Merge branch 'main' into chainchompa/model-install-deeplink

This commit is contained in:
chainchompa 2024-06-14 17:16:25 -04:00 committed by GitHub
commit 7f03b04b2f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 11 additions and 10 deletions

View File

@ -1,6 +1,7 @@
from typing import Literal from typing import Literal
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.util.devices import TorchDevice
LATENT_SCALE_FACTOR = 8 LATENT_SCALE_FACTOR = 8
""" """
@ -15,3 +16,5 @@ SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"] IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke""" """A literal type for PIL image modes supported by Invoke"""
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()

View File

@ -6,7 +6,7 @@ from PIL import Image
from torchvision.transforms.functional import resize as tv_resize from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.denoise_latents import DEFAULT_PRECISION from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import VAEField from invokeai.app.invocations.model import VAEField
@ -30,7 +30,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2) mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField( fp32: bool = InputField(
default=DEFAULT_PRECISION == "float32", default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32, description=FieldDescriptions.fp32,
ui_order=4, ui_order=4,
) )

View File

@ -7,7 +7,7 @@ from PIL import Image, ImageFilter
from torchvision.transforms.functional import resize as tv_resize from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.denoise_latents import DEFAULT_PRECISION from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import ( from invokeai.app.invocations.fields import (
DenoiseMaskField, DenoiseMaskField,
FieldDescriptions, FieldDescriptions,
@ -74,7 +74,7 @@ class CreateGradientMaskInvocation(BaseInvocation):
) )
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
fp32: bool = InputField( fp32: bool = InputField(
default=DEFAULT_PRECISION == "float32", default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32, description=FieldDescriptions.fp32,
ui_order=9, ui_order=9,
) )

View File

@ -59,8 +59,6 @@ from .baseinvocation import BaseInvocation, invocation
from .controlnet_image_processors import ControlField from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField from .model import ModelIdentifierField, UNetField
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()
def get_scheduler( def get_scheduler(
context: InvocationContext, context: InvocationContext,

View File

@ -12,7 +12,7 @@ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.denoise_latents import DEFAULT_PRECISION from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import ( from invokeai.app.invocations.fields import (
FieldDescriptions, FieldDescriptions,
ImageField, ImageField,
@ -44,7 +44,7 @@ class ImageToLatentsInvocation(BaseInvocation):
input=Input.Connection, input=Input.Connection,
) )
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32) fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@staticmethod @staticmethod
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor: def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:

View File

@ -11,7 +11,7 @@ from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.denoise_latents import DEFAULT_PRECISION from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import ( from invokeai.app.invocations.fields import (
FieldDescriptions, FieldDescriptions,
Input, Input,
@ -46,7 +46,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection, input=Input.Connection,
) )
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32) fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput: