
return
if get_config().patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
logger.info("Patchmatch initialized")
cls.patch_match = pm
else:
logger.info("Patchmatch not loaded (nonfatal)")
else:
logger.info("Patchmatch loading disabled")
cls.tried_load = True
@classmethod
def patchmatch_available(cls) -> bool:
cls._load_patch_match()
if not cls.patch_match:
return False
return cls.patch_match.patchmatch_available
@classmethod
def inpaint(cls, image: Image.Image) -> Image.Image:
if cls.patch_match is None or not cls.patchmatch_available():
return image
np_image = np.array(image)
mask = 255 - np_image[:, :, 3]
infilled = cls.patch_match.inpaint(np_image[:, :, :3], mask, patch_size=3)
return Image.fromarray(infilled, mode="RGB")
def infill_patchmatch(image: Image.Image) -> Image.Image:
IS_PATCHMATCH_AVAILABLE = PatchMatch.patchmatch_available()
if not IS_PATCHMATCH_AVAILABLE:
logger.warning("PatchMatch is not available on this system")
return image
return PatchMatch.inpaint(image)

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

View File

@ -0,0 +1,95 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"Smoke test for the tile infill\"\"\"\n",
"\n",
"from pathlib import Path\n",
"from typing import Optional\n",
"from PIL import Image\n",
"from invokeai.backend.image_util.infill_methods.tile import infill_tile\n",
"\n",
"images: list[tuple[str, Image.Image]] = []\n",
"\n",
"for i in sorted(Path(\"./test_images/\").glob(\"*.webp\")):\n",
" images.append((i.name, Image.open(i)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_LEFT_RIGHT)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_TOP_BOTTOM)))\n",
" images.append((i.name, Image.open(i).resize((512, 512))))\n",
" images.append((i.name, Image.open(i).resize((1234, 461))))\n",
"\n",
"outputs: list[tuple[str, Image.Image, Image.Image, Optional[Image.Image]]] = []\n",
"\n",
"for name, image in images:\n",
" try:\n",
" output = infill_tile(image, seed=0, tile_size=32)\n",
" outputs.append((name, image, output.infilled, output.tile_image))\n",
" except ValueError as e:\n",
" print(f\"Skipping image {name}: {e}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Display the images in jupyter notebook\n",
"import matplotlib.pyplot as plt\n",
"from PIL import ImageOps\n",
"\n",
"fig, axes = plt.subplots(len(outputs), 3, figsize=(10, 3 * len(outputs)))\n",
"plt.subplots_adjust(hspace=0)\n",
"\n",
"for i, (name, original, infilled, tile_image) in enumerate(outputs):\n",
" # Add a border to each image, helps to see the edges\n",
" size = original.size\n",
" original = ImageOps.expand(original, border=5, fill=\"red\")\n",
" filled = ImageOps.expand(infilled, border=5, fill=\"red\")\n",
" if tile_image:\n",
" tile_image = ImageOps.expand(tile_image, border=5, fill=\"red\")\n",
"\n",
" axes[i, 0].imshow(original)\n",
" axes[i, 0].axis(\"off\")\n",
" axes[i, 0].set_title(f\"Original ({name} - {size})\")\n",
"\n",
" if tile_image:\n",
" axes[i, 1].imshow(tile_image)\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"Tile Image\")\n",
" else:\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"NO TILES GENERATED (NO TRANSPARENCY)\")\n",
"\n",
" axes[i, 2].imshow(filled)\n",
" axes[i, 2].axis(\"off\")\n",
" axes[i, 2].set_title(\"Filled\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".invokeai",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,122 @@
from dataclasses import dataclass
from typing import Optional
import numpy as np
from PIL import Image
def create_tile_pool(img_array: np.ndarray, tile_size: tuple[int, int]) -> list[np.ndarray]:
"""
Create a pool of tiles from non-transparent areas of the image by systematically walking through the image.
Args:
img_array: numpy array of the image.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
Returns:
A list of numpy arrays, each representing a tile.
"""
tiles: list[np.ndarray] = []
rows, cols = img_array.shape[:2]
tile_width, tile_height = tile_size
for y in range(0, rows - tile_height + 1, tile_height):
for x in range(0, cols - tile_width + 1, tile_width):
tile = img_array[y : y + tile_height, x : x + tile_width]
# Check if the image has an alpha channel and the tile is completely opaque
if img_array.shape[2] == 4 and np.all(tile[:, :, 3] == 255):
tiles.append(tile)
elif img_array.shape[2] == 3: # If no alpha channel, append the tile
tiles.append(tile)
if not tiles:
raise ValueError(
"Not enough opaque pixels to generate any tiles. Use a smaller tile size or a different image."
)
return tiles
def create_filled_image(
img_array: np.ndarray, tile_pool: list[np.ndarray], tile_size: tuple[int, int], seed: int
) -> np.ndarray:
"""
Create an image of the same dimensions as the original, filled entirely with tiles from the pool.
Args:
img_array: numpy array of the original image.
tile_pool: A list of numpy arrays, each representing a tile.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
Returns:
A numpy array representing the filled image.
"""
rows, cols, _ = img_array.shape
tile_width, tile_height = tile_size
# Prep an empty RGB image
filled_img_array = np.zeros((rows, cols, 3), dtype=img_array.dtype)
# Make the random tile selection reproducible
rng = np.random.default_rng(seed)
for y in range(0, rows, tile_height):
for x in range(0, cols, tile_width):
# Pick a random tile from the pool
tile = tile_pool[rng.integers(len(tile_pool))]
# Calculate the space available (may be less than tile size near the edges)
space_y = min(tile_height, rows - y)
space_x = min(tile_width, cols - x)
# Crop the tile if necessary to fit into the available space
cropped_tile = tile[:space_y, :space_x, :3]
# Fill the available space with the (possibly cropped) tile
filled_img_array[y : y + space_y, x : x + space_x, :3] = cropped_tile
return filled_img_array
@dataclass
class InfillTileOutput:
infilled: Image.Image
tile_image: Optional[Image.Image] = None
def infill_tile(image_to_infill: Image.Image, seed: int, tile_size: int) -> InfillTileOutput:
"""Infills an image with random tiles from the image itself.
If the image is not an RGBA image, it is returned untouched.
Args:
image: The image to infill.
tile_size: The size of the tiles to use for infilling.
Raises:
ValueError: If there are not enough opaque pixels to generate any tiles.
"""
if image_to_infill.mode != "RGBA":
return InfillTileOutput(infilled=image_to_infill)
# Internally, we want a tuple of (tile_width, tile_height). In the future, the tile size can be any rectangle.
_tile_size = (tile_size, tile_size)
np_image = np.array(image_to_infill, dtype=np.uint8)
# Create the pool of tiles that we will use to infill
tile_pool = create_tile_pool(np_image, _tile_size)
# Create an image from the tiles, same size as the original
tile_np_image = create_filled_image(np_image, tile_pool, _tile_size, seed)
# Paste the OG image over the tile image, effectively infilling the area
tile_image = Image.fromarray(tile_np_image, "RGB")
infilled = tile_image.copy()
infilled.paste(image_to_infill, (0, 0), image_to_infill.split()[-1])
# I think we want this to be "RGBA"?
infilled.convert("RGBA")
return InfillTileOutput(infilled=infilled, tile_image=tile_image)

View File

@ -1,49 +0,0 @@
"""
This module defines a singleton object, "patchmatch" that
wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.
"""
patch_match = None
tried_load: bool = False
def __init__(self):
super().__init__()
@classmethod
def _load_patch_match(self):
if self.tried_load:
return
if get_config().patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
logger.info("Patchmatch initialized")
else:
logger.info("Patchmatch not loaded (nonfatal)")
self.patch_match = pm
else:
logger.info("Patchmatch loading disabled")
self.tried_load = True
@classmethod
def patchmatch_available(self) -> bool:
self._load_patch_match()
return self.patch_match and self.patch_match.patchmatch_available
@classmethod
def inpaint(self, *args, **kwargs) -> np.ndarray:
if self.patchmatch_available():
return self.patch_match.inpaint(*args, **kwargs)

View File

@ -11,7 +11,7 @@ from cv2.typing import MatLike
from tqdm import tqdm from tqdm import tqdm
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import TorchDevice
""" """
Adapted from https://github.com/xinntao/Real-ESRGAN/blob/master/realesrgan/utils.py Adapted from https://github.com/xinntao/Real-ESRGAN/blob/master/realesrgan/utils.py
@ -65,7 +65,7 @@ class RealESRGAN:
self.pre_pad = pre_pad self.pre_pad = pre_pad
self.mod_scale: Optional[int] = None self.mod_scale: Optional[int] = None
self.half = half self.half = half
self.device = choose_torch_device() self.device = TorchDevice.choose_torch_device()
loadnet = torch.load(model_path, map_location=torch.device("cpu")) loadnet = torch.load(model_path, map_location=torch.device("cpu"))

View File

@ -13,7 +13,7 @@ from transformers import AutoFeatureExtractor
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config from invokeai.app.services.config.config_default import get_config
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.silence_warnings import SilenceWarnings from invokeai.backend.util.silence_warnings import SilenceWarnings
CHECKER_PATH = "core/convert/stable-diffusion-safety-checker" CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
@ -51,7 +51,7 @@ class SafetyChecker:
cls._load_safety_checker() cls._load_safety_checker()
if cls.safety_checker is None or cls.feature_extractor is None: if cls.safety_checker is None or cls.feature_extractor is None:
return False return False
device = choose_torch_device() device = TorchDevice.choose_torch_device()
features = cls.feature_extractor([image], return_tensors="pt") features = cls.feature_extractor([image], return_tensors="pt")
features.to(device) features.to(device)
cls.safety_checker.to(device) cls.safety_checker.to(device)

View File

@ -1,182 +0,0 @@
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
# tencent-ailab comment:
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
# Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict
# loading.
class AttnProcessor2_0(DiffusersAttnProcessor2_0, nn.Module):
def __init__(self):
DiffusersAttnProcessor2_0.__init__(self)
nn.Module.__init__(self)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Re-definition of DiffusersAttnProcessor2_0.__call__(...) that accepts and ignores the
ip_adapter_image_prompt_embeds parameter.
"""
return DiffusersAttnProcessor2_0.__call__(
self, attn, hidden_states, encoder_hidden_states, attention_mask, temb
)
class IPAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, weights: list[IPAttentionProcessorWeights], scales: list[float]):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
assert len(weights) == len(scales)
self._weights = weights
self._scales = scales
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Apply IP-Adapter attention.
Args:
ip_adapter_image_prompt_embeds (torch.Tensor): The image prompt embeddings.
Shape: (batch_size, num_ip_images, seq_len, ip_embedding_len).
"""
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
assert ip_adapter_image_prompt_embeds is not None
assert len(ip_adapter_image_prompt_embeds) == len(self._weights)
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._weights, self._scales, strict=True
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.
assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1]
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states

View File

@ -1,8 +1,11 @@
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0) # copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed # and modified as needed
from typing import Optional, Union import pathlib
from typing import List, Optional, TypedDict, Union
import safetensors
import safetensors.torch
import torch import torch
from PIL import Image from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
@ -13,10 +16,17 @@ from ..raw_model import RawModel
from .resampler import Resampler from .resampler import Resampler
class IPAdapterStateDict(TypedDict):
ip_adapter: dict[str, torch.Tensor]
image_proj: dict[str, torch.Tensor]
class ImageProjModel(torch.nn.Module): class ImageProjModel(torch.nn.Module):
"""Image Projection Model""" """Image Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): def __init__(
self, cross_attention_dim: int = 1024, clip_embeddings_dim: int = 1024, clip_extra_context_tokens: int = 4
):
super().__init__() super().__init__()
self.cross_attention_dim = cross_attention_dim self.cross_attention_dim = cross_attention_dim
@ -25,7 +35,7 @@ class ImageProjModel(torch.nn.Module):
self.norm = torch.nn.LayerNorm(cross_attention_dim) self.norm = torch.nn.LayerNorm(cross_attention_dim)
@classmethod @classmethod
def from_state_dict(cls, state_dict: dict[torch.Tensor], clip_extra_context_tokens=4): def from_state_dict(cls, state_dict: dict[str, torch.Tensor], clip_extra_context_tokens: int = 4):
"""Initialize an ImageProjModel from a state_dict. """Initialize an ImageProjModel from a state_dict.
The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict. The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict.
@ -45,7 +55,7 @@ class ImageProjModel(torch.nn.Module):
model.load_state_dict(state_dict) model.load_state_dict(state_dict)
return model return model
def forward(self, image_embeds): def forward(self, image_embeds: torch.Tensor):
embeds = image_embeds embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape( clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim -1, self.clip_extra_context_tokens, self.cross_attention_dim
@ -57,7 +67,7 @@ class ImageProjModel(torch.nn.Module):
class MLPProjModel(torch.nn.Module): class MLPProjModel(torch.nn.Module):
"""SD model with image prompt""" """SD model with image prompt"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): def __init__(self, cross_attention_dim: int = 1024, clip_embeddings_dim: int = 1024):
super().__init__() super().__init__()
self.proj = torch.nn.Sequential( self.proj = torch.nn.Sequential(
@ -68,7 +78,7 @@ class MLPProjModel(torch.nn.Module):
) )
@classmethod @classmethod
def from_state_dict(cls, state_dict: dict[torch.Tensor]): def from_state_dict(cls, state_dict: dict[str, torch.Tensor]):
"""Initialize an MLPProjModel from a state_dict. """Initialize an MLPProjModel from a state_dict.
The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict. The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict.
@ -87,7 +97,7 @@ class MLPProjModel(torch.nn.Module):
model.load_state_dict(state_dict) model.load_state_dict(state_dict)
return model return model
def forward(self, image_embeds): def forward(self, image_embeds: torch.Tensor):
clip_extra_context_tokens = self.proj(image_embeds) clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens return clip_extra_context_tokens
@ -97,7 +107,7 @@ class IPAdapter(RawModel):
def __init__( def __init__(
self, self,
state_dict: dict[str, torch.Tensor], state_dict: IPAdapterStateDict,
device: torch.device, device: torch.device,
dtype: torch.dtype = torch.float16, dtype: torch.dtype = torch.float16,
num_tokens: int = 4, num_tokens: int = 4,
@ -129,24 +139,27 @@ class IPAdapter(RawModel):
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights) return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights)
def _init_image_proj_model(self, state_dict): def _init_image_proj_model(
self, state_dict: dict[str, torch.Tensor]
) -> Union[ImageProjModel, Resampler, MLPProjModel]:
return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype) return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype)
@torch.inference_mode() @torch.inference_mode()
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection): def get_image_embeds(self, pil_image: List[Image.Image], image_encoder: CLIPVisionModelWithProjection):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
image_prompt_embeds = self._image_proj_model(clip_image_embeds) try:
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds)) image_prompt_embeds = self._image_proj_model(clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
except RuntimeError as e:
raise RuntimeError("Selected CLIP Vision Model is incompatible with the current IP Adapter") from e
class IPAdapterPlus(IPAdapter): class IPAdapterPlus(IPAdapter):
"""IP-Adapter with fine-grained features""" """IP-Adapter with fine-grained features"""
def _init_image_proj_model(self, state_dict): def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]) -> Union[Resampler, MLPProjModel]:
return Resampler.from_state_dict( return Resampler.from_state_dict(
state_dict=state_dict, state_dict=state_dict,
depth=4, depth=4,
@ -157,31 +170,32 @@ class IPAdapterPlus(IPAdapter):
).to(self.device, dtype=self.dtype) ).to(self.device, dtype=self.dtype)
@torch.inference_mode() @torch.inference_mode()
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection): def get_image_embeds(self, pil_image: List[Image.Image], image_encoder: CLIPVisionModelWithProjection):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.dtype) clip_image = clip_image.to(self.device, dtype=self.dtype)
clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[ uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
-2 -2
] ]
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds) try:
return image_prompt_embeds, uncond_image_prompt_embeds image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
except RuntimeError as e:
raise RuntimeError("Selected CLIP Vision Model is incompatible with the current IP Adapter") from e
class IPAdapterFull(IPAdapterPlus): class IPAdapterFull(IPAdapterPlus):
"""IP-Adapter Plus with full features.""" """IP-Adapter Plus with full features."""
def _init_image_proj_model(self, state_dict: dict[torch.Tensor]): def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]):
return MLPProjModel.from_state_dict(state_dict).to(self.device, dtype=self.dtype) return MLPProjModel.from_state_dict(state_dict).to(self.device, dtype=self.dtype)
class IPAdapterPlusXL(IPAdapterPlus): class IPAdapterPlusXL(IPAdapterPlus):
"""IP-Adapter Plus for SDXL.""" """IP-Adapter Plus for SDXL."""
def _init_image_proj_model(self, state_dict): def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]):
return Resampler.from_state_dict( return Resampler.from_state_dict(
state_dict=state_dict, state_dict=state_dict,
depth=4, depth=4,
@ -192,24 +206,48 @@ class IPAdapterPlusXL(IPAdapterPlus):
).to(self.device, dtype=self.dtype) ).to(self.device, dtype=self.dtype)
def build_ip_adapter( def load_ip_adapter_tensors(ip_adapter_ckpt_path: pathlib.Path, device: str) -> IPAdapterStateDict:
ip_adapter_ckpt_path: str, device: torch.device, dtype: torch.dtype = torch.float16 state_dict: IPAdapterStateDict = {"ip_adapter": {}, "image_proj": {}}
) -> Union[IPAdapter, IPAdapterPlus]:
state_dict = torch.load(ip_adapter_ckpt_path, map_location="cpu")
if "proj.weight" in state_dict["image_proj"]: # IPAdapter (with ImageProjModel). if ip_adapter_ckpt_path.suffix == ".safetensors":
model = safetensors.torch.load_file(ip_adapter_ckpt_path, device=device)
for key in model.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
else:
raise RuntimeError(f"Encountered unexpected IP Adapter state dict key: '{key}'.")
else:
ip_adapter_diffusers_checkpoint_path = ip_adapter_ckpt_path / "ip_adapter.bin"
state_dict = torch.load(ip_adapter_diffusers_checkpoint_path, map_location="cpu")
return state_dict
def build_ip_adapter(
ip_adapter_ckpt_path: pathlib.Path, device: torch.device, dtype: torch.dtype = torch.float16
) -> Union[IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterPlus]:
state_dict = load_ip_adapter_tensors(ip_adapter_ckpt_path, device.type)
# IPAdapter (with ImageProjModel)
if "proj.weight" in state_dict["image_proj"]:
return IPAdapter(state_dict, device=device, dtype=dtype) return IPAdapter(state_dict, device=device, dtype=dtype)
elif "proj_in.weight" in state_dict["image_proj"]: # IPAdaterPlus or IPAdapterPlusXL (with Resampler).
# IPAdaterPlus or IPAdapterPlusXL (with Resampler)
elif "proj_in.weight" in state_dict["image_proj"]:
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1] cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768: if cross_attention_dim == 768:
# SD1 IP-Adapter Plus return IPAdapterPlus(state_dict, device=device, dtype=dtype) # SD1 IP-Adapter Plus
return IPAdapterPlus(state_dict, device=device, dtype=dtype)
elif cross_attention_dim == 2048: elif cross_attention_dim == 2048:
# SDXL IP-Adapter Plus return IPAdapterPlusXL(state_dict, device=device, dtype=dtype) # SDXL IP-Adapter Plus
return IPAdapterPlusXL(state_dict, device=device, dtype=dtype)
else: else:
raise Exception(f"Unsupported IP-Adapter Plus cross-attention dimension: {cross_attention_dim}.") raise Exception(f"Unsupported IP-Adapter Plus cross-attention dimension: {cross_attention_dim}.")
elif "proj.0.weight" in state_dict["image_proj"]: # IPAdapterFull (with MLPProjModel).
# IPAdapterFull (with MLPProjModel)
elif "proj.0.weight" in state_dict["image_proj"]:
return IPAdapterFull(state_dict, device=device, dtype=dtype) return IPAdapterFull(state_dict, device=device, dtype=dtype)
# Unrecognized IP Adapter Architectures
else: else:
raise ValueError(f"'{ip_adapter_ckpt_path}' has an unrecognized IP-Adapter model architecture.") raise ValueError(f"'{ip_adapter_ckpt_path}' has an unrecognized IP-Adapter model architecture.")

View File

@ -9,8 +9,8 @@ import torch.nn as nn
# FFN # FFN
def FeedForward(dim, mult=4): def FeedForward(dim: int, mult: int = 4):
inner_dim = int(dim * mult) inner_dim = dim * mult
return nn.Sequential( return nn.Sequential(
nn.LayerNorm(dim), nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False), nn.Linear(dim, inner_dim, bias=False),
@ -19,8 +19,8 @@ def FeedForward(dim, mult=4):
) )
def reshape_tensor(x, heads): def reshape_tensor(x: torch.Tensor, heads: int):
bs, length, width = x.shape bs, length, _ = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head) # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1) x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
@ -31,7 +31,7 @@ def reshape_tensor(x, heads):
class PerceiverAttention(nn.Module): class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8): def __init__(self, *, dim: int, dim_head: int = 64, heads: int = 8):
super().__init__() super().__init__()
self.scale = dim_head**-0.5 self.scale = dim_head**-0.5
self.dim_head = dim_head self.dim_head = dim_head
@ -45,7 +45,7 @@ class PerceiverAttention(nn.Module):
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents): def forward(self, x: torch.Tensor, latents: torch.Tensor):
""" """
Args: Args:
x (torch.Tensor): image features x (torch.Tensor): image features
@ -80,14 +80,14 @@ class PerceiverAttention(nn.Module):
class Resampler(nn.Module): class Resampler(nn.Module):
def __init__( def __init__(
self, self,
dim=1024, dim: int = 1024,
depth=8, depth: int = 8,
dim_head=64, dim_head: int = 64,
heads=16, heads: int = 16,
num_queries=8, num_queries: int = 8,
embedding_dim=768, embedding_dim: int = 768,
output_dim=1024, output_dim: int = 1024,
ff_mult=4, ff_mult: int = 4,
): ):
super().__init__() super().__init__()
@ -110,7 +110,15 @@ class Resampler(nn.Module):
) )
@classmethod @classmethod
def from_state_dict(cls, state_dict: dict[torch.Tensor], depth=8, dim_head=64, heads=16, num_queries=8, ff_mult=4): def from_state_dict(
cls,
state_dict: dict[str, torch.Tensor],
depth: int = 8,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ff_mult: int = 4,
):
"""A convenience function that initializes a Resampler from a state_dict. """A convenience function that initializes a Resampler from a state_dict.
Some of the shape parameters are inferred from the state_dict (e.g. dim, embedding_dim, etc.). At the time of Some of the shape parameters are inferred from the state_dict (e.g. dim, embedding_dim, etc.). At the time of
@ -145,7 +153,7 @@ class Resampler(nn.Module):
model.load_state_dict(state_dict) model.load_state_dict(state_dict)
return model return model
def forward(self, x): def forward(self, x: torch.Tensor):
latents = self.latents.repeat(x.size(0), 1, 1) latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x) x = self.proj_in(x)

View File

@ -323,10 +323,13 @@ class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}") return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
class IPAdapterConfig(ModelConfigBase): class IPAdapterBaseConfig(ModelConfigBase):
"""Model config for IP Adaptor format models."""
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
class IPAdapterInvokeAIConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter diffusers format models."""
image_encoder_model_id: str image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI] format: Literal[ModelFormat.InvokeAI]
@ -335,6 +338,16 @@ class IPAdapterConfig(ModelConfigBase):
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}") return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter checkpoint format models."""
format: Literal[ModelFormat.Checkpoint]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase): class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision.""" """Model config for CLIPVision."""
@ -390,7 +403,8 @@ AnyModelConfig = Annotated[
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()], Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()], Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()], Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()], Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()], Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()], Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
], ],

View File

@ -3,10 +3,10 @@
"""Conversion script for the Stable Diffusion checkpoints.""" """Conversion script for the Stable Diffusion checkpoints."""
from pathlib import Path from pathlib import Path
from typing import Dict, Optional from typing import Optional
import torch import torch
from diffusers import AutoencoderKL from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
convert_ldm_vae_checkpoint, convert_ldm_vae_checkpoint,
create_vae_diffusers_config, create_vae_diffusers_config,
@ -19,9 +19,10 @@ from . import AnyModel
def convert_ldm_vae_to_diffusers( def convert_ldm_vae_to_diffusers(
checkpoint: Dict[str, torch.Tensor], checkpoint: torch.Tensor | dict[str, torch.Tensor],
vae_config: DictConfig, vae_config: DictConfig,
image_size: int, image_size: int,
dump_path: Optional[Path] = None,
precision: torch.dtype = torch.float16, precision: torch.dtype = torch.float16,
) -> AutoencoderKL: ) -> AutoencoderKL:
"""Convert a checkpoint-style VAE into a Diffusers VAE""" """Convert a checkpoint-style VAE into a Diffusers VAE"""
@ -30,7 +31,12 @@ def convert_ldm_vae_to_diffusers(
vae = AutoencoderKL(**vae_config) vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint) vae.load_state_dict(converted_vae_checkpoint)
return vae.to(precision) vae.to(precision)
if dump_path:
vae.save_pretrained(dump_path, safe_serialization=True)
return vae
def convert_ckpt_to_diffusers( def convert_ckpt_to_diffusers(

View File

@ -18,7 +18,7 @@ from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoad
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import choose_torch_device, torch_dtype from invokeai.backend.util.devices import TorchDevice
# TO DO: The loader is not thread safe! # TO DO: The loader is not thread safe!
@ -37,7 +37,7 @@ class ModelLoader(ModelLoaderBase):
self._logger = logger self._logger = logger
self._ram_cache = ram_cache self._ram_cache = ram_cache
self._convert_cache = convert_cache self._convert_cache = convert_cache
self._torch_dtype = torch_dtype(choose_torch_device(), app_config) self._torch_dtype = TorchDevice.choose_torch_dtype()
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel: def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
""" """

View File

@ -121,7 +121,7 @@ class ModelCacheBase(ABC, Generic[T]):
@property @property
@abstractmethod @abstractmethod
def stats(self) -> CacheStats: def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object.""" """Return collected CacheStats object."""
pass pass

View File

@ -30,6 +30,7 @@ import torch
from invokeai.backend.model_manager import AnyModel, SubModelType from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
from .model_cache_base import CacheRecord, CacheStats, ModelCacheBase, ModelLockerBase from .model_cache_base import CacheRecord, CacheStats, ModelCacheBase, ModelLockerBase
@ -299,11 +300,11 @@ class ModelCache(ModelCacheBase[AnyModel]):
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})" f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
) )
def make_room(self, model_size: int) -> None: def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size.""" """Make enough room in the cache to accommodate a new model of indicated size."""
# calculate how much memory this model will require # calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1 # multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size bytes_needed = size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = self.cache_size() current_size = self.cache_size()
@ -358,12 +359,11 @@ class ModelCache(ModelCacheBase[AnyModel]):
# 1 from onnx runtime object # 1 from onnx runtime object
if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2): if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2):
self.logger.debug( self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)" f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
) )
current_size -= cache_entry.size current_size -= cache_entry.size
models_cleared += 1 models_cleared += 1
del self._cache_stack[pos] self._delete_cache_entry(cache_entry)
del self._cached_models[model_key]
del cache_entry del cache_entry
else: else:
@ -384,6 +384,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
if self.stats: if self.stats:
self.stats.cleared = models_cleared self.stats.cleared = models_cleared
gc.collect() gc.collect()
TorchDevice.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}") self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _check_free_vram(self, target_device: torch.device, needed_size: int) -> None: def _check_free_vram(self, target_device: torch.device, needed_size: int) -> None:
@ -396,6 +397,10 @@ class ModelCache(ModelCacheBase[AnyModel]):
if needed_size > free_mem: if needed_size > free_mem:
raise torch.cuda.OutOfMemoryError raise torch.cuda.OutOfMemoryError
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]
@staticmethod @staticmethod
def _get_execution_devices(devices: Optional[Set[torch.device]] = None) -> Set[torch.device]: def _get_execution_devices(devices: Optional[Set[torch.device]] = None) -> Set[torch.device]:
if not devices: if not devices:
@ -410,3 +415,4 @@ class ModelCache(ModelCacheBase[AnyModel]):
@staticmethod @staticmethod
def _device_name(device: torch.device) -> str: def _device_name(device: torch.device) -> str:
return f"{device.type}:{device.index}" return f"{device.type}:{device.index}"

View File

@ -54,7 +54,6 @@ class ModelLocker(ModelLockerBase):
# NOTE that the model has to have the to() method in order for this code to move it into GPU! # NOTE that the model has to have the to() method in order for this code to move it into GPU!
self._cache_entry.lock() self._cache_entry.lock()
try: try:
# We wait for a gpu to be free - may raise a ValueError # We wait for a gpu to be free - may raise a ValueError
self._execution_device = self._cache.get_execution_device() self._execution_device = self._cache.get_execution_device()

View File

@ -7,19 +7,13 @@ from typing import Optional
import torch import torch
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
from invokeai.backend.model_manager import ( from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
from invokeai.backend.raw_model import RawModel from invokeai.backend.raw_model import RawModel
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI) @ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.Checkpoint)
class IPAdapterInvokeAILoader(ModelLoader): class IPAdapterInvokeAILoader(ModelLoader):
"""Class to load IP Adapter diffusers models.""" """Class to load IP Adapter diffusers models."""
@ -32,7 +26,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
raise ValueError("There are no submodels in an IP-Adapter model.") raise ValueError("There are no submodels in an IP-Adapter model.")
model_path = Path(config.path) model_path = Path(config.path)
model: RawModel = build_ip_adapter( model: RawModel = build_ip_adapter(
ip_adapter_ckpt_path=str(model_path / "ip_adapter.bin"), ip_adapter_ckpt_path=model_path,
device=torch.device("cpu"), device=torch.device("cpu"),
dtype=self._torch_dtype, dtype=self._torch_dtype,
) )

View File

@ -2,6 +2,7 @@
"""Class for VAE model loading in InvokeAI.""" """Class for VAE model loading in InvokeAI."""
from pathlib import Path from pathlib import Path
from typing import Optional
import torch import torch
from omegaconf import DictConfig, OmegaConf from omegaconf import DictConfig, OmegaConf
@ -13,7 +14,7 @@ from invokeai.backend.model_manager import (
ModelFormat, ModelFormat,
ModelType, ModelType,
) )
from invokeai.backend.model_manager.config import CheckpointConfigBase from invokeai.backend.model_manager.config import AnyModel, CheckpointConfigBase
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
from .. import ModelLoaderRegistry from .. import ModelLoaderRegistry
@ -38,7 +39,7 @@ class VAELoader(GenericDiffusersLoader):
else: else:
return True return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path: def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
# TODO(MM2): check whether sdxl VAE models convert. # TODO(MM2): check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}: if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}") raise Exception(f"VAE conversion not supported for model type: {config.base}")
@ -63,6 +64,6 @@ class VAELoader(GenericDiffusersLoader):
vae_config=ckpt_config, vae_config=ckpt_config,
image_size=512, image_size=512,
precision=self._torch_dtype, precision=self._torch_dtype,
dump_path=output_path,
) )
vae_model.save_pretrained(output_path, safe_serialization=True) return vae_model
return output_path

View File

@ -17,7 +17,7 @@ from diffusers.utils import logging as dlogging
from invokeai.app.services.model_install import ModelInstallServiceBase from invokeai.app.services.model_install import ModelInstallServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.util.devices import choose_torch_device, torch_dtype from invokeai.backend.util.devices import TorchDevice
from . import ( from . import (
AnyModelConfig, AnyModelConfig,
@ -43,6 +43,7 @@ class ModelMerger(object):
Initialize a ModelMerger object with the model installer. Initialize a ModelMerger object with the model installer.
""" """
self._installer = installer self._installer = installer
self._dtype = TorchDevice.choose_torch_dtype()
def merge_diffusion_models( def merge_diffusion_models(
self, self,
@ -68,7 +69,7 @@ class ModelMerger(object):
warnings.simplefilter("ignore") warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity() verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error() dlogging.set_verbosity_error()
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device()) dtype = torch.float16 if variant == "fp16" else self._dtype
# Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models # Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models
# until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released. # until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released.
@ -151,7 +152,7 @@ class ModelMerger(object):
dump_path.mkdir(parents=True, exist_ok=True) dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name dump_path = dump_path / merged_model_name
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device()) dtype = torch.float16 if variant == "fp16" else self._dtype
merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant) merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant)
# register model and get its unique key # register model and get its unique key

View File

@ -230,9 +230,10 @@ class ModelProbe(object):
return ModelType.LoRA return ModelType.LoRA
elif any(key.startswith(v) for v in {"controlnet", "control_model", "input_blocks"}): elif any(key.startswith(v) for v in {"controlnet", "control_model", "input_blocks"}):
return ModelType.ControlNet return ModelType.ControlNet
elif any(key.startswith(v) for v in {"image_proj.", "ip_adapter."}):
return ModelType.IPAdapter
elif key in {"emb_params", "string_to_param"}: elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion return ModelType.TextualInversion
else: else:
# diffusers-ti # diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()): if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
@ -323,7 +324,7 @@ class ModelProbe(object):
with SilenceWarnings(): with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")): if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")):
cls._scan_model(model_path.name, model_path) cls._scan_model(model_path.name, model_path)
model = torch.load(model_path) model = torch.load(model_path, map_location="cpu")
assert isinstance(model, dict) assert isinstance(model, dict)
return model return model
else: else:
@ -527,8 +528,25 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
class IPAdapterCheckpointProbe(CheckpointProbeBase): class IPAdapterCheckpointProbe(CheckpointProbeBase):
"""Class for probing IP Adapters"""
def get_base_type(self) -> BaseModelType: def get_base_type(self) -> BaseModelType:
raise NotImplementedError() checkpoint = self.checkpoint
for key in checkpoint.keys():
if not key.startswith(("image_proj.", "ip_adapter.")):
continue
cross_attention_dim = checkpoint["ip_adapter.1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
return BaseModelType.StableDiffusion1
elif cross_attention_dim == 1024:
return BaseModelType.StableDiffusion2
elif cross_attention_dim == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
)
raise InvalidModelConfigException(f"{self.model_path}: Unable to determine base type")
class CLIPVisionCheckpointProbe(CheckpointProbeBase): class CLIPVisionCheckpointProbe(CheckpointProbeBase):
@ -768,7 +786,7 @@ class T2IAdapterFolderProbe(FolderProbeBase):
) )
############## register probe classes ###### # Register probe classes
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe) ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe) ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe) ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe)

View File

@ -21,12 +21,14 @@ from pydantic import Field
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config.config_default import get_config from invokeai.app.services.config.config_default import get_config
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher IPAdapterData,
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData TextConditioningData,
)
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from invokeai.backend.util.attention import auto_detect_slice_size from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import normalize_device from invokeai.backend.util.devices import TorchDevice
@dataclass @dataclass
@ -149,16 +151,6 @@ class ControlNetData:
resize_mode: str = Field(default="just_resize") resize_mode: str = Field(default="just_resize")
@dataclass
class IPAdapterData:
ip_adapter_model: IPAdapter = Field(default=None)
# TODO: change to polymorphic so can do different weights per step (once implemented...)
weight: Union[float, List[float]] = Field(default=1.0)
# weight: float = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
@dataclass @dataclass
class T2IAdapterData: class T2IAdapterData:
"""A structure containing the information required to apply conditioning from a single T2I-Adapter model.""" """A structure containing the information required to apply conditioning from a single T2I-Adapter model."""
@ -266,7 +258,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if self.unet.device.type == "cpu" or self.unet.device.type == "mps": if self.unet.device.type == "cpu" or self.unet.device.type == "mps":
mem_free = psutil.virtual_memory().free mem_free = psutil.virtual_memory().free
elif self.unet.device.type == "cuda": elif self.unet.device.type == "cuda":
mem_free, _ = torch.cuda.mem_get_info(normalize_device(self.unet.device)) mem_free, _ = torch.cuda.mem_get_info(TorchDevice.normalize(self.unet.device))
else: else:
raise ValueError(f"unrecognized device {self.unet.device}") raise ValueError(f"unrecognized device {self.unet.device}")
# input tensor of [1, 4, h/8, w/8] # input tensor of [1, 4, h/8, w/8]
@ -295,7 +287,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self, self,
latents: torch.Tensor, latents: torch.Tensor,
num_inference_steps: int, num_inference_steps: int,
conditioning_data: ConditioningData, scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
*, *,
noise: Optional[torch.Tensor], noise: Optional[torch.Tensor],
timesteps: torch.Tensor, timesteps: torch.Tensor,
@ -308,7 +301,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
mask: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None,
masked_latents: Optional[torch.Tensor] = None, masked_latents: Optional[torch.Tensor] = None,
gradient_mask: Optional[bool] = False, gradient_mask: Optional[bool] = False,
seed: Optional[int] = None, seed: int,
) -> torch.Tensor: ) -> torch.Tensor:
if init_timestep.shape[0] == 0: if init_timestep.shape[0] == 0:
return latents return latents
@ -326,20 +319,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
latents = self.scheduler.add_noise(latents, noise, batched_t) latents = self.scheduler.add_noise(latents, noise, batched_t)
if mask is not None: if mask is not None:
# if no noise provided, noisify unmasked area based on seed(or 0 as fallback)
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed or 0),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
latents = self.scheduler.add_noise(latents, noise, batched_t)
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
if is_inpainting_model(self.unet): if is_inpainting_model(self.unet):
if masked_latents is None: if masked_latents is None:
raise Exception("Source image required for inpaint mask when inpaint model used!") raise Exception("Source image required for inpaint mask when inpaint model used!")
@ -348,6 +327,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self._unet_forward, mask, masked_latents self._unet_forward, mask, masked_latents
) )
else: else:
# if no noise provided, noisify unmasked area based on seed
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask)) additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask))
try: try:
@ -355,6 +343,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
latents, latents,
timesteps, timesteps,
conditioning_data, conditioning_data,
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance, additional_guidance=additional_guidance,
control_data=control_data, control_data=control_data,
ip_adapter_data=ip_adapter_data, ip_adapter_data=ip_adapter_data,
@ -380,7 +369,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self, self,
latents: torch.Tensor, latents: torch.Tensor,
timesteps, timesteps,
conditioning_data: ConditioningData, conditioning_data: TextConditioningData,
scheduler_step_kwargs: dict[str, Any],
*, *,
additional_guidance: List[Callable] = None, additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None, control_data: List[ControlNetData] = None,
@ -397,22 +387,17 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if timesteps.shape[0] == 0: if timesteps.shape[0] == 0:
return latents return latents
ip_adapter_unet_patcher = None use_ip_adapter = ip_adapter_data is not None
extra_conditioning_info = conditioning_data.text_embeddings.extra_conditioning use_regional_prompting = (
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control: conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
attn_ctx = self.invokeai_diffuser.custom_attention_context( )
self.invokeai_diffuser.model, unet_attention_patcher = None
extra_conditioning_info=extra_conditioning_info, self.use_ip_adapter = use_ip_adapter
) attn_ctx = nullcontext()
self.use_ip_adapter = False if use_ip_adapter or use_regional_prompting:
elif ip_adapter_data is not None: ip_adapters = [ipa.ip_adapter_model for ipa in ip_adapter_data] if use_ip_adapter else None
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active? unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
# As it is now, the IP-Adapter will silently be skipped. attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data])
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
self.use_ip_adapter = True
else:
attn_ctx = nullcontext()
# NOTE error is not here! # NOTE error is not here!
if conditioning_data.unconditioned_embeddings.embeds.device != \ if conditioning_data.unconditioned_embeddings.embeds.device != \
@ -444,11 +429,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
conditioning_data, conditioning_data,
step_index=i, step_index=i,
total_step_count=len(timesteps), total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance, additional_guidance=additional_guidance,
control_data=control_data, control_data=control_data,
ip_adapter_data=ip_adapter_data, ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data, t2i_adapter_data=t2i_adapter_data,
ip_adapter_unet_patcher=ip_adapter_unet_patcher,
) )
latents = step_output.prev_sample latents = step_output.prev_sample
predicted_original = getattr(step_output, "pred_original_sample", None) predicted_original = getattr(step_output, "pred_original_sample", None)
@ -472,14 +457,14 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self, self,
t: torch.Tensor, t: torch.Tensor,
latents: torch.Tensor, latents: torch.Tensor,
conditioning_data: ConditioningData, conditioning_data: TextConditioningData,
step_index: int, step_index: int,
total_step_count: int, total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
additional_guidance: List[Callable] = None, additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None, control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
ip_adapter_unet_patcher: Optional[UNetPatcher] = None,
): ):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value # invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
@ -495,23 +480,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# i.e. before or after passing it to InvokeAIDiffuserComponent # i.e. before or after passing it to InvokeAIDiffuserComponent
latent_model_input = self.scheduler.scale_model_input(latents, timestep) latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# handle IP-Adapter
if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer
for i, single_ip_adapter_data in enumerate(ip_adapter_data):
first_adapter_step = math.floor(single_ip_adapter_data.begin_step_percent * total_step_count)
last_adapter_step = math.ceil(single_ip_adapter_data.end_step_percent * total_step_count)
weight = (
single_ip_adapter_data.weight[step_index]
if isinstance(single_ip_adapter_data.weight, List)
else single_ip_adapter_data.weight
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
ip_adapter_unet_patcher.set_scale(i, weight)
else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
ip_adapter_unet_patcher.set_scale(i, 0.0)
# Handle ControlNet(s) # Handle ControlNet(s)
down_block_additional_residuals = None down_block_additional_residuals = None
mid_block_additional_residual = None mid_block_additional_residual = None
@ -560,6 +528,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
step_index=step_index, step_index=step_index,
total_step_count=total_step_count, total_step_count=total_step_count,
conditioning_data=conditioning_data, conditioning_data=conditioning_data,
ip_adapter_data=ip_adapter_data,
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
@ -579,7 +548,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
) )
# compute the previous noisy sample x_t -> x_t-1 # compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args) step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
# TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting again. # TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting again.
for guidance in additional_guidance: for guidance in additional_guidance:

View File

@ -1,27 +1,17 @@
import dataclasses import math
import inspect from dataclasses import dataclass
from dataclasses import dataclass, field from typing import List, Optional, Union
from typing import Any, List, Optional, Union
import torch import torch
from .cross_attention_control import Arguments from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
@dataclass
class ExtraConditioningInfo:
tokens_count_including_eos_bos: int
cross_attention_control_args: Optional[Arguments] = None
@property
def wants_cross_attention_control(self):
return self.cross_attention_control_args is not None
@dataclass @dataclass
class BasicConditioningInfo: class BasicConditioningInfo:
"""SD 1/2 text conditioning information produced by Compel."""
embeds: torch.Tensor embeds: torch.Tensor
extra_conditioning: Optional[ExtraConditioningInfo]
def to(self, device, dtype=None): def to(self, device, dtype=None):
self.embeds = self.embeds.to(device=device, dtype=dtype) self.embeds = self.embeds.to(device=device, dtype=dtype)
@ -35,6 +25,8 @@ class ConditioningFieldData:
@dataclass @dataclass
class SDXLConditioningInfo(BasicConditioningInfo): class SDXLConditioningInfo(BasicConditioningInfo):
"""SDXL text conditioning information produced by Compel."""
pooled_embeds: torch.Tensor pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor add_time_ids: torch.Tensor
@ -57,37 +49,74 @@ class IPAdapterConditioningInfo:
@dataclass @dataclass
class ConditioningData: class IPAdapterData:
unconditioned_embeddings: BasicConditioningInfo ip_adapter_model: IPAdapter
text_embeddings: BasicConditioningInfo ip_adapter_conditioning: IPAdapterConditioningInfo
""" mask: torch.Tensor
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
"""
guidance_scale: Union[float, List[float]]
""" for models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7 .
ref [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf)
"""
guidance_rescale_multiplier: float = 0
scheduler_args: dict[str, Any] = field(default_factory=dict)
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None # Either a single weight applied to all steps, or a list of weights for each step.
weight: Union[float, List[float]] = 1.0
begin_step_percent: float = 0.0
end_step_percent: float = 1.0
@property def scale_for_step(self, step_index: int, total_steps: int) -> float:
def dtype(self): first_adapter_step = math.floor(self.begin_step_percent * total_steps)
return self.text_embeddings.dtype last_adapter_step = math.ceil(self.end_step_percent * total_steps)
weight = self.weight[step_index] if isinstance(self.weight, List) else self.weight
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
return weight
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
return 0.0
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
scheduler_args = dict(self.scheduler_args) @dataclass
step_method = inspect.signature(scheduler.step) class Range:
for name, value in kwargs.items(): start: int
try: end: int
step_method.bind_partial(**{name: value})
except TypeError:
# FIXME: don't silently discard arguments class TextConditioningRegions:
pass # debug("%s does not accept argument named %r", scheduler, name) def __init__(
else: self,
scheduler_args[name] = value masks: torch.Tensor,
return dataclasses.replace(self, scheduler_args=scheduler_args) ranges: list[Range],
):
# A binary mask indicating the regions of the image that the prompt should be applied to.
# Shape: (1, num_prompts, height, width)
# Dtype: torch.bool
self.masks = masks
# A list of ranges indicating the start and end indices of the embeddings that corresponding mask applies to.
# ranges[i] contains the embedding range for the i'th prompt / mask.
self.ranges = ranges
assert self.masks.shape[1] == len(self.ranges)
class TextConditioningData:
def __init__(
self,
uncond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
cond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
uncond_regions: Optional[TextConditioningRegions],
cond_regions: Optional[TextConditioningRegions],
guidance_scale: Union[float, List[float]],
guidance_rescale_multiplier: float = 0,
):
self.uncond_text = uncond_text
self.cond_text = cond_text
self.uncond_regions = uncond_regions
self.cond_regions = cond_regions
# Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
# `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
# Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
# images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
self.guidance_scale = guidance_scale
# For models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7.
# See [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
self.guidance_rescale_multiplier = guidance_rescale_multiplier
def is_sdxl(self):
assert isinstance(self.uncond_text, SDXLConditioningInfo) == isinstance(self.cond_text, SDXLConditioningInfo)
return isinstance(self.cond_text, SDXLConditioningInfo)

