mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them. Supporting minor changes: - Patch bump for all nodes that use the context - Update invocation processor to provide new context - Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node - Minor change to `ModelManagerService` to support the new wrapped context - Fanagling of imports to avoid circular dependencies
This commit is contained in:
@ -7,7 +7,7 @@ from pydantic import ValidationInfo, field_validator
|
||||
from invokeai.app.invocations.primitives import IntegerCollectionOutput
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext, invocation
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField
|
||||
|
||||
|
||||
@ -27,7 +27,7 @@ class RangeInvocation(BaseInvocation):
|
||||
raise ValueError("stop must be greater than start")
|
||||
return v
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
||||
def invoke(self, context) -> IntegerCollectionOutput:
|
||||
return IntegerCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
|
||||
|
||||
|
||||
@ -45,7 +45,7 @@ class RangeOfSizeInvocation(BaseInvocation):
|
||||
size: int = InputField(default=1, gt=0, description="The number of values")
|
||||
step: int = InputField(default=1, description="The step of the range")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
||||
def invoke(self, context) -> IntegerCollectionOutput:
|
||||
return IntegerCollectionOutput(
|
||||
collection=list(range(self.start, self.start + (self.step * self.size), self.step))
|
||||
)
|
||||
@ -72,6 +72,6 @@ class RandomRangeInvocation(BaseInvocation):
|
||||
description="The seed for the RNG (omit for random)",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
||||
def invoke(self, context) -> IntegerCollectionOutput:
|
||||
rng = np.random.default_rng(self.seed)
|
||||
return IntegerCollectionOutput(collection=list(rng.integers(low=self.low, high=self.high, size=self.size)))
|
||||
|
Reference in New Issue
Block a user