mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into clearnodes
This commit is contained in:
@ -1,94 +0,0 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { getValidControlNets } from 'features/controlNet/util/getValidControlNets';
|
||||
import { CollectInvocation, ControlNetInvocation } from 'services/api/types';
|
||||
import { NonNullableGraph } from '../types/types';
|
||||
import { CONTROL_NET_COLLECT } from './graphBuilders/constants';
|
||||
|
||||
export const addControlNetToLinearGraph = (
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string,
|
||||
state: RootState
|
||||
): void => {
|
||||
const { isEnabled: isControlNetEnabled, controlNets } = state.controlNet;
|
||||
|
||||
const validControlNets = getValidControlNets(controlNets);
|
||||
|
||||
if (isControlNetEnabled && Boolean(validControlNets.length)) {
|
||||
if (validControlNets.length > 1) {
|
||||
// We have multiple controlnets, add ControlNet collector
|
||||
const controlNetIterateNode: CollectInvocation = {
|
||||
id: CONTROL_NET_COLLECT,
|
||||
type: 'collect',
|
||||
};
|
||||
graph.nodes[controlNetIterateNode.id] = controlNetIterateNode;
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetIterateNode.id, field: 'collection' },
|
||||
destination: {
|
||||
node_id: baseNodeId,
|
||||
field: 'control',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
validControlNets.forEach((controlNet) => {
|
||||
const {
|
||||
controlNetId,
|
||||
controlImage,
|
||||
processedControlImage,
|
||||
beginStepPct,
|
||||
endStepPct,
|
||||
controlMode,
|
||||
model,
|
||||
processorType,
|
||||
weight,
|
||||
} = controlNet;
|
||||
|
||||
const controlNetNode: ControlNetInvocation = {
|
||||
id: `control_net_${controlNetId}`,
|
||||
type: 'controlnet',
|
||||
begin_step_percent: beginStepPct,
|
||||
end_step_percent: endStepPct,
|
||||
control_mode: controlMode,
|
||||
control_model: model as ControlNetInvocation['control_model'],
|
||||
control_weight: weight,
|
||||
};
|
||||
|
||||
if (processedControlImage && processorType !== 'none') {
|
||||
// We've already processed the image in the app, so we can just use the processed image
|
||||
controlNetNode.image = {
|
||||
image_name: processedControlImage,
|
||||
};
|
||||
} else if (controlImage) {
|
||||
// The control image is preprocessed
|
||||
controlNetNode.image = {
|
||||
image_name: controlImage,
|
||||
};
|
||||
} else {
|
||||
// Skip ControlNets without an unprocessed image - should never happen if everything is working correctly
|
||||
return;
|
||||
}
|
||||
|
||||
graph.nodes[controlNetNode.id] = controlNetNode;
|
||||
|
||||
if (validControlNets.length > 1) {
|
||||
// if we have multiple controlnets, link to the collector
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetNode.id, field: 'control' },
|
||||
destination: {
|
||||
node_id: CONTROL_NET_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
} else {
|
||||
// otherwise, link directly to the base node
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetNode.id, field: 'control' },
|
||||
destination: {
|
||||
node_id: baseNodeId,
|
||||
field: 'control',
|
||||
},
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
};
|
@ -1,40 +0,0 @@
|
||||
import {
|
||||
Edge,
|
||||
ImageToImageInvocation,
|
||||
InpaintInvocation,
|
||||
IterateInvocation,
|
||||
RandomRangeInvocation,
|
||||
RangeInvocation,
|
||||
TextToImageInvocation,
|
||||
} from 'services/api/types';
|
||||
|
||||
export const buildEdges = (
|
||||
baseNode: TextToImageInvocation | ImageToImageInvocation | InpaintInvocation,
|
||||
rangeNode: RangeInvocation | RandomRangeInvocation,
|
||||
iterateNode: IterateInvocation
|
||||
): Edge[] => {
|
||||
const edges: Edge[] = [
|
||||
{
|
||||
source: {
|
||||
node_id: rangeNode.id,
|
||||
field: 'collection',
|
||||
},
|
||||
destination: {
|
||||
node_id: iterateNode.id,
|
||||
field: 'collection',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: iterateNode.id,
|
||||
field: 'item',
|
||||
},
|
||||
destination: {