View File

@ -1,218 +0,0 @@
# adapted from bloc97's CrossAttentionControl colab
# https://github.com/bloc97/CrossAttentionControl
import enum
from dataclasses import dataclass, field
from typing import Optional
import torch
from compel.cross_attention_control import Arguments
from diffusers.models.attention_processor import Attention, SlicedAttnProcessor
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from invokeai.backend.util.devices import torch_dtype
class CrossAttentionType(enum.Enum):
SELF = 1
TOKENS = 2
class CrossAttnControlContext:
def __init__(self, arguments: Arguments):
"""
:param arguments: Arguments for the cross-attention control process
"""
self.cross_attention_mask: Optional[torch.Tensor] = None
self.cross_attention_index_map: Optional[torch.Tensor] = None
self.arguments = arguments
def get_active_cross_attention_control_types_for_step(
self, percent_through: float = None
) -> list[CrossAttentionType]:
"""
Should cross-attention control be applied on the given step?
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
:return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
"""
if percent_through is None:
return [CrossAttentionType.SELF, CrossAttentionType.TOKENS]
opts = self.arguments.edit_options
to_control = []
if opts["s_start"] <= percent_through < opts["s_end"]:
to_control.append(CrossAttentionType.SELF)
if opts["t_start"] <= percent_through < opts["t_end"]:
to_control.append(CrossAttentionType.TOKENS)
return to_control
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: CrossAttnControlContext):
"""
Inject attention parameters and functions into the passed in model to enable cross attention editing.
:param model: The unet model to inject into.
:return: None
"""
# adapted from init_attention_edit
device = context.arguments.edited_conditioning.device
# urgh. should this be hardcoded?
max_length = 77
# mask=1 means use base prompt attention, mask=0 means use edited prompt attention
mask = torch.zeros(max_length, dtype=torch_dtype(device))
indices_target = torch.arange(max_length, dtype=torch.long)
indices = torch.arange(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
if b0 < max_length:
if name == "equal": # or (name == "replace" and a1 - a0 == b1 - b0):
# these tokens have not been edited
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device)
old_attn_processors = unet.attn_processors
if torch.backends.mps.is_available():
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
unet.set_attn_processor(SwapCrossAttnProcessor())
else:
# try to re-use an existing slice size
default_slice_size = 4
slice_size = next(
(p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size
)
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
@dataclass
class SwapCrossAttnContext:
modified_text_embeddings: torch.Tensor
index_map: torch.Tensor # maps from original prompt token indices to the equivalent tokens in the modified prompt
mask: torch.Tensor # in the target space of the index_map
cross_attention_types_to_do: list[CrossAttentionType] = field(default_factory=list)
def wants_cross_attention_control(self, attn_type: CrossAttentionType) -> bool:
return attn_type in self.cross_attention_types_to_do
@classmethod
def make_mask_and_index_map(
cls, edit_opcodes: list[tuple[str, int, int, int, int]], max_length: int
) -> tuple[torch.Tensor, torch.Tensor]:
# mask=1 means use original prompt attention, mask=0 means use modified prompt attention
mask = torch.zeros(max_length)
indices_target = torch.arange(max_length, dtype=torch.long)
indices = torch.arange(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in edit_opcodes:
if b0 < max_length:
if name == "equal":
# these tokens remain the same as in the original prompt
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
return mask, indices
class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
# TODO: dynamically pick slice size based on memory conditions
def __call__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
# kwargs
swap_cross_attn_context: SwapCrossAttnContext = None,
**kwargs,
):
attention_type = CrossAttentionType.SELF if encoder_hidden_states is None else CrossAttentionType.TOKENS
# if cross-attention control is not in play, just call through to the base implementation.
if (
attention_type is CrossAttentionType.SELF
or swap_cross_attn_context is None
or not swap_cross_attn_context.wants_cross_attention_control(attention_type)
):
# print(f"SwapCrossAttnContext for {attention_type} not active - passing request to superclass")
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask)
# else:
# print(f"SwapCrossAttnContext for {attention_type} active")
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(
attention_mask=attention_mask,
target_length=sequence_length,
batch_size=batch_size,
)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
original_text_embeddings = encoder_hidden_states
modified_text_embeddings = swap_cross_attn_context.modified_text_embeddings
original_text_key = attn.to_k(original_text_embeddings)
modified_text_key = attn.to_k(modified_text_embeddings)
original_value = attn.to_v(original_text_embeddings)
modified_value = attn.to_v(modified_text_embeddings)
original_text_key = attn.head_to_batch_dim(original_text_key)
modified_text_key = attn.head_to_batch_dim(modified_text_key)
original_value = attn.head_to_batch_dim(original_value)
modified_value = attn.head_to_batch_dim(modified_value)
# compute slices and prepare output tensor
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // attn.heads),
device=query.device,
dtype=query.dtype,
)
# do slices
for i in range(max(1, hidden_states.shape[0] // self.slice_size)):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
original_key_slice = original_text_key[start_idx:end_idx]
modified_key_slice = modified_text_key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
original_attn_slice = attn.get_attention_scores(query_slice, original_key_slice, attn_mask_slice)
modified_attn_slice = attn.get_attention_scores(query_slice, modified_key_slice, attn_mask_slice)
# because the prompt modifications may result in token sequences shifted forwards or backwards,
# the original attention probabilities must be remapped to account for token index changes in the
# modified prompt
remapped_original_attn_slice = torch.index_select(
original_attn_slice, -1, swap_cross_attn_context.index_map
)
# only some tokens taken from the original attention probabilities. this is controlled by the mask.
mask = swap_cross_attn_context.mask
inverse_mask = 1 - mask
attn_slice = remapped_original_attn_slice * mask + modified_attn_slice * inverse_mask
del remapped_original_attn_slice, modified_attn_slice
attn_slice = torch.bmm(attn_slice, modified_value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
# done
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class SwapCrossAttnProcessor(SlicedSwapCrossAttnProcesser):
def __init__(self):
super(SwapCrossAttnProcessor, self).__init__(slice_size=int(1e9)) # massive slice size = don't slice

View File

@ -0,0 +1,198 @@
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
from invokeai.backend.stable_diffusion.diffusion.regional_ip_data import RegionalIPData
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
class CustomAttnProcessor2_0(AttnProcessor2_0):
"""A custom implementation of AttnProcessor2_0 that supports additional Invoke features.
This implementation is based on
https://github.com/huggingface/diffusers/blame/fcfa270fbd1dc294e2f3a505bae6bcb791d721c3/src/diffusers/models/attention_processor.py#L1204
Supported custom features:
- IP-Adapter
- Regional prompt attention
"""
def __init__(
self,
ip_adapter_weights: Optional[list[IPAttentionProcessorWeights]] = None,
):
"""Initialize a CustomAttnProcessor2_0.
Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are
layer-specific are passed to __init__().
Args:
ip_adapter_weights: The IP-Adapter attention weights. ip_adapter_weights[i] contains the attention weights
for the i'th IP-Adapter.
"""
super().__init__()
self._ip_adapter_weights = ip_adapter_weights
def _is_ip_adapter_enabled(self) -> bool:
return self._ip_adapter_weights is not None
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
# For regional prompting:
regional_prompt_data: Optional[RegionalPromptData] = None,
percent_through: Optional[torch.FloatTensor] = None,
# For IP-Adapter:
regional_ip_data: Optional[RegionalIPData] = None,
) -> torch.FloatTensor:
"""Apply attention.
Args:
regional_prompt_data: The regional prompt data for the current batch. If not None, this will be used to
apply regional prompt masking.
regional_ip_data: The IP-Adapter data for the current batch.
"""
# If true, we are doing cross-attention, if false we are doing self-attention.
is_cross_attention = encoder_hidden_states is not None
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# End unmodified block from AttnProcessor2_0.
_, query_seq_len, _ = hidden_states.shape
# Handle regional prompt attention masks.
if regional_prompt_data is not None and is_cross_attention:
assert percent_through is not None
prompt_region_attention_mask = regional_prompt_data.get_cross_attn_mask(
query_seq_len=query_seq_len, key_seq_len=sequence_length
)
if attention_mask is None:
attention_mask = prompt_region_attention_mask
else:
attention_mask = prompt_region_attention_mask + attention_mask
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# End unmodified block from AttnProcessor2_0.
# Apply IP-Adapter conditioning.
if is_cross_attention:
if self._is_ip_adapter_enabled():
assert regional_ip_data is not None
ip_masks = regional_ip_data.get_masks(query_seq_len=query_seq_len)
assert (
len(regional_ip_data.image_prompt_embeds)
== len(self._ip_adapter_weights)
== len(regional_ip_data.scales)
== ip_masks.shape[1]
)
for ipa_index, ipa_embed in enumerate(regional_ip_data.image_prompt_embeds):
ipa_weights = self._ip_adapter_weights[ipa_index]
ipa_scale = regional_ip_data.scales[ipa_index]
ip_mask = ip_masks[0, ipa_index, ...]
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.
assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1]
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + ipa_scale * ip_hidden_states * ip_mask
else:
# If IP-Adapter is not enabled, then regional_ip_data should not be passed in.
assert regional_ip_data is None
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states

View File

@ -0,0 +1,72 @@
import torch
class RegionalIPData:
"""A class to manage the data for regional IP-Adapter conditioning."""
def __init__(
self,
image_prompt_embeds: list[torch.Tensor],
scales: list[float],
masks: list[torch.Tensor],
dtype: torch.dtype,
device: torch.device,
max_downscale_factor: int = 8,
):
"""Initialize a `IPAdapterConditioningData` object."""
assert len(image_prompt_embeds) == len(scales) == len(masks)
# The image prompt embeddings.
# regional_ip_data[i] contains the image prompt embeddings for the i'th IP-Adapter. Each tensor
# has shape (batch_size, num_ip_images, seq_len, ip_embedding_len).
self.image_prompt_embeds = image_prompt_embeds
# The scales for the IP-Adapter attention.
# scales[i] contains the attention scale for the i'th IP-Adapter.
self.scales = scales
# The IP-Adapter masks.
# self._masks_by_seq_len[s] contains the spatial masks for the downsampling level with query sequence length of
# s. It has shape (batch_size, num_ip_images, query_seq_len, 1). The masks have values of 1.0 for included
# regions and 0.0 for excluded regions.
self._masks_by_seq_len = self._prepare_masks(masks, max_downscale_factor, device, dtype)
def _prepare_masks(
self, masks: list[torch.Tensor], max_downscale_factor: int, device: torch.device, dtype: torch.dtype
) -> dict[int, torch.Tensor]:
"""Prepare the masks for the IP-Adapter attention."""
# Concatenate the masks so that they can be processed more efficiently.
mask_tensor = torch.cat(masks, dim=1)
mask_tensor = mask_tensor.to(device=device, dtype=dtype)
masks_by_seq_len: dict[int, torch.Tensor] = {}
# Downsample the spatial dimensions by factors of 2 until max_downscale_factor is reached.
downscale_factor = 1
while downscale_factor <= max_downscale_factor:
b, num_ip_adapters, h, w = mask_tensor.shape
# Assert that the batch size is 1, because I haven't thought through batch handling for this feature yet.
assert b == 1
# The IP-Adapters are applied in the cross-attention layers, where the query sequence length is the h * w of
# the spatial features.
query_seq_len = h * w
masks_by_seq_len[query_seq_len] = mask_tensor.view((b, num_ip_adapters, -1, 1))
downscale_factor *= 2
if downscale_factor <= max_downscale_factor:
# We use max pooling because we downscale to a pretty low resolution, so we don't want small mask
# regions to be lost entirely.
#
# ceil_mode=True is set to mirror the downsampling behavior of SD and SDXL.
#
# TODO(ryand): In the future, we may want to experiment with other downsampling methods.
mask_tensor = torch.nn.functional.max_pool2d(mask_tensor, kernel_size=2, stride=2, ceil_mode=True)
return masks_by_seq_len
def get_masks(self, query_seq_len: int) -> torch.Tensor:
"""Get the mask for the given query sequence length."""
return self._masks_by_seq_len[query_seq_len]

View File

@ -0,0 +1,105 @@
import torch
import torch.nn.functional as F
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningRegions,
)
class RegionalPromptData:
"""A class to manage the prompt data for regional conditioning."""
def __init__(
self,
regions: list[TextConditioningRegions],
device: torch.device,
dtype: torch.dtype,
max_downscale_factor: int = 8,
):
"""Initialize a `RegionalPromptData` object.
Args:
regions (list[TextConditioningRegions]): regions[i] contains the prompt regions for the i'th sample in the
batch.
device (torch.device): The device to use for the attention masks.
dtype (torch.dtype): The data type to use for the attention masks.
max_downscale_factor: Spatial masks will be prepared for downscale factors from 1 to max_downscale_factor
in steps of 2x.
"""
self._regions = regions
self._device = device
self._dtype = dtype
# self._spatial_masks_by_seq_len[b][s] contains the spatial masks for the b'th batch sample with a query
# sequence length of s.
self._spatial_masks_by_seq_len: list[dict[int, torch.Tensor]] = self._prepare_spatial_masks(
regions, max_downscale_factor
)
self._negative_cross_attn_mask_score = -10000.0
def _prepare_spatial_masks(
self, regions: list[TextConditioningRegions], max_downscale_factor: int = 8
) -> list[dict[int, torch.Tensor]]:
"""Prepare the spatial masks for all downscaling factors."""
# batch_masks_by_seq_len[b][s] contains the spatial masks for the b'th batch sample with a query sequence length
# of s.
batch_sample_masks_by_seq_len: list[dict[int, torch.Tensor]] = []
for batch_sample_regions in regions:
batch_sample_masks_by_seq_len.append({})
batch_sample_masks = batch_sample_regions.masks.to(device=self._device, dtype=self._dtype)
# Downsample the spatial dimensions by factors of 2 until max_downscale_factor is reached.
downscale_factor = 1
while downscale_factor <= max_downscale_factor:
b, _num_prompts, h, w = batch_sample_masks.shape
assert b == 1
query_seq_len = h * w
batch_sample_masks_by_seq_len[-1][query_seq_len] = batch_sample_masks
downscale_factor *= 2
if downscale_factor <= max_downscale_factor:
# We use max pooling because we downscale to a pretty low resolution, so we don't want small prompt
# regions to be lost entirely.
#
# ceil_mode=True is set to mirror the downsampling behavior of SD and SDXL.
#
# TODO(ryand): In the future, we may want to experiment with other downsampling methods (e.g.
# nearest interpolation), and could potentially use a weighted mask rather than a binary mask.
batch_sample_masks = F.max_pool2d(batch_sample_masks, kernel_size=2, stride=2, ceil_mode=True)
return batch_sample_masks_by_seq_len
def get_cross_attn_mask(self, query_seq_len: int, key_seq_len: int) -> torch.Tensor:
"""Get the cross-attention mask for the given query sequence length.
Args:
query_seq_len: The length of the flattened spatial features at the current downscaling level.
key_seq_len (int): The sequence length of the prompt embeddings (which act as the key in the cross-attention
layers). This is most likely equal to the max embedding range end, but we pass it explicitly to be sure.
Returns:
torch.Tensor: The cross-attention score mask.
shape: (batch_size, query_seq_len, key_seq_len).
dtype: float
"""
batch_size = len(self._spatial_masks_by_seq_len)
batch_spatial_masks = [self._spatial_masks_by_seq_len[b][query_seq_len] for b in range(batch_size)]
# Create an empty attention mask with the correct shape.
attn_mask = torch.zeros((batch_size, query_seq_len, key_seq_len), dtype=self._dtype, device=self._device)
for batch_idx in range(batch_size):
batch_sample_spatial_masks = batch_spatial_masks[batch_idx]
batch_sample_regions = self._regions[batch_idx]
# Flatten the spatial dimensions of the mask by reshaping to (1, num_prompts, query_seq_len, 1).
_, num_prompts, _, _ = batch_sample_spatial_masks.shape
batch_sample_query_masks = batch_sample_spatial_masks.view((1, num_prompts, query_seq_len, 1))
for prompt_idx, embedding_range in enumerate(batch_sample_regions.ranges):
batch_sample_query_scores = batch_sample_query_masks[0, prompt_idx, :, :].clone()
batch_sample_query_mask = batch_sample_query_scores > 0.5
batch_sample_query_scores[batch_sample_query_mask] = 0.0
batch_sample_query_scores[~batch_sample_query_mask] = self._negative_cross_attn_mask_score
attn_mask[batch_idx, :, embedding_range.start : embedding_range.end] = batch_sample_query_scores
return attn_mask

View File

@ -1,27 +1,21 @@
from __future__ import annotations from __future__ import annotations
import math import math
from contextlib import contextmanager
from typing import Any, Callable, Optional, Union from typing import Any, Callable, Optional, Union
import torch import torch
import threading import threading
from diffusers import UNet2DConditionModel
from typing_extensions import TypeAlias from typing_extensions import TypeAlias
from invokeai.app.services.config.config_default import get_config from invokeai.app.services.config.config_default import get_config
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ( from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
ConditioningData, IPAdapterData,
ExtraConditioningInfo, Range,
SDXLConditioningInfo, TextConditioningData,
) TextConditioningRegions,
from .cross_attention_control import (
CrossAttentionType,
CrossAttnControlContext,
SwapCrossAttnContext,
setup_cross_attention_control_attention_processors,
) )
from invokeai.backend.stable_diffusion.diffusion.regional_ip_data import RegionalIPData
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
ModelForwardCallback: TypeAlias = Union[ ModelForwardCallback: TypeAlias = Union[
# x, t, conditioning, Optional[cross-attention kwargs] # x, t, conditioning, Optional[cross-attention kwargs]
@ -59,31 +53,8 @@ class InvokeAIDiffuserComponent:
self.conditioning = None self.conditioning = None
self.model = model self.model = model
self.model_forward_callback = model_forward_callback self.model_forward_callback = model_forward_callback
self.cross_attention_control_context = None
self.sequential_guidance = config.sequential_guidance self.sequential_guidance = config.sequential_guidance
@contextmanager
def custom_attention_context(
self,
unet: UNet2DConditionModel,
extra_conditioning_info: Optional[ExtraConditioningInfo],
):
old_attn_processors = unet.attn_processors
try:
self.cross_attention_control_context = CrossAttnControlContext(
arguments=extra_conditioning_info.cross_attention_control_args,
)
setup_cross_attention_control_attention_processors(
unet,
self.cross_attention_control_context,
)
yield None
finally:
self.cross_attention_control_context = None
unet.set_attn_processor(old_attn_processors)
def do_controlnet_step( def do_controlnet_step(
self, self,
control_data, control_data,
@ -91,7 +62,7 @@ class InvokeAIDiffuserComponent:
timestep: torch.Tensor, timestep: torch.Tensor,
step_index: int, step_index: int,
total_step_count: int, total_step_count: int,
conditioning_data, conditioning_data: TextConditioningData,
): ):
down_block_res_samples, mid_block_res_sample = None, None down_block_res_samples, mid_block_res_sample = None, None
@ -124,28 +95,28 @@ class InvokeAIDiffuserComponent:
added_cond_kwargs = None added_cond_kwargs = None
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo: if conditioning_data.is_sdxl():
added_cond_kwargs = { added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds, "text_embeds": conditioning_data.cond_text.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids, "time_ids": conditioning_data.cond_text.add_time_ids,
} }
encoder_hidden_states = conditioning_data.text_embeddings.embeds encoder_hidden_states = conditioning_data.cond_text.embeds
encoder_attention_mask = None encoder_attention_mask = None
else: else:
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo: if conditioning_data.is_sdxl():
added_cond_kwargs = { added_cond_kwargs = {
"text_embeds": torch.cat( "text_embeds": torch.cat(
[ [
# TODO: how to pad? just by zeros? or even truncate? # TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds, conditioning_data.uncond_text.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds, conditioning_data.cond_text.pooled_embeds,
], ],
dim=0, dim=0,
), ),
"time_ids": torch.cat( "time_ids": torch.cat(
[ [
conditioning_data.unconditioned_embeddings.add_time_ids, conditioning_data.uncond_text.add_time_ids,
conditioning_data.text_embeddings.add_time_ids, conditioning_data.cond_text.add_time_ids,
], ],
dim=0, dim=0,
), ),
@ -154,8 +125,8 @@ class InvokeAIDiffuserComponent:
encoder_hidden_states, encoder_hidden_states,
encoder_attention_mask, encoder_attention_mask,
) = self._concat_conditionings_for_batch( ) = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds, conditioning_data.uncond_text.embeds,
conditioning_data.text_embeddings.embeds, conditioning_data.cond_text.embeds,
) )
if isinstance(control_datum.weight, list): if isinstance(control_datum.weight, list):
# if controlnet has multiple weights, use the weight for the current step # if controlnet has multiple weights, use the weight for the current step
@ -199,24 +170,15 @@ class InvokeAIDiffuserComponent:
self, self,
sample: torch.Tensor, sample: torch.Tensor,
timestep: torch.Tensor, timestep: torch.Tensor,
conditioning_data: ConditioningData, conditioning_data: TextConditioningData,
ip_adapter_data: Optional[list[IPAdapterData]],
step_index: int, step_index: int,
total_step_count: int, total_step_count: int,
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
): ):
cross_attention_control_types_to_do = [] if self.sequential_guidance:
if self.cross_attention_control_context is not None:
percent_through = step_index / total_step_count
cross_attention_control_types_to_do = (
self.cross_attention_control_context.get_active_cross_attention_control_types_for_step(percent_through)
)
wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0
if wants_cross_attention_control or self.sequential_guidance:
# If wants_cross_attention_control is True, we force the sequential mode to be used, because cross-attention
# control is currently only supported in sequential mode.
( (
unconditioned_next_x, unconditioned_next_x,
conditioned_next_x, conditioned_next_x,
@ -224,7 +186,9 @@ class InvokeAIDiffuserComponent:
x=sample, x=sample,
sigma=timestep, sigma=timestep,
conditioning_data=conditioning_data, conditioning_data=conditioning_data,
cross_attention_control_types_to_do=cross_attention_control_types_to_do, ip_adapter_data=ip_adapter_data,
step_index=step_index,
total_step_count=total_step_count,
down_block_additional_residuals=down_block_additional_residuals, down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual, mid_block_additional_residual=mid_block_additional_residual,
down_intrablock_additional_residuals=down_intrablock_additional_residuals, down_intrablock_additional_residuals=down_intrablock_additional_residuals,
@ -237,6 +201,9 @@ class InvokeAIDiffuserComponent:
x=sample, x=sample,
sigma=timestep, sigma=timestep,
conditioning_data=conditioning_data, conditioning_data=conditioning_data,
ip_adapter_data=ip_adapter_data,
step_index=step_index,
total_step_count=total_step_count,
down_block_additional_residuals=down_block_additional_residuals, down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual, mid_block_additional_residual=mid_block_additional_residual,
down_intrablock_additional_residuals=down_intrablock_additional_residuals, down_intrablock_additional_residuals=down_intrablock_additional_residuals,
@ -297,53 +264,84 @@ class InvokeAIDiffuserComponent:
def _apply_standard_conditioning( def _apply_standard_conditioning(
self, self,
x, x: torch.Tensor,
sigma, sigma: torch.Tensor,
conditioning_data: ConditioningData, conditioning_data: TextConditioningData,
ip_adapter_data: Optional[list[IPAdapterData]],
step_index: int,
total_step_count: int,
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
): ) -> tuple[torch.Tensor, torch.Tensor]:
"""Runs the conditioned and unconditioned UNet forward passes in a single batch for faster inference speed at """Runs the conditioned and unconditioned UNet forward passes in a single batch for faster inference speed at
the cost of higher memory usage. the cost of higher memory usage.
""" """
x_twice = torch.cat([x] * 2) x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2) sigma_twice = torch.cat([sigma] * 2)
cross_attention_kwargs = None cross_attention_kwargs = {}
if conditioning_data.ip_adapter_conditioning is not None: if ip_adapter_data is not None:
ip_adapter_conditioning = [ipa.ip_adapter_conditioning for ipa in ip_adapter_data]
# Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len). # Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len).
cross_attention_kwargs = { image_prompt_embeds = [
"ip_adapter_image_prompt_embeds": [ torch.stack([ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds])
torch.stack( for ipa_conditioning in ip_adapter_conditioning
[ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds] ]
) scales = [ipa.scale_for_step(step_index, total_step_count) for ipa in ip_adapter_data]
for ipa_conditioning in conditioning_data.ip_adapter_conditioning ip_masks = [ipa.mask for ipa in ip_adapter_data]
] regional_ip_data = RegionalIPData(
} image_prompt_embeds=image_prompt_embeds, scales=scales, masks=ip_masks, dtype=x.dtype, device=x.device
)
cross_attention_kwargs["regional_ip_data"] = regional_ip_data
added_cond_kwargs = None added_cond_kwargs = None
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo: if conditioning_data.is_sdxl():
added_cond_kwargs = { added_cond_kwargs = {
"text_embeds": torch.cat( "text_embeds": torch.cat(
[ [
# TODO: how to pad? just by zeros? or even truncate? # TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds, conditioning_data.uncond_text.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds, conditioning_data.cond_text.pooled_embeds,
], ],
dim=0, dim=0,
), ),
"time_ids": torch.cat( "time_ids": torch.cat(
[ [
conditioning_data.unconditioned_embeddings.add_time_ids, conditioning_data.uncond_text.add_time_ids,
conditioning_data.text_embeddings.add_time_ids, conditioning_data.cond_text.add_time_ids,
], ],
dim=0, dim=0,
), ),
} }
if conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None:
# TODO(ryand): We currently initialize RegionalPromptData for every denoising step. The text conditionings
# and masks are not changing from step-to-step, so this really only needs to be done once. While this seems
# painfully inefficient, the time spent is typically negligible compared to the forward inference pass of
# the UNet. The main reason that this hasn't been moved up to eliminate redundancy is that it is slightly
# awkward to handle both standard conditioning and sequential conditioning further up the stack.
regions = []
for c, r in [
(conditioning_data.uncond_text, conditioning_data.uncond_regions),
(conditioning_data.cond_text, conditioning_data.cond_regions),
]:
if r is None:
# Create a dummy mask and range for text conditioning that doesn't have region masks.
_, _, h, w = x.shape
r = TextConditioningRegions(
masks=torch.ones((1, 1, h, w), dtype=x.dtype),
ranges=[Range(start=0, end=c.embeds.shape[1])],
)
regions.append(r)
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData(
regions=regions, device=x.device, dtype=x.dtype
)
cross_attention_kwargs["percent_through"] = step_index / total_step_count
both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch( both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds, conditioning_data.text_embeddings.embeds conditioning_data.uncond_text.embeds, conditioning_data.cond_text.embeds
) )
both_results = self.model_forward_callback( both_results = self.model_forward_callback(
x_twice, x_twice,
@ -363,8 +361,10 @@ class InvokeAIDiffuserComponent:
self, self,
x: torch.Tensor, x: torch.Tensor,
sigma, sigma,
conditioning_data: ConditioningData, conditioning_data: TextConditioningData,
cross_attention_control_types_to_do: list[CrossAttentionType], ip_adapter_data: Optional[list[IPAdapterData]],
step_index: int,
total_step_count: int,
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
@ -394,53 +394,48 @@ class InvokeAIDiffuserComponent:
if mid_block_additional_residual is not None: if mid_block_additional_residual is not None:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2) uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
# If cross-attention control is enabled, prepare the SwapCrossAttnContext.
cross_attn_processor_context = None
if self.cross_attention_control_context is not None:
# Note that the SwapCrossAttnContext is initialized with an empty list of cross_attention_types_to_do.
# This list is empty because cross-attention control is not applied in the unconditioned pass. This field
# will be populated before the conditioned pass.
cross_attn_processor_context = SwapCrossAttnContext(
modified_text_embeddings=self.cross_attention_control_context.arguments.edited_conditioning,
index_map=self.cross_attention_control_context.cross_attention_index_map,
mask=self.cross_attention_control_context.cross_attention_mask,
cross_attention_types_to_do=[],
)
##################### #####################
# Unconditioned pass # Unconditioned pass
##################### #####################
cross_attention_kwargs = None cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the unconditioned pass. # Prepare IP-Adapter cross-attention kwargs for the unconditioned pass.
if conditioning_data.ip_adapter_conditioning is not None: if ip_adapter_data is not None:
ip_adapter_conditioning = [ipa.ip_adapter_conditioning for ipa in ip_adapter_data]
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len). # Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs = { image_prompt_embeds = [
"ip_adapter_image_prompt_embeds": [ torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0)
torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0) for ipa_conditioning in ip_adapter_conditioning
for ipa_conditioning in conditioning_data.ip_adapter_conditioning ]
]
}
# Prepare cross-attention control kwargs for the unconditioned pass. scales = [ipa.scale_for_step(step_index, total_step_count) for ipa in ip_adapter_data]
if cross_attn_processor_context is not None: ip_masks = [ipa.mask for ipa in ip_adapter_data]
cross_attention_kwargs = {"swap_cross_attn_context": cross_attn_processor_context} regional_ip_data = RegionalIPData(
image_prompt_embeds=image_prompt_embeds, scales=scales, masks=ip_masks, dtype=x.dtype, device=x.device
)
cross_attention_kwargs["regional_ip_data"] = regional_ip_data
# Prepare SDXL conditioning kwargs for the unconditioned pass. # Prepare SDXL conditioning kwargs for the unconditioned pass.
added_cond_kwargs = None added_cond_kwargs = None
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo if conditioning_data.is_sdxl():
if is_sdxl:
added_cond_kwargs = { added_cond_kwargs = {
"text_embeds": conditioning_data.unconditioned_embeddings.pooled_embeds, "text_embeds": conditioning_data.uncond_text.pooled_embeds,
"time_ids": conditioning_data.unconditioned_embeddings.add_time_ids, "time_ids": conditioning_data.uncond_text.add_time_ids,
} }
# Prepare prompt regions for the unconditioned pass.
if conditioning_data.uncond_regions is not None:
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData(
regions=[conditioning_data.uncond_regions], device=x.device, dtype=x.dtype
)
cross_attention_kwargs["percent_through"] = step_index / total_step_count
# Run unconditioned UNet denoising (i.e. negative prompt). # Run unconditioned UNet denoising (i.e. negative prompt).
unconditioned_next_x = self.model_forward_callback( unconditioned_next_x = self.model_forward_callback(
x, x,
sigma, sigma,
conditioning_data.unconditioned_embeddings.embeds, conditioning_data.uncond_text.embeds,
cross_attention_kwargs=cross_attention_kwargs, cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=uncond_down_block, down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block, mid_block_additional_residual=uncond_mid_block,
@ -452,36 +447,43 @@ class InvokeAIDiffuserComponent:
# Conditioned pass # Conditioned pass
################### ###################
cross_attention_kwargs = None cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the conditioned pass. if ip_adapter_data is not None:
if conditioning_data.ip_adapter_conditioning is not None: ip_adapter_conditioning = [ipa.ip_adapter_conditioning for ipa in ip_adapter_data]
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len). # Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs = { image_prompt_embeds = [
"ip_adapter_image_prompt_embeds": [ torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0)
torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0) for ipa_conditioning in ip_adapter_conditioning
for ipa_conditioning in conditioning_data.ip_adapter_conditioning ]
]
}
# Prepare cross-attention control kwargs for the conditioned pass. scales = [ipa.scale_for_step(step_index, total_step_count) for ipa in ip_adapter_data]
if cross_attn_processor_context is not None: ip_masks = [ipa.mask for ipa in ip_adapter_data]
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do regional_ip_data = RegionalIPData(
cross_attention_kwargs = {"swap_cross_attn_context": cross_attn_processor_context} image_prompt_embeds=image_prompt_embeds, scales=scales, masks=ip_masks, dtype=x.dtype, device=x.device
)
cross_attention_kwargs["regional_ip_data"] = regional_ip_data
# Prepare SDXL conditioning kwargs for the conditioned pass. # Prepare SDXL conditioning kwargs for the conditioned pass.
added_cond_kwargs = None added_cond_kwargs = None
if is_sdxl: if conditioning_data.is_sdxl():
added_cond_kwargs = { added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds, "text_embeds": conditioning_data.cond_text.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids, "time_ids": conditioning_data.cond_text.add_time_ids,
} }
# Prepare prompt regions for the conditioned pass.
if conditioning_data.cond_regions is not None:
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData(
regions=[conditioning_data.cond_regions], device=x.device, dtype=x.dtype
)
cross_attention_kwargs["percent_through"] = step_index / total_step_count
# Run conditioned UNet denoising (i.e. positive prompt). # Run conditioned UNet denoising (i.e. positive prompt).
conditioned_next_x = self.model_forward_callback( conditioned_next_x = self.model_forward_callback(
x, x,
sigma, sigma,
conditioning_data.text_embeddings.embeds, conditioning_data.cond_text.embeds,
cross_attention_kwargs=cross_attention_kwargs, cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=cond_down_block, down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block, mid_block_additional_residual=cond_mid_block,

View File

@ -1,52 +1,46 @@
from contextlib import contextmanager from contextlib import contextmanager
from typing import Optional
from diffusers.models import UNet2DConditionModel from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
class UNetPatcher: class UNetAttentionPatcher:
"""A class that contains multiple IP-Adapters and can apply them to a UNet.""" """A class for patching a UNet with CustomAttnProcessor2_0 attention layers."""
def __init__(self, ip_adapters: list[IPAdapter]): def __init__(self, ip_adapters: Optional[list[IPAdapter]]):
self._ip_adapters = ip_adapters self._ip_adapters = ip_adapters
self._scales = [1.0] * len(self._ip_adapters)
def set_scale(self, idx: int, value: float):
self._scales[idx] = value
def _prepare_attention_processors(self, unet: UNet2DConditionModel): def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention """Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
weights into them. weights into them (if IP-Adapters are being applied).
Note that the `unet` param is only used to determine attention block dimensions and naming. Note that the `unet` param is only used to determine attention block dimensions and naming.
""" """
# Construct a dict of attention processors based on the UNet's architecture. # Construct a dict of attention processors based on the UNet's architecture.
attn_procs = {} attn_procs = {}
for idx, name in enumerate(unet.attn_processors.keys()): for idx, name in enumerate(unet.attn_processors.keys()):
if name.endswith("attn1.processor"): if name.endswith("attn1.processor") or self._ip_adapters is None:
attn_procs[name] = AttnProcessor2_0() # "attn1" processors do not use IP-Adapters.
attn_procs[name] = CustomAttnProcessor2_0()
else: else:
# Collect the weights from each IP Adapter for the idx'th attention processor. # Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = IPAttnProcessor2_0( attn_procs[name] = CustomAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters], [ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters],
self._scales,
) )
return attn_procs return attn_procs
@contextmanager @contextmanager
def apply_ip_adapter_attention(self, unet: UNet2DConditionModel): def apply_ip_adapter_attention(self, unet: UNet2DConditionModel):
"""A context manager that patches `unet` with IP-Adapter attention processors.""" """A context manager that patches `unet` with CustomAttnProcessor2_0 attention layers."""
attn_procs = self._prepare_attention_processors(unet) attn_procs = self._prepare_attention_processors(unet)
orig_attn_processors = unet.attn_processors orig_attn_processors = unet.attn_processors
try: try:
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from the # Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from
# passed dict. So, if you wanted to keep the dict for future use, you'd have to make a moderately-shallow copy # the passed dict. So, if you wanted to keep the dict for future use, you'd have to make a
# of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`. # moderately-shallow copy of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
unet.set_attn_processor(attn_procs) unet.set_attn_processor(attn_procs)
yield None yield None
finally: finally:

View File

@ -2,7 +2,6 @@
Initialization file for invokeai.backend.util Initialization file for invokeai.backend.util
""" """
from .devices import choose_precision, choose_torch_device
from .logging import InvokeAILogger from .logging import InvokeAILogger
from .util import GIG, Chdir, directory_size from .util import GIG, Chdir, directory_size
@ -11,6 +10,4 @@ __all__ = [
"directory_size", "directory_size",
"Chdir", "Chdir",
"InvokeAILogger", "InvokeAILogger",
"choose_precision",
"choose_torch_device",
] ]

View File

@ -1,97 +1,109 @@
from __future__ import annotations from typing import Dict, Literal, Optional, Union
from contextlib import nullcontext
from typing import Literal, Optional, Union
import torch import torch
from torch import autocast from deprecated import deprecated
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.config.config_default import get_config from invokeai.app.services.config.config_default import get_config
# legacy APIs
TorchPrecisionNames = Literal["float32", "float16", "bfloat16"]
CPU_DEVICE = torch.device("cpu") CPU_DEVICE = torch.device("cpu")
CUDA_DEVICE = torch.device("cuda") CUDA_DEVICE = torch.device("cuda")
MPS_DEVICE = torch.device("mps") MPS_DEVICE = torch.device("mps")
RAM_CACHE = None # horrible hack
@deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
def choose_precision(device: torch.device) -> TorchPrecisionNames:
"""Return the string representation of the recommended torch device."""
torch_dtype = TorchDevice.choose_torch_dtype(device)
return PRECISION_TO_NAME[torch_dtype]
@deprecated("Use TorchDevice.choose_torch_device() instead.") # type: ignore
def choose_torch_device() -> torch.device: def choose_torch_device() -> torch.device:
"""Convenience routine for guessing which GPU device to run model on.""" """Return the torch.device to use for accelerated inference."""
"""Temporarily modified to use the model manager's get_execution_device()""" return TorchDevice.choose_torch_device()
global RAM_CACHE
try:
device = RAM_CACHE.get_execution_device() @deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
return device def torch_dtype(device: torch.device) -> torch.dtype:
except (ValueError, AttributeError): """Return the torch precision for the recommended torch device."""
config = get_config() return TorchDevice.choose_torch_dtype(device)
if config.device == "auto":
if torch.cuda.is_available():
return torch.device("cuda") NAME_TO_PRECISION: Dict[TorchPrecisionNames, torch.dtype] = {
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): "float32": torch.float32,
return torch.device("mps") "float16": torch.float16,
else: "bfloat16": torch.bfloat16,
return CPU_DEVICE }
PRECISION_TO_NAME: Dict[torch.dtype, TorchPrecisionNames] = {v: k for k, v in NAME_TO_PRECISION.items()}
class TorchDevice:
"""Abstraction layer for torch devices."""
@classmethod
def choose_torch_device(cls) -> torch.device:
"""Return the torch.device to use for accelerated inference."""
app_config = get_config()
if app_config.device != "auto":
device = torch.device(app_config.device)
elif torch.cuda.is_available():
device = CUDA_DEVICE
elif torch.backends.mps.is_available():
device = MPS_DEVICE
else: else:
return torch.device(config.device) device = CPU_DEVICE
return cls.normalize(device)
@classmethod
def get_torch_device_name() -> str: def choose_torch_dtype(cls, device: Optional[torch.device] = None) -> torch.dtype:
device = choose_torch_device() """Return the precision to use for accelerated inference."""
return torch.cuda.get_device_name(device) if device.type == "cuda" else device.type.upper() device = device or cls.choose_torch_device()
config = get_config()
if device.type == "cuda" and torch.cuda.is_available():
# We are in transition here from using a single global AppConfig to allowing multiple device_name = torch.cuda.get_device_name(device)
# configurations. It is strongly recommended to pass the app_config to this function. if "GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name:
def choose_precision( # These GPUs have limited support for float16
device: torch.device, app_config: Optional[InvokeAIAppConfig] = None return cls._to_dtype("float32")
) -> Literal["float32", "float16", "bfloat16"]: elif config.precision == "auto":
"""Return an appropriate precision for the given torch device.""" # Default to float16 for CUDA devices
app_config = app_config or get_config() return cls._to_dtype("float16")
if device.type == "cuda":
device_name = torch.cuda.get_device_name(device)
if not ("GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name):
if app_config.precision == "float32":
return "float32"
elif app_config.precision == "bfloat16":
return "bfloat16"
else: else:
return "float16" # Use the user-defined precision
elif device.type == "mps": return cls._to_dtype(config.precision)
return "float16"
return "float32"
elif device.type == "mps" and torch.backends.mps.is_available():
if config.precision == "auto":
# Default to float16 for MPS devices
return cls._to_dtype("float16")
else:
# Use the user-defined precision
return cls._to_dtype(config.precision)
# CPU / safe fallback
return cls._to_dtype("float32")
# We are in transition here from using a single global AppConfig to allowing multiple @classmethod
# configurations. It is strongly recommended to pass the app_config to this function. def get_torch_device_name(cls) -> str:
def torch_dtype( """Return the device name for the current torch device."""
device: Optional[torch.device] = None, device = cls.choose_torch_device()
app_config: Optional[InvokeAIAppConfig] = None, return torch.cuda.get_device_name(device) if device.type == "cuda" else device.type.upper()
) -> torch.dtype:
device = device or choose_torch_device()
precision = choose_precision(device, app_config)
if precision == "float16":
return torch.float16
if precision == "bfloat16":
return torch.bfloat16
else:
# "auto", "autocast", "float32"
return torch.float32
@classmethod
def choose_autocast(precision): def normalize(cls, device: Union[str, torch.device]) -> torch.device:
"""Returns an autocast context or nullcontext for the given precision string""" """Add the device index to CUDA devices."""
# float16 currently requires autocast to avoid errors like: device = torch.device(device)
# 'expected scalar type Half but found Float' if device.index is None and device.type == "cuda" and torch.cuda.is_available():
if precision == "autocast" or precision == "float16":
return autocast
return nullcontext
def normalize_device(device: Union[str, torch.device]) -> torch.device:
"""Ensure device has a device index defined, if appropriate."""
device = torch.device(device)
if device.index is None:
# cuda might be the only torch backend that currently uses the device index?
# I don't see anything like `current_device` for cpu or mps.
if device.type == "cuda":
device = torch.device(device.type, torch.cuda.current_device()) device = torch.device(device.type, torch.cuda.current_device())
return device return device
@classmethod
def empty_cache(cls) -> None:
"""Clear the GPU device cache."""
if torch.backends.mps.is_available():
torch.mps.empty_cache()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]

View File

@ -0,0 +1,53 @@
import torch
def to_standard_mask_dim(mask: torch.Tensor) -> torch.Tensor:
"""Standardize the dimensions of a mask tensor.
Args:
mask (torch.Tensor): A mask tensor. The shape can be (1, h, w) or (h, w).
Returns:
torch.Tensor: The output mask tensor. The shape is (1, h, w).
"""
# Get the mask height and width.
if mask.ndim == 2:
mask = mask.unsqueeze(0)
elif mask.ndim == 3 and mask.shape[0] == 1:
pass
else:
raise ValueError(f"Unsupported mask shape: {mask.shape}. Expected (1, h, w) or (h, w).")
return mask
def to_standard_float_mask(mask: torch.Tensor, out_dtype: torch.dtype) -> torch.Tensor:
"""Standardize the format of a mask tensor.
Args:
mask (torch.Tensor): A mask tensor. The dtype can be any bool, float, or int type. The shape must be (1, h, w)
or (h, w).
out_dtype (torch.dtype): The dtype of the output mask tensor. Must be a float type.
Returns:
torch.Tensor: The output mask tensor. The dtype is out_dtype. The shape is (1, h, w). All values are either 0.0
or 1.0.
"""
if not out_dtype.is_floating_point:
raise ValueError(f"out_dtype must be a float type, but got {out_dtype}")
mask = to_standard_mask_dim(mask)
mask = mask.to(out_dtype)
# Set masked regions to 1.0.
if mask.dtype == torch.bool:
mask = mask.to(out_dtype)
else:
mask = mask.to(out_dtype)
mask_region = mask > 0.5
mask[mask_region] = 1.0
mask[~mask_region] = 0.0
return mask

View File

@ -8,7 +8,7 @@
<meta http-equiv="Pragma" content="no-cache"> <meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="0"> <meta http-equiv="Expires" content="0">
<title>Invoke - Community Edition</title> <title>Invoke - Community Edition</title>
<link rel="icon" type="icon" href="assets/images/invoke-favicon.svg" /> <link id="invoke-favicon" rel="icon" type="icon" href="assets/images/invoke-favicon.svg" />
<style> <style>
html, html,
body { body {
@ -23,4 +23,4 @@
<script type="module" src="/src/main.tsx"></script> <script type="module" src="/src/main.tsx"></script>
</body> </body>
</html> </html>

View File

@ -1,6 +1,7 @@
import type { KnipConfig } from 'knip'; import type { KnipConfig } from 'knip';
const config: KnipConfig = { const config: KnipConfig = {
project: ['src/**/*.{ts,tsx}!'],
ignore: [ ignore: [
// This file is only used during debugging // This file is only used during debugging
'src/app/store/middleware/debugLoggerMiddleware.ts', 'src/app/store/middleware/debugLoggerMiddleware.ts',
@ -10,6 +11,9 @@ const config: KnipConfig = {
'src/features/nodes/types/v2/**', 'src/features/nodes/types/v2/**',
], ],
ignoreBinaries: ['only-allow'], ignoreBinaries: ['only-allow'],
paths: {
'public/*': ['public/*'],
},
}; };
export default config; export default config;

View File

@ -24,7 +24,7 @@
"build": "pnpm run lint && vite build", "build": "pnpm run lint && vite build",
"typegen": "node scripts/typegen.js", "typegen": "node scripts/typegen.js",
"preview": "vite preview", "preview": "vite preview",
"lint:knip": "knip --tags=-@knipignore", "lint:knip": "knip",
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:1 src/main.tsx", "lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:1 src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .", "lint:eslint": "eslint --max-warnings=0 .",
"lint:prettier": "prettier --check .", "lint:prettier": "prettier --check .",
@ -52,6 +52,7 @@
}, },
"dependencies": { "dependencies": {
"@chakra-ui/react-use-size": "^2.1.0", "@chakra-ui/react-use-size": "^2.1.0",
"@dagrejs/dagre": "^1.1.1",
"@dagrejs/graphlib": "^2.2.1", "@dagrejs/graphlib": "^2.2.1",
"@dnd-kit/core": "^6.1.0", "@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0", "@dnd-kit/sortable": "^8.0.0",
@ -94,6 +95,7 @@
"reactflow": "^11.10.4", "reactflow": "^11.10.4",
"redux-dynamic-middlewares": "^2.2.0", "redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0", "redux-remember": "^5.1.0",
"rfdc": "^1.3.1",
"roarr": "^7.21.1", "roarr": "^7.21.1",
"serialize-error": "^11.0.3", "serialize-error": "^11.0.3",
"socket.io-client": "^4.7.5", "socket.io-client": "^4.7.5",

