further improvements to model loading

- code for committing config changes to models.yaml now in module
  rather than in invoke script
- model marked "default" is now loaded if model not specified on
  command line
- uncache changed models when edited, so that they reload properly
- removed liaon from models.yaml and added stable-diffusion-1.5
This commit is contained in:
Lincoln Stein
2022-10-21 00:28:54 -04:00
parent a705a5a0aa
commit 83e6ab08aa
5 changed files with 91 additions and 27 deletions

View File

@ -364,17 +364,16 @@ class Args(object):
deprecated_group.add_argument('--laion400m')
deprecated_group.add_argument('--weights') # deprecated
model_group.add_argument(
'--conf',
'--config',
'-c',
'-conf',
'-config',
dest='conf',
default='./configs/models.yaml',
help='Path to configuration file for alternate models.',
)
model_group.add_argument(
'--model',
default='stable-diffusion-1.4',
help='Indicates which diffusion model to load. (currently "stable-diffusion-1.4" (default) or "laion400m")',
help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)',
)
model_group.add_argument(
'--sampler',

View File

@ -85,6 +85,26 @@ class ModelCache(object):
'hash': hash
}
def default_model(self) -> str:
'''
Returns the name of the default model, or None
if none is defined.
'''
for model_name in self.config:
if self.config[model_name].get('default',False):
return model_name
return None
def set_default_model(self,model_name:str):
'''
Set the default model. The change will not take
effect until you call model_cache.commit()
'''
assert model_name in self.models,f"unknown model '{model_name}'"
for model in self.models:
self.models[model].pop('default',None)
self.models[model_name]['default'] = True
def list_models(self) -> dict:
'''
Return a dict of models in the format:
@ -122,22 +142,23 @@ class ModelCache(object):
else:
print(line)
def del_model(self, model_name:str) ->str:
def del_model(self, model_name:str) ->bool:
'''
Delete the named model and return the YAML
Delete the named model.
'''
omega = self.config
del omega[model_name]
if model_name in self.stack:
self.stack.remove(model_name)
return OmegaConf.to_yaml(omega)
return True
def add_model(self, model_name:str, model_attributes:dict, clobber=False) ->str:
def add_model(self, model_name:str, model_attributes:dict, clobber=False) ->True:
'''
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory and a YAML
string will be returned.
On a successful update, the config will be changed in memory and the
method will return True. Will fail with an assertion error if provided
attributes are incorrect or the model name is missing.
'''
omega = self.config
# check that all the required fields are present
@ -150,7 +171,9 @@ class ModelCache(object):
config[field] = model_attributes[field]
omega[model_name] = config
return OmegaConf.to_yaml(omega)
if clobber:
self._invalidate_cached_model(model_name)
return True
def _check_memory(self):
avail_memory = psutil.virtual_memory()[1]
@ -230,6 +253,36 @@ class ModelCache(object):
if self._has_cuda():
torch.cuda.empty_cache()
def commit(self,config_file_path:str):
'''
Write current configuration out to the indicated file.
'''
yaml_str = OmegaConf.to_yaml(self.config)
tmpfile = os.path.join(os.path.dirname(config_file_path),'new_config.tmp')
with open(tmpfile, 'w') as outfile:
outfile.write(self.preamble())
outfile.write(yaml_str)
os.rename(tmpfile,config_file_path)
def preamble(self):
'''
Returns the preamble for the config file.
'''
return '''# This file describes the alternative machine learning models
# available to the dream script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
'''
def _invalidate_cached_model(self,model_name:str):
self.unload_model(model_name)
if model_name in self.stack:
self.stack.remove(model_name)
self.models.pop(model_name,None)
def _model_to_cpu(self,model):
if self.device != 'cpu':
model.cond_stage_model.device = 'cpu'