|
||||
node_id: baseNode.id,
|
||||
field: 'seed',
|
||||
},
|
||||
},
|
||||
];
|
||||
|
||||
return edges;
|
||||
};
|
@ -0,0 +1,100 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { getValidControlNets } from 'features/controlNet/util/getValidControlNets';
|
||||
import { omit } from 'lodash-es';
|
||||
import {
|
||||
CollectInvocation,
|
||||
ControlField,
|
||||
ControlNetInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
} from 'services/api/types';
|
||||
import { NonNullableGraph } from '../../types/types';
|
||||
import { CONTROL_NET_COLLECT, METADATA_ACCUMULATOR } from './constants';
|
||||
|
||||
export const addControlNetToLinearGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string
|
||||
): void => {
|
||||
const { isEnabled: isControlNetEnabled, controlNets } = state.controlNet;
|
||||
|
||||
const validControlNets = getValidControlNets(controlNets);
|
||||
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (isControlNetEnabled && Boolean(validControlNets.length)) {
|
||||
if (validControlNets.length) {
|
||||
// We have multiple controlnets, add ControlNet collector
|
||||
const controlNetIterateNode: CollectInvocation = {
|
||||
id: CONTROL_NET_COLLECT,
|
||||
type: 'collect',
|
||||
};
|
||||
graph.nodes[CONTROL_NET_COLLECT] = controlNetIterateNode;
|
||||
graph.edges.push({
|
||||
source: { node_id: CONTROL_NET_COLLECT, field: 'collection' },
|
||||
destination: {
|
||||
node_id: baseNodeId,
|
||||
field: 'control',
|
||||
},
|
||||
});
|
||||
|
||||
validControlNets.forEach((controlNet) => {
|
||||
const {
|
||||
controlNetId,
|
||||
controlImage,
|
||||
processedControlImage,
|
||||
beginStepPct,
|
||||
endStepPct,
|
||||
controlMode,
|
||||
model,
|
||||
processorType,
|
||||
weight,
|
||||
} = controlNet;
|
||||
|
||||
const controlNetNode: ControlNetInvocation = {
|
||||
id: `control_net_${controlNetId}`,
|
||||
type: 'controlnet',
|
||||
begin_step_percent: beginStepPct,
|
||||
end_step_percent: endStepPct,
|
||||
control_mode: controlMode,
|
||||
control_model: model as ControlNetInvocation['control_model'],
|
||||
control_weight: weight,
|
||||
};
|
||||
|
||||
if (processedControlImage && processorType !== 'none') {
|
||||
// We've already processed the image in the app, so we can just use the processed image
|
||||
controlNetNode.image = {
|
||||
image_name: processedControlImage,
|
||||
};
|
||||
} else if (controlImage) {
|
||||
// The control image is preprocessed
|
||||
controlNetNode.image = {
|
||||
image_name: controlImage,
|
||||
};
|
||||
} else {
|
||||
// Skip ControlNets without an unprocessed image - should never happen if everything is working correctly
|
||||
return;
|
||||
}
|
||||
|
||||
graph.nodes[controlNetNode.id] = controlNetNode;
|
||||
|
||||
// metadata accumulator only needs a control field - not the whole node
|
||||
// extract what we need and add to the accumulator
|
||||
const controlField = omit(controlNetNode, [
|
||||
'id',
|
||||
'type',
|
||||
]) as ControlField;
|
||||
metadataAccumulator.controlnets.push(controlField);
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetNode.id, field: 'control' },
|
||||
destination: {
|
||||
node_id: CONTROL_NET_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
@ -1,8 +1,10 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { unset } from 'lodash-es';
|
||||
import {
|
||||
DynamicPromptInvocation,
|
||||
IterateInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
NoiseInvocation,
|
||||
RandomIntInvocation,
|
||||
RangeOfSizeInvocation,
|
||||
@ -10,16 +12,16 @@ import {
|
||||
import {
|
||||
DYNAMIC_PROMPT,
|
||||
ITERATE,
|
||||
METADATA_ACCUMULATOR,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
} from './constants';
|
||||
import { unset } from 'lodash-es';
|
||||
|
||||
export const addDynamicPromptsToGraph = (
|
||||
graph: NonNullableGraph,
|
||||
state: RootState
|
||||
state: RootState,
|
||||
graph: NonNullableGraph
|
||||
): void => {
|
||||
const { positivePrompt, iterations, seed, shouldRandomizeSeed } =