View File

@ -11,6 +11,9 @@ dependencies:
'@chakra-ui/react-use-size': '@chakra-ui/react-use-size':
specifier: ^2.1.0 specifier: ^2.1.0
version: 2.1.0(react@18.2.0) version: 2.1.0(react@18.2.0)
'@dagrejs/dagre':
specifier: ^1.1.1
version: 1.1.1
'@dagrejs/graphlib': '@dagrejs/graphlib':
specifier: ^2.2.1 specifier: ^2.2.1
version: 2.2.1 version: 2.2.1
@ -137,6 +140,9 @@ dependencies:
redux-remember: redux-remember:
specifier: ^5.1.0 specifier: ^5.1.0
version: 5.1.0(redux@5.0.1) version: 5.1.0(redux@5.0.1)
rfdc:
specifier: ^1.3.1
version: 1.3.1
roarr: roarr:
specifier: ^7.21.1 specifier: ^7.21.1
version: 7.21.1 version: 7.21.1
@ -3089,6 +3095,12 @@ packages:
dev: true dev: true
optional: true optional: true
/@dagrejs/dagre@1.1.1:
resolution: {integrity: sha512-AQfT6pffEuPE32weFzhS/u3UpX+bRXUARIXL7UqLaxz497cN8pjuBlX6axO4IIECE2gBV8eLFQkGCtKX5sDaUA==}
dependencies:
'@dagrejs/graphlib': 2.2.1
dev: false
/@dagrejs/graphlib@2.2.1: /@dagrejs/graphlib@2.2.1:
resolution: {integrity: sha512-xJsN1v6OAxXk6jmNdM+OS/bBE8nDCwM0yDNprXR18ZNatL6to9ggod9+l2XtiLhXfLm0NkE7+Er/cpdlM+SkUA==} resolution: {integrity: sha512-xJsN1v6OAxXk6jmNdM+OS/bBE8nDCwM0yDNprXR18ZNatL6to9ggod9+l2XtiLhXfLm0NkE7+Er/cpdlM+SkUA==}
engines: {node: '>17.0.0'} engines: {node: '>17.0.0'}
@ -12128,6 +12140,10 @@ packages:
resolution: {integrity: sha512-/x8uIPdTafBqakK0TmPNJzgkLP+3H+yxpUJhCQHsLBg1rYEVNR2D8BRYNWQhVBjyOd7oo1dZRVzIkwMY2oqfYQ==} resolution: {integrity: sha512-/x8uIPdTafBqakK0TmPNJzgkLP+3H+yxpUJhCQHsLBg1rYEVNR2D8BRYNWQhVBjyOd7oo1dZRVzIkwMY2oqfYQ==}
dev: true dev: true
/rfdc@1.3.1:
resolution: {integrity: sha512-r5a3l5HzYlIC68TpmYKlxWjmOP6wiPJ1vWv2HeLhNsRZMrCkxeqxiHlQ21oXmQ4F3SiryXBHhAD7JZqvOJjFmg==}
dev: false
/rimraf@2.6.3: /rimraf@2.6.3:
resolution: {integrity: sha512-mwqeW5XsA2qAejG46gYdENaxXjx9onRNCfn7L0duuP4hCuTIi/QO7PDK07KJfp1d+izWPrzEJDcSqBa0OZQriA==} resolution: {integrity: sha512-mwqeW5XsA2qAejG46gYdENaxXjx9onRNCfn7L0duuP4hCuTIi/QO7PDK07KJfp1d+izWPrzEJDcSqBa0OZQriA==}
hasBin: true hasBin: true

View File

@ -0,0 +1,5 @@
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect width="16" height="16" rx="2" fill="#E6FD13"/>
<path d="M9.61889 5.45H12.5V3.5H3.5V5.45H6.38111L9.61889 10.55H12.5V12.5H3.5V10.55H6.38111" stroke="black"/>
<circle cx="12" cy="4" r="3" fill="#f5480c" stroke="#0d1117" stroke-width="1"/>
</svg>

After

Width:  |  Height:  |  Size: 345 B

View File

@ -291,7 +291,6 @@
"canvasMerged": "تم دمج الخط", "canvasMerged": "تم دمج الخط",
"sentToImageToImage": "تم إرسال إلى صورة إلى صورة", "sentToImageToImage": "تم إرسال إلى صورة إلى صورة",
"sentToUnifiedCanvas": "تم إرسال إلى لوحة موحدة", "sentToUnifiedCanvas": "تم إرسال إلى لوحة موحدة",
"parametersSet": "تم تعيين المعلمات",
"parametersNotSet": "لم يتم تعيين المعلمات", "parametersNotSet": "لم يتم تعيين المعلمات",
"metadataLoadFailed": "فشل تحميل البيانات الوصفية" "metadataLoadFailed": "فشل تحميل البيانات الوصفية"
}, },

View File

@ -4,7 +4,7 @@
"reportBugLabel": "Fehler melden", "reportBugLabel": "Fehler melden",
"settingsLabel": "Einstellungen", "settingsLabel": "Einstellungen",
"img2img": "Bild zu Bild", "img2img": "Bild zu Bild",
"nodes": "Knoten Editor", "nodes": "Arbeitsabläufe",
"upload": "Hochladen", "upload": "Hochladen",
"load": "Laden", "load": "Laden",
"statusDisconnected": "Getrennt", "statusDisconnected": "Getrennt",
@ -74,7 +74,9 @@
"updated": "Aktualisiert", "updated": "Aktualisiert",
"copy": "Kopieren", "copy": "Kopieren",
"aboutHeading": "Nutzen Sie Ihre kreative Energie", "aboutHeading": "Nutzen Sie Ihre kreative Energie",
"toResolve": "Lösen" "toResolve": "Lösen",
"add": "Hinzufügen",
"loglevel": "Protokoll Stufe"
}, },
"gallery": { "gallery": {
"galleryImageSize": "Bildgröße", "galleryImageSize": "Bildgröße",
@ -104,11 +106,16 @@
"dropToUpload": "$t(gallery.drop) zum hochladen", "dropToUpload": "$t(gallery.drop) zum hochladen",
"dropOrUpload": "$t(gallery.drop) oder hochladen", "dropOrUpload": "$t(gallery.drop) oder hochladen",
"drop": "Ablegen", "drop": "Ablegen",
"problemDeletingImages": "Problem beim Löschen der Bilder" "problemDeletingImages": "Problem beim Löschen der Bilder",
"bulkDownloadRequested": "Download vorbereiten",
"bulkDownloadRequestedDesc": "Dein Download wird vorbereitet. Dies kann ein paar Momente dauern.",
"bulkDownloadRequestFailed": "Problem beim Download vorbereiten",
"bulkDownloadFailed": "Download fehlgeschlagen",
"alwaysShowImageSizeBadge": "Zeige immer Bilder Größe Abzeichen"
}, },
"hotkeys": { "hotkeys": {
"keyboardShortcuts": "Tastenkürzel", "keyboardShortcuts": "Tastenkürzel",
"appHotkeys": "App-Tastenkombinationen", "appHotkeys": "App",
"generalHotkeys": "Allgemein", "generalHotkeys": "Allgemein",
"galleryHotkeys": "Galerie", "galleryHotkeys": "Galerie",
"unifiedCanvasHotkeys": "Leinwand", "unifiedCanvasHotkeys": "Leinwand",
@ -382,7 +389,14 @@
"vaePrecision": "VAE-Präzision", "vaePrecision": "VAE-Präzision",
"variant": "Variante", "variant": "Variante",
"modelDeleteFailed": "Modell konnte nicht gelöscht werden", "modelDeleteFailed": "Modell konnte nicht gelöscht werden",
"noModelSelected": "Kein Modell ausgewählt" "noModelSelected": "Kein Modell ausgewählt",
"huggingFace": "HuggingFace",
"defaultSettings": "Standardeinstellungen",
"edit": "Bearbeiten",
"cancel": "Stornieren",
"defaultSettingsSaved": "Standardeinstellungen gespeichert",
"addModels": "Model hinzufügen",
"deleteModelImage": "Lösche Model Bild"
}, },
"parameters": { "parameters": {
"images": "Bilder", "images": "Bilder",
@ -466,7 +480,6 @@
"canvasMerged": "Leinwand zusammengeführt", "canvasMerged": "Leinwand zusammengeführt",
"sentToImageToImage": "Gesendet an Bild zu Bild", "sentToImageToImage": "Gesendet an Bild zu Bild",
"sentToUnifiedCanvas": "Gesendet an Leinwand", "sentToUnifiedCanvas": "Gesendet an Leinwand",
"parametersSet": "Parameter festlegen",
"parametersNotSet": "Parameter nicht festgelegt", "parametersNotSet": "Parameter nicht festgelegt",
"metadataLoadFailed": "Metadaten konnten nicht geladen werden", "metadataLoadFailed": "Metadaten konnten nicht geladen werden",
"setCanvasInitialImage": "Ausgangsbild setzen", "setCanvasInitialImage": "Ausgangsbild setzen",
@ -671,7 +684,8 @@
"body": "Körper", "body": "Körper",
"hands": "Hände", "hands": "Hände",
"dwOpenpose": "DW Openpose", "dwOpenpose": "DW Openpose",
"dwOpenposeDescription": "Posenschätzung mit DW Openpose" "dwOpenposeDescription": "Posenschätzung mit DW Openpose",
"selectCLIPVisionModel": "Wähle ein CLIP Vision Model aus"
}, },
"queue": { "queue": {
"status": "Status", "status": "Status",
@ -757,7 +771,12 @@
"scheduler": "Planer", "scheduler": "Planer",
"noRecallParameters": "Es wurden keine Parameter zum Abrufen gefunden", "noRecallParameters": "Es wurden keine Parameter zum Abrufen gefunden",
"recallParameters": "Parameter wiederherstellen", "recallParameters": "Parameter wiederherstellen",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)" "cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"allPrompts": "Alle Prompts",
"imageDimensions": "Bilder Auslösungen",
"parameterSet": "Parameter {{parameter}} setzen",
"recallParameter": "{{label}} Abrufen",
"parsingFailed": "Parsing Fehlgeschlagen"
}, },
"popovers": { "popovers": {
"noiseUseCPU": { "noiseUseCPU": {
@ -1022,7 +1041,8 @@
"title": "Bild" "title": "Bild"
}, },
"advanced": { "advanced": {
"title": "Erweitert" "title": "Erweitert",
"options": "$t(accordions.advanced.title) Optionen"
}, },
"control": { "control": {
"title": "Kontrolle" "title": "Kontrolle"
@ -1068,5 +1088,10 @@
}, },
"dynamicPrompts": { "dynamicPrompts": {
"showDynamicPrompts": "Dynamische Prompts anzeigen" "showDynamicPrompts": "Dynamische Prompts anzeigen"
},
"prompt": {
"noMatchingTriggers": "Keine passenden Auslöser",
"addPromptTrigger": "Auslöse Text hinzufügen",
"compatibleEmbeddings": "Kompatible Einbettungen"
} }
} }

View File

@ -217,6 +217,7 @@
"saveControlImage": "Save Control Image", "saveControlImage": "Save Control Image",
"scribble": "scribble", "scribble": "scribble",
"selectModel": "Select a model", "selectModel": "Select a model",
"selectCLIPVisionModel": "Select a CLIP Vision model",
"setControlImageDimensions": "Set Control Image Dimensions To W/H", "setControlImageDimensions": "Set Control Image Dimensions To W/H",
"showAdvanced": "Show Advanced", "showAdvanced": "Show Advanced",
"small": "Small", "small": "Small",
@ -325,7 +326,8 @@
"drop": "Drop", "drop": "Drop",
"dropOrUpload": "$t(gallery.drop) or Upload", "dropOrUpload": "$t(gallery.drop) or Upload",
"dropToUpload": "$t(gallery.drop) to Upload", "dropToUpload": "$t(gallery.drop) to Upload",
"deleteImage": "Delete Image", "deleteImage_one": "Delete Image",
"deleteImage_other": "Delete {{count}} Images",
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.", "deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.", "deleteImagePermanent": "Deleted images cannot be restored.",
"download": "Download", "download": "Download",
@ -655,6 +657,7 @@
"install": "Install", "install": "Install",
"installAll": "Install All", "installAll": "Install All",
"installRepo": "Install Repo", "installRepo": "Install Repo",
"ipAdapters": "IP Adapters",
"load": "Load", "load": "Load",
"localOnly": "local only", "localOnly": "local only",
"manual": "Manual", "manual": "Manual",
@ -682,6 +685,7 @@
"noModelsInstalled": "No Models Installed", "noModelsInstalled": "No Models Installed",
"noModelsInstalledDesc1": "Install models with the", "noModelsInstalledDesc1": "Install models with the",
"noModelSelected": "No Model Selected", "noModelSelected": "No Model Selected",
"noMatchingModels": "No matching Models",
"none": "none", "none": "none",
"path": "Path", "path": "Path",
"pathToConfig": "Path To Config", "pathToConfig": "Path To Config",
@ -766,6 +770,8 @@
"float": "Float", "float": "Float",
"fullyContainNodes": "Fully Contain Nodes to Select", "fullyContainNodes": "Fully Contain Nodes to Select",
"fullyContainNodesHelp": "Nodes must be fully inside the selection box to be selected", "fullyContainNodesHelp": "Nodes must be fully inside the selection box to be selected",
"showEdgeLabels": "Show Edge Labels",
"showEdgeLabelsHelp": "Show labels on edges, indicating the connected nodes",
"hideLegendNodes": "Hide Field Type Legend", "hideLegendNodes": "Hide Field Type Legend",
"hideMinimapnodes": "Hide MiniMap", "hideMinimapnodes": "Hide MiniMap",
"inputMayOnlyHaveOneConnection": "Input may only have one connection", "inputMayOnlyHaveOneConnection": "Input may only have one connection",
@ -846,6 +852,7 @@
"version": "Version", "version": "Version",
"versionUnknown": " Version Unknown", "versionUnknown": " Version Unknown",
"workflow": "Workflow", "workflow": "Workflow",
"graph": "Graph",
"workflowAuthor": "Author", "workflowAuthor": "Author",
"workflowContact": "Contact", "workflowContact": "Contact",
"workflowDescription": "Short Description", "workflowDescription": "Short Description",
@ -885,6 +892,11 @@
"imageFit": "Fit Initial Image To Output Size", "imageFit": "Fit Initial Image To Output Size",
"images": "Images", "images": "Images",
"infillMethod": "Infill Method", "infillMethod": "Infill Method",
"infillMosaicTileWidth": "Tile Width",
"infillMosaicTileHeight": "Tile Height",
"infillMosaicMinColor": "Min Color",
"infillMosaicMaxColor": "Max Color",
"infillColorValue": "Fill Color",
"info": "Info", "info": "Info",
"invoke": { "invoke": {
"addingImagesTo": "Adding images to", "addingImagesTo": "Adding images to",
@ -1033,10 +1045,10 @@
"metadataLoadFailed": "Failed to load metadata", "metadataLoadFailed": "Failed to load metadata",
"modelAddedSimple": "Model Added to Queue", "modelAddedSimple": "Model Added to Queue",
"modelImportCanceled": "Model Import Canceled", "modelImportCanceled": "Model Import Canceled",
"parameters": "Parameters",
"parameterNotSet": "{{parameter}} not set", "parameterNotSet": "{{parameter}} not set",
"parameterSet": "{{parameter}} set", "parameterSet": "{{parameter}} set",
"parametersNotSet": "Parameters Not Set", "parametersNotSet": "Parameters Not Set",
"parametersSet": "Parameters Set",
"problemCopyingCanvas": "Problem Copying Canvas", "problemCopyingCanvas": "Problem Copying Canvas",
"problemCopyingCanvasDesc": "Unable to export base layer", "problemCopyingCanvasDesc": "Unable to export base layer",
"problemCopyingImage": "Unable to Copy Image", "problemCopyingImage": "Unable to Copy Image",
@ -1415,6 +1427,8 @@
"eraseBoundingBox": "Erase Bounding Box", "eraseBoundingBox": "Erase Bounding Box",
"eraser": "Eraser", "eraser": "Eraser",
"fillBoundingBox": "Fill Bounding Box", "fillBoundingBox": "Fill Bounding Box",
"hideBoundingBox": "Hide Bounding Box",
"initialFitImageSize": "Fit Image Size on Drop",
"invertBrushSizeScrollDirection": "Invert Scroll for Brush Size", "invertBrushSizeScrollDirection": "Invert Scroll for Brush Size",
"layer": "Layer", "layer": "Layer",
"limitStrokesToBox": "Limit Strokes to Box", "limitStrokesToBox": "Limit Strokes to Box",
@ -1431,6 +1445,7 @@
"saveMask": "Save $t(unifiedCanvas.mask)", "saveMask": "Save $t(unifiedCanvas.mask)",
"saveToGallery": "Save To Gallery", "saveToGallery": "Save To Gallery",
"scaledBoundingBox": "Scaled Bounding Box", "scaledBoundingBox": "Scaled Bounding Box",
"showBoundingBox": "Show Bounding Box",
"showCanvasDebugInfo": "Show Additional Canvas Info", "showCanvasDebugInfo": "Show Additional Canvas Info",
"showGrid": "Show Grid", "showGrid": "Show Grid",
"showResultsOn": "Show Results (On)", "showResultsOn": "Show Results (On)",
@ -1473,7 +1488,11 @@
"workflowName": "Workflow Name", "workflowName": "Workflow Name",
"newWorkflowCreated": "New Workflow Created", "newWorkflowCreated": "New Workflow Created",
"workflowCleared": "Workflow Cleared", "workflowCleared": "Workflow Cleared",
"workflowEditorMenu": "Workflow Editor Menu" "workflowEditorMenu": "Workflow Editor Menu",
"loadFromGraph": "Load Workflow from Graph",
"convertGraph": "Convert Graph",
"loadWorkflow": "$t(common.load) Workflow",
"autoLayout": "Auto Layout"
}, },
"app": { "app": {
"storeNotInitialized": "Store is not initialized" "storeNotInitialized": "Store is not initialized"

View File

@ -363,7 +363,6 @@
"canvasMerged": "Lienzo consolidado", "canvasMerged": "Lienzo consolidado",
"sentToImageToImage": "Enviar hacia Imagen a Imagen", "sentToImageToImage": "Enviar hacia Imagen a Imagen",
"sentToUnifiedCanvas": "Enviar hacia Lienzo Consolidado", "sentToUnifiedCanvas": "Enviar hacia Lienzo Consolidado",
"parametersSet": "Parámetros establecidos",
"parametersNotSet": "Parámetros no establecidos", "parametersNotSet": "Parámetros no establecidos",
"metadataLoadFailed": "Error al cargar metadatos", "metadataLoadFailed": "Error al cargar metadatos",
"serverError": "Error en el servidor", "serverError": "Error en el servidor",

View File

@ -298,7 +298,6 @@
"canvasMerged": "Canvas fusionné", "canvasMerged": "Canvas fusionné",
"sentToImageToImage": "Envoyé à Image à Image", "sentToImageToImage": "Envoyé à Image à Image",
"sentToUnifiedCanvas": "Envoyé à Canvas unifié", "sentToUnifiedCanvas": "Envoyé à Canvas unifié",
"parametersSet": "Paramètres définis",
"parametersNotSet": "Paramètres non définis", "parametersNotSet": "Paramètres non définis",
"metadataLoadFailed": "Échec du chargement des métadonnées" "metadataLoadFailed": "Échec du chargement des métadonnées"
}, },

View File

@ -306,7 +306,6 @@
"canvasMerged": "קנבס מוזג", "canvasMerged": "קנבס מוזג",
"sentToImageToImage": "נשלח לתמונה לתמונה", "sentToImageToImage": "נשלח לתמונה לתמונה",
"sentToUnifiedCanvas": "נשלח אל קנבס מאוחד", "sentToUnifiedCanvas": "נשלח אל קנבס מאוחד",
"parametersSet": "הגדרת פרמטרים",
"parametersNotSet": "פרמטרים לא הוגדרו", "parametersNotSet": "פרמטרים לא הוגדרו",
"metadataLoadFailed": "טעינת מטא-נתונים נכשלה" "metadataLoadFailed": "טעינת מטא-נתונים נכשלה"
}, },

View File

@ -73,7 +73,8 @@
"ai": "ia", "ai": "ia",
"file": "File", "file": "File",
"toResolve": "Da risolvere", "toResolve": "Da risolvere",
"add": "Aggiungi" "add": "Aggiungi",
"loglevel": "Livello di log"
}, },
"gallery": { "gallery": {
"galleryImageSize": "Dimensione dell'immagine", "galleryImageSize": "Dimensione dell'immagine",
@ -365,7 +366,7 @@
"modelConverted": "Modello convertito", "modelConverted": "Modello convertito",
"alpha": "Alpha", "alpha": "Alpha",
"convertToDiffusersHelpText1": "Questo modello verrà convertito nel formato 🧨 Diffusori.", "convertToDiffusersHelpText1": "Questo modello verrà convertito nel formato 🧨 Diffusori.",
"convertToDiffusersHelpText3": "Il file Checkpoint su disco verrà eliminato se si trova nella cartella principale di InvokeAI. Se si trova invece in una posizione personalizzata, NON verrà eliminato.", "convertToDiffusersHelpText3": "Il file del modello su disco verrà eliminato se si trova nella cartella principale di InvokeAI. Se si trova invece in una posizione personalizzata, NON verrà eliminato.",
"v2_base": "v2 (512px)", "v2_base": "v2 (512px)",
"v2_768": "v2 (768px)", "v2_768": "v2 (768px)",
"none": "nessuno", "none": "nessuno",
@ -442,7 +443,9 @@
"noModelsInstalled": "Nessun modello installato", "noModelsInstalled": "Nessun modello installato",
"hfTokenInvalidErrorMessage2": "Aggiornalo in ", "hfTokenInvalidErrorMessage2": "Aggiornalo in ",
"main": "Principali", "main": "Principali",
"noModelsInstalledDesc1": "Installa i modelli con" "noModelsInstalledDesc1": "Installa i modelli con",
"ipAdapters": "Adattatori IP",
"noMatchingModels": "Nessun modello corrispondente"
}, },
"parameters": { "parameters": {
"images": "Immagini", "images": "Immagini",
@ -524,7 +527,12 @@
"aspect": "Aspetto", "aspect": "Aspetto",
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (potrebbe essere troppo grande)", "setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (potrebbe essere troppo grande)",
"remixImage": "Remixa l'immagine", "remixImage": "Remixa l'immagine",
"coherenceEdgeSize": "Dim. bordo" "coherenceEdgeSize": "Dim. bordo",
"infillMosaicTileWidth": "Larghezza piastrella",
"infillMosaicMinColor": "Colore minimo",
"infillMosaicMaxColor": "Colore massimo",
"infillMosaicTileHeight": "Altezza piastrella",
"infillColorValue": "Colore di riempimento"
}, },
"settings": { "settings": {
"models": "Modelli", "models": "Modelli",
@ -567,7 +575,6 @@
"canvasMerged": "Tela unita", "canvasMerged": "Tela unita",
"sentToImageToImage": "Inviato a Immagine a Immagine", "sentToImageToImage": "Inviato a Immagine a Immagine",
"sentToUnifiedCanvas": "Inviato a Tela Unificata", "sentToUnifiedCanvas": "Inviato a Tela Unificata",
"parametersSet": "Parametri impostati",
"parametersNotSet": "Parametri non impostati", "parametersNotSet": "Parametri non impostati",
"metadataLoadFailed": "Impossibile caricare i metadati", "metadataLoadFailed": "Impossibile caricare i metadati",
"serverError": "Errore del Server", "serverError": "Errore del Server",
@ -619,7 +626,8 @@
"uploadInitialImage": "Carica l'immagine iniziale", "uploadInitialImage": "Carica l'immagine iniziale",
"problemDownloadingImage": "Impossibile scaricare l'immagine", "problemDownloadingImage": "Impossibile scaricare l'immagine",
"prunedQueue": "Coda ripulita", "prunedQueue": "Coda ripulita",
"modelImportCanceled": "Importazione del modello annullata" "modelImportCanceled": "Importazione del modello annullata",
"parameters": "Parametri"
}, },
"tooltip": { "tooltip": {
"feature": { "feature": {
@ -688,7 +696,10 @@
"coherenceModeBoxBlur": "Sfocatura Box", "coherenceModeBoxBlur": "Sfocatura Box",
"coherenceModeStaged": "Maschera espansa", "coherenceModeStaged": "Maschera espansa",
"invertBrushSizeScrollDirection": "Inverti scorrimento per dimensione pennello", "invertBrushSizeScrollDirection": "Inverti scorrimento per dimensione pennello",
"discardCurrent": "Scarta l'attuale" "discardCurrent": "Scarta l'attuale",
"initialFitImageSize": "Adatta dimensione immagine al rilascio",
"hideBoundingBox": "Nascondi il rettangolo di selezione",
"showBoundingBox": "Mostra il rettangolo di selezione"
}, },
"accessibility": { "accessibility": {
"invokeProgressBar": "Barra di avanzamento generazione", "invokeProgressBar": "Barra di avanzamento generazione",
@ -831,7 +842,8 @@
"editMode": "Modifica nell'editor del flusso di lavoro", "editMode": "Modifica nell'editor del flusso di lavoro",
"resetToDefaultValue": "Ripristina il valore predefinito", "resetToDefaultValue": "Ripristina il valore predefinito",
"noFieldsViewMode": "Questo flusso di lavoro non ha campi selezionati da visualizzare. Visualizza il flusso di lavoro completo per configurare i valori.", "noFieldsViewMode": "Questo flusso di lavoro non ha campi selezionati da visualizzare. Visualizza il flusso di lavoro completo per configurare i valori.",
"edit": "Modifica" "edit": "Modifica",
"graph": "Grafico"
}, },
"boards": { "boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca", "autoAddBoard": "Aggiungi automaticamente bacheca",
@ -934,7 +946,10 @@
"base": "Base", "base": "Base",
"lineart": "Linea", "lineart": "Linea",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))", "controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"mediapipeFace": "Mediapipe Volto" "mediapipeFace": "Mediapipe Volto",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"selectCLIPVisionModel": "Seleziona un modello CLIP Vision"
}, },
"queue": { "queue": {
"queueFront": "Aggiungi all'inizio della coda", "queueFront": "Aggiungi all'inizio della coda",
@ -1342,13 +1357,13 @@
] ]
}, },
"seamlessTilingXAxis": { "seamlessTilingXAxis": {
"heading": "Asse X di piastrellatura senza cuciture", "heading": "Piastrella senza giunte sull'asse X",
"paragraphs": [ "paragraphs": [
"Affianca senza soluzione di continuità un'immagine lungo l'asse orizzontale." "Affianca senza soluzione di continuità un'immagine lungo l'asse orizzontale."
] ]
}, },
"seamlessTilingYAxis": { "seamlessTilingYAxis": {
"heading": "Asse Y di piastrellatura senza cuciture", "heading": "Piastrella senza giunte sull'asse Y",
"paragraphs": [ "paragraphs": [
"Affianca senza soluzione di continuità un'immagine lungo l'asse verticale." "Affianca senza soluzione di continuità un'immagine lungo l'asse verticale."
] ]
@ -1472,7 +1487,11 @@
"name": "Nome", "name": "Nome",
"updated": "Aggiornato", "updated": "Aggiornato",
"projectWorkflows": "Flussi di lavoro del progetto", "projectWorkflows": "Flussi di lavoro del progetto",
"opened": "Aperto" "opened": "Aperto",
"convertGraph": "Converti grafico",
"loadWorkflow": "$t(common.load) Flusso di lavoro",
"autoLayout": "Disposizione automatica",
"loadFromGraph": "Carica il flusso di lavoro dal grafico"
}, },
"app": { "app": {
"storeNotInitialized": "Il negozio non è inizializzato" "storeNotInitialized": "Il negozio non è inizializzato"
@ -1490,7 +1509,8 @@
"title": "Generazione" "title": "Generazione"
}, },
"advanced": { "advanced": {
"title": "Avanzate" "title": "Avanzate",
"options": "Opzioni $t(accordions.advanced.title)"
}, },
"image": { "image": {
"title": "Immagine" "title": "Immagine"

View File

@ -420,7 +420,6 @@
"canvasMerged": "Canvas samengevoegd", "canvasMerged": "Canvas samengevoegd",
"sentToImageToImage": "Gestuurd naar Afbeelding naar afbeelding", "sentToImageToImage": "Gestuurd naar Afbeelding naar afbeelding",
"sentToUnifiedCanvas": "Gestuurd naar Centraal canvas", "sentToUnifiedCanvas": "Gestuurd naar Centraal canvas",
"parametersSet": "Parameters ingesteld",
"parametersNotSet": "Parameters niet ingesteld", "parametersNotSet": "Parameters niet ingesteld",
"metadataLoadFailed": "Fout bij laden metagegevens", "metadataLoadFailed": "Fout bij laden metagegevens",
"serverError": "Serverfout", "serverError": "Serverfout",

View File

@ -267,7 +267,6 @@
"canvasMerged": "Scalono widoczne warstwy", "canvasMerged": "Scalono widoczne warstwy",
"sentToImageToImage": "Wysłano do Obraz na obraz", "sentToImageToImage": "Wysłano do Obraz na obraz",
"sentToUnifiedCanvas": "Wysłano do trybu uniwersalnego", "sentToUnifiedCanvas": "Wysłano do trybu uniwersalnego",
"parametersSet": "Ustawiono parametry",
"parametersNotSet": "Nie ustawiono parametrów", "parametersNotSet": "Nie ustawiono parametrów",
"metadataLoadFailed": "Błąd wczytywania metadanych" "metadataLoadFailed": "Błąd wczytywania metadanych"
}, },

View File

@ -310,7 +310,6 @@
"canvasMerged": "Tela Fundida", "canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem", "sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada", "sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos", "parametersNotSet": "Parâmetros Não Definidos",
"metadataLoadFailed": "Falha ao tentar carregar metadados" "metadataLoadFailed": "Falha ao tentar carregar metadados"
}, },

Some files were not shown because too many files have changed in this diff Show More