mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
refactor(cross_attention_control): remove outer CrossAttentionControl class
Python has modules. We don't need to use a class to provide a namespace.
This commit is contained in:
parent
1b6bbfb4db
commit
853c6af623
@ -14,7 +14,7 @@ import torch
|
|||||||
|
|
||||||
from .prompt_parser import PromptParser, Blend, FlattenedPrompt, \
|
from .prompt_parser import PromptParser, Blend, FlattenedPrompt, \
|
||||||
CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment, log_tokenization
|
CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment, log_tokenization
|
||||||
from ..models.diffusion.cross_attention_control import CrossAttentionControl
|
from ..models.diffusion import cross_attention_control
|
||||||
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||||
from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder
|
from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder
|
||||||
|
|
||||||
@ -50,7 +50,7 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
|
|||||||
print(f">> Parsed prompt to {parsed_prompt}")
|
print(f">> Parsed prompt to {parsed_prompt}")
|
||||||
|
|
||||||
conditioning = None
|
conditioning = None
|
||||||
cac_args:CrossAttentionControl.Arguments = None
|
cac_args:cross_attention_control.Arguments = None
|
||||||
|
|
||||||
if type(parsed_prompt) is Blend:
|
if type(parsed_prompt) is Blend:
|
||||||
blend: Blend = parsed_prompt
|
blend: Blend = parsed_prompt
|
||||||
@ -121,7 +121,7 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
|
|||||||
conditioning = original_embeddings
|
conditioning = original_embeddings
|
||||||
edited_conditioning = edited_embeddings
|
edited_conditioning = edited_embeddings
|
||||||
#print('>> got edit_opcodes', edit_opcodes, 'options', edit_options)
|
#print('>> got edit_opcodes', edit_opcodes, 'options', edit_options)
|
||||||
cac_args = CrossAttentionControl.Arguments(
|
cac_args = cross_attention_control.Arguments(
|
||||||
edited_conditioning = edited_conditioning,
|
edited_conditioning = edited_conditioning,
|
||||||
edit_opcodes = edit_opcodes,
|
edit_opcodes = edit_opcodes,
|
||||||
edit_options = edit_options
|
edit_options = edit_options
|
||||||
|
@ -8,7 +8,7 @@ import torch
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
class CrossAttentionControl:
|
|
||||||
|
|
||||||
class Arguments:
|
class Arguments:
|
||||||
def __init__(self, edited_conditioning: torch.Tensor, edit_opcodes: list[tuple], edit_options: dict):
|
def __init__(self, edited_conditioning: torch.Tensor, edit_opcodes: list[tuple], edit_options: dict):
|
||||||
@ -38,7 +38,7 @@ class CrossAttentionControl:
|
|||||||
SAVE = 1,
|
SAVE = 1,
|
||||||
APPLY = 2
|
APPLY = 2
|
||||||
|
|
||||||
def __init__(self, arguments: 'CrossAttentionControl.Arguments', step_count: int):
|
def __init__(self, arguments: Arguments, step_count: int):
|
||||||
"""
|
"""
|
||||||
:param arguments: Arguments for the cross-attention control process
|
:param arguments: Arguments for the cross-attention control process
|
||||||
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
|
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
|
||||||
@ -54,58 +54,58 @@ class CrossAttentionControl:
|
|||||||
self.clear_requests(cleanup=True)
|
self.clear_requests(cleanup=True)
|
||||||
|
|
||||||
def register_cross_attention_modules(self, model):
|
def register_cross_attention_modules(self, model):
|
||||||
for name,module in CrossAttentionControl.get_attention_modules(model,
|
for name,module in get_attention_modules(model,
|
||||||
CrossAttentionControl.CrossAttentionType.SELF):
|
CrossAttentionType.SELF):
|
||||||
self.self_cross_attention_module_identifiers.append(name)
|
self.self_cross_attention_module_identifiers.append(name)
|
||||||
for name,module in CrossAttentionControl.get_attention_modules(model,
|
for name,module in get_attention_modules(model,
|
||||||
CrossAttentionControl.CrossAttentionType.TOKENS):
|
CrossAttentionType.TOKENS):
|
||||||
self.tokens_cross_attention_module_identifiers.append(name)
|
self.tokens_cross_attention_module_identifiers.append(name)
|
||||||
|
|
||||||
def request_save_attention_maps(self, cross_attention_type: 'CrossAttentionControl.CrossAttentionType'):
|
def request_save_attention_maps(self, cross_attention_type: 'CrossAttentionType'):
|
||||||
if cross_attention_type == CrossAttentionControl.CrossAttentionType.SELF:
|
if cross_attention_type == CrossAttentionType.