|
||||
state.generation;
|
||||
@ -30,6 +32,10 @@ export const addDynamicPromptsToGraph = (
|
||||
maxPrompts,
|
||||
} = state.dynamicPrompts;
|
||||
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (isDynamicPromptsEnabled) {
|
||||
// iteration is handled via dynamic prompts
|
||||
unset(graph.nodes[POSITIVE_CONDITIONING], 'prompt');
|
||||
@ -74,6 +80,18 @@ export const addDynamicPromptsToGraph = (
|
||||
}
|
||||
);
|
||||
|
||||
// hook up positive prompt to metadata
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: ITERATE,
|
||||
field: 'item',
|
||||
},
|
||||
destination: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'positive_prompt',
|
||||
},
|
||||
});
|
||||
|
||||
if (shouldRandomizeSeed) {
|
||||
// Random int node to generate the starting seed
|
||||
const randomIntNode: RandomIntInvocation = {
|
||||
@ -88,11 +106,22 @@ export const addDynamicPromptsToGraph = (
|
||||
source: { node_id: RANDOM_INT, field: 'a' },
|
||||
destination: { node_id: NOISE, field: 'seed' },
|
||||
});
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: RANDOM_INT, field: 'a' },
|
||||
destination: { node_id: METADATA_ACCUMULATOR, field: 'seed' },
|
||||
});
|
||||
} else {
|
||||
// User specified seed, so set the start of the range of size to the seed
|
||||
(graph.nodes[NOISE] as NoiseInvocation).seed = seed;
|
||||
|
||||
// hook up seed to metadata
|
||||
metadataAccumulator.seed = seed;
|
||||
}
|
||||
} else {
|
||||
// no dynamic prompt - hook up positive prompt
|
||||
metadataAccumulator.positive_prompt = positivePrompt;
|
||||
|
||||
const rangeOfSizeNode: RangeOfSizeInvocation = {
|
||||
id: RANGE_OF_SIZE,
|
||||
type: 'range_of_size',
|
||||
@ -130,6 +159,18 @@ export const addDynamicPromptsToGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// hook up seed to metadata
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: ITERATE,
|
||||
field: 'item',
|
||||
},
|
||||
destination: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'seed',
|
||||
},
|
||||
});
|
||||
|
||||
// handle seed
|
||||
if (shouldRandomizeSeed) {
|
||||
// Random int node to generate the starting seed
|
||||
|
@ -1,19 +1,23 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { forEach, size } from 'lodash-es';
|
||||
import { LoraLoaderInvocation } from 'services/api/types';
|
||||
import {
|
||||
LoraLoaderInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
} from 'services/api/types';
|
||||
import { modelIdToLoRAModelField } from '../modelIdToLoRAName';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
LORA_LOADER,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING,
|
||||
} from './constants';
|
||||
|
||||
export const addLoRAsToGraph = (
|
||||
graph: NonNullableGraph,
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string
|
||||
): void => {
|
||||
/**
|
||||
@ -26,6 +30,9 @@ export const addLoRAsToGraph = (
|
||||
|
||||
const { loras } = state.lora;
|
||||
const loraCount = size(loras);
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (loraCount > 0) {
|
||||
// Remove MAIN_MODEL_LOADER unet connection to feed it to LoRAs
|
||||
@ -62,6 +69,10 @@ export const addLoRAsToGraph = (
|
||||
weight,
|
||||
};
|
||||
|
||||
// add the lora to the metadata accumulator
|
||||
metadataAccumulator.loras.push({ lora: loraField, weight });
|
||||
|
||||
// add to graph
|
||||
graph.nodes[currentLoraNodeId] = loraLoaderNode;
|
||||
|
||||
if (currentLoraIndex === 0) {
|
||||
|
@ -1,5 +1,6 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { MetadataAccumulatorInvocation } from 'services/api/types';
|
||||
import { modelIdToVAEModelField } from '../modelIdToVAEModelField';
|
||||
import {
|
||||
IMAGE_TO_IMAGE_GRAPH,
|
||||
@ -8,18 +9,22 @@ import {
|
||||
INPAINT_GRAPH,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
TEXT_TO_IMAGE_GRAPH,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
|
||||
export const addVAEToGraph = (
|
||||
graph: NonNullableGraph,
|
||||
state: RootState
|
||||
state: RootState,
|
||||
graph: NonNullableGraph
|
||||
): void => {
|
||||
const { vae } = state.generation;
|
||||
const vae_model = modelIdToVAEModelField(vae?.id || '');
|
||||
|
||||
const isAutoVae = !vae;
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (!isAutoVae) {
|
||||
graph.nodes[VAE_LOADER] = {
|
||||
@ -67,4 +72,8 @@ export const addVAEToGraph = (
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
if (vae) {
|
||||
metadataAccumulator.vae = vae_model;
|
||||
}
|
||||
};
|
||||
|
@ -7,8 +7,7 @@ import {
|
||||
ImageResizeInvocation,
|
||||
ImageToLatentsInvocation,
|
||||
} from 'services/api/types';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
@ -19,6 +18,7 @@ import {
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_LATENTS,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -37,7 +37,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -50,7 +50,10 @@ export const buildCanvasImageToImageGraph = (
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
@ -275,16 +278,51 @@ export const buildCanvasImageToImageGraph = (
|
||||
});
|
||||
}
|
||||
|
||||
addLoRAsToGraph(graph, state, LATENTS_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'img2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
strength,
|
||||
init_image: initialImage.image_name,
|
||||
};
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, LATENTS_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -212,10 +212,10 @@ export const buildCanvasInpaintGraph = (
|
||||
],
|
||||
};
|
||||
|
||||
addLoRAsToGraph(graph, state, INPAINT);
|
||||
addLoRAsToGraph(state, graph, INPAINT);
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// handle seed
|
||||
if (shouldRandomizeSeed) {
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
@ -10,6 +10,7 @@ import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -17,6 +18,8 @@ import {
|
||||
TEXT_TO_LATENTS,
|
||||
} from './constants';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'nodes' });
|
||||
|
||||
/**
|
||||
* Builds the Canvas tab's Text to Image graph.
|
||||
*/
|
||||
@ -26,7 +29,7 @@ export const buildCanvasTextToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -38,7 +41,10 @@ export const buildCanvasTextToImageGraph = (
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
@ -180,16 +186,49 @@ export const buildCanvasTextToImageGraph = (
|
||||
],
|
||||
};
|
||||
|
||||
addLoRAsToGraph(graph, state, TEXT_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
};
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, TEXT_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -3,25 +3,21 @@ import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import {
|
||||
ImageCollectionInvocation,
|
||||
ImageResizeInvocation,
|
||||
ImageToLatentsInvocation,
|
||||
IterateInvocation,
|
||||
} from 'services/api/types';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
IMAGE_COLLECTION,
|
||||
IMAGE_COLLECTION_ITERATE,
|
||||
IMAGE_TO_IMAGE_GRAPH,
|
||||
IMAGE_TO_LATENTS,
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_LATENTS,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -39,7 +35,7 @@ export const buildLinearImageToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -53,14 +49,15 @@ export const buildLinearImageToImageGraph = (
|
||||
shouldUseNoiseSettings,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
isEnabled: isBatchEnabled,
|
||||
imageNames: batchImageNames,
|
||||
asInitialImage,
|
||||
} = state.batch;
|
||||
// TODO: add batch functionality
|
||||
// const {
|
||||
// isEnabled: isBatchEnabled,
|
||||
// imageNames: batchImageNames,
|
||||
// asInitialImage,
|
||||
// } = state.batch;
|
||||
|
||||
const shouldBatch =
|
||||
isBatchEnabled && batchImageNames.length > 0 && asInitialImage;
|
||||
// const shouldBatch =
|
||||
// isBatchEnabled && batchImageNames.length > 0 && asInitialImage;
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
@ -71,12 +68,15 @@ export const buildLinearImageToImageGraph = (
|
||||
* the `fit` param. These are added to the graph at the end.
|
||||
*/
|
||||
|
||||
if (!initialImage && !shouldBatch) {
|
||||
if (!initialImage) {
|
||||
moduleLog.error('No initial image found in state');
|
||||
throw new Error('No initial image found in state');
|
||||
}
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
@ -295,51 +295,87 @@ export const buildLinearImageToImageGraph = (
|
||||
});
|
||||
}
|
||||
|
||||
if (isBatchEnabled && asInitialImage && batchImageNames.length > 0) {
|
||||
// we are going to connect an iterate up to the init image
|
||||
delete (graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image;
|
||||
// TODO: add batch functionality
|
||||
// if (isBatchEnabled && asInitialImage && batchImageNames.length > 0) {
|
||||
// // we are going to connect an iterate up to the init image
|
||||
// delete (graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image;
|
||||
|
||||
const imageCollection: ImageCollectionInvocation = {
|
||||
id: IMAGE_COLLECTION,
|
||||
type: 'image_collection',
|
||||
images: batchImageNames.map((image_name) => ({ image_name })),
|
||||
};
|
||||
// const imageCollection: ImageCollectionInvocation = {
|
||||
// id: IMAGE_COLLECTION,
|
||||
// type: 'image_collection',
|
||||
// images: batchImageNames.map((image_name) => ({ image_name })),
|
||||
// };
|
||||
|
||||
const imageCollectionIterate: IterateInvocation = {
|
||||
id: IMAGE_COLLECTION_ITERATE,
|
||||
type: 'iterate',
|
||||
};
|
||||
// const imageCollectionIterate: IterateInvocation = {
|
||||
// id: IMAGE_COLLECTION_ITERATE,
|
||||
// type: 'iterate',
|
||||
// };
|
||||
|
||||
graph.nodes[IMAGE_COLLECTION] = imageCollection;
|
||||
graph.nodes[IMAGE_COLLECTION_ITERATE] = imageCollectionIterate;
|
||||
// graph.nodes[IMAGE_COLLECTION] = imageCollection;
|
||||
// graph.nodes[IMAGE_COLLECTION_ITERATE] = imageCollectionIterate;
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_COLLECTION, field: 'collection' },
|
||||
destination: {
|
||||
node_id: IMAGE_COLLECTION_ITERATE,
|
||||
field: 'collection',
|
||||
},
|
||||
});
|
||||
// graph.edges.push({
|
||||
// source: { node_id: IMAGE_COLLECTION, field: 'collection' },
|
||||
// destination: {
|
||||
// node_id: IMAGE_COLLECTION_ITERATE,
|
||||
// field: 'collection',
|
||||
// },
|
||||
// });
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_COLLECTION_ITERATE, field: 'item' },
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
}
|
||||
// graph.edges.push({
|
||||
// source: { node_id: IMAGE_COLLECTION_ITERATE, field: 'item' },
|
||||
// destination: {
|
||||
// node_id: IMAGE_TO_LATENTS,
|
||||
// field: 'image',
|
||||
// },
|
||||
// });
|
||||
// }
|
||||
|
||||
addLoRAsToGraph(graph, state, LATENTS_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'img2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
strength,
|
||||
init_image: initialImage.imageName,
|
||||
};
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, LATENTS_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
@ -10,6 +10,7 @@ import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -17,13 +18,15 @@ import {
|
||||
TEXT_TO_LATENTS,
|
||||
} from './constants';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'nodes' });
|
||||
|
||||
export const buildLinearTextToImageGraph = (
|
||||
state: RootState
|
||||
): NonNullableGraph => {
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -34,12 +37,15 @@ export const buildLinearTextToImageGraph = (
|
||||
shouldUseNoiseSettings,
|
||||
} = state.generation;
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@ -176,16 +182,49 @@ export const buildLinearTextToImageGraph = (
|
||||
],
|
||||
};
|
||||
|
||||
addLoRAsToGraph(graph, state, TEXT_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
};
|
||||
|
||||
// Add Custom VAE Support
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, TEXT_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -19,6 +19,7 @@ export const CONTROL_NET_COLLECT = 'control_net_collect';
|
||||
export const DYNAMIC_PROMPT = 'dynamic_prompt';
|
||||
export const IMAGE_COLLECTION = 'image_collection';
|
||||
export const IMAGE_COLLECTION_ITERATE = 'image_collection_iterate';
|
||||
export const METADATA_ACCUMULATOR = 'metadata_accumulator';
|
||||
|
||||
// friendly graph ids
|
||||
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';
|
||||
|
@ -5,17 +5,21 @@ import {
|
||||
InputFieldTemplate,
|
||||
InvocationSchemaObject,
|
||||
InvocationTemplate,
|
||||
isInvocationSchemaObject,
|
||||
OutputFieldTemplate,
|
||||
isInvocationSchemaObject,
|
||||
} from '../types/types';
|
||||
import {
|
||||
buildInputFieldTemplate,
|
||||
buildOutputFieldTemplates,
|
||||
} from './fieldTemplateBuilders';
|
||||
|
||||
const RESERVED_FIELD_NAMES = ['id', 'type', 'is_intermediate'];
|
||||
const RESERVED_FIELD_NAMES = ['id', 'type', 'is_intermediate', 'core_metadata'];
|
||||
|
||||
const invocationDenylist = ['Graph', 'InvocationMeta'];
|
||||
const invocationDenylist = [
|
||||
'Graph',
|
||||
'InvocationMeta',
|
||||
'MetadataAccumulatorInvocation',
|
||||
];
|
||||
|
||||
export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||
// filter out non-invocation schemas, plus some tricky invocations for now
|
||||
|
Reference in New Issue
Block a user