diff --git a/docker/README.md b/docker/README.md index fc6edeacd3..1a8f807392 100644 --- a/docker/README.md +++ b/docker/README.md @@ -1,20 +1,22 @@ # Invoke in Docker -- Ensure that Docker can use the GPU on your system -- This documentation assumes Linux, but should work similarly under Windows with WSL2 +First things first: + +- Ensure that Docker can use your [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] GPU. +- This document assumes a Linux system, but should work similarly under Windows with WSL2. - We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly. -## Quickstart :lightning: +## Quickstart -No `docker compose`, no persistence, just a simple one-liner using the official images: +No `docker compose`, no persistence, single command, using the official images: -**CUDA:** +**CUDA (NVIDIA GPU):** ```bash docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai ``` -**ROCm:** +**ROCm (AMD GPU):** ```bash docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm @@ -22,12 +24,20 @@ docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invok Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away! -> [!TIP] -> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>` +### Data persistence + +To persist your generated images and downloaded models outside of the container, add a `--volume/-v` flag to the above command, e.g.: + +```bash +docker run --volume /some/local/path:/invokeai {...etc...} +``` + +`/some/local/path/invokeai` will contain all your data. +It can *usually* be reused between different installs of Invoke. Tread with caution and read the release notes! ## Customize the container -We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well. +The included `run.sh` script is a convenience wrapper around `docker compose`. It can be helpful for passing additional build arguments to `docker compose`. Alternatively, the familiar `docker compose` commands work just as well. ```bash cd docker @@ -38,11 +48,14 @@ cp .env.sample .env It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke! +>[!TIP] +>When using the `run.sh` script, the container will continue running after Ctrl+C. To shut it down, use the `docker compose down` command. + ## Docker setup in detail #### Linux -1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`) +1. Ensure buildkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`) 2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository). - The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version. 3. Ensure docker daemon is able to access the GPU. @@ -98,25 +111,7 @@ GPU_DRIVER=cuda Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail. -## Even More Customizing! +--- -See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below. - -### Reconfigure the runtime directory - -Can be used to download additional models from the supported model list - -In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory - -```yaml -command: - - invokeai-configure - - --yes -``` - -Or install models: - -```yaml -command: - - invokeai-model-install -``` +[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html +[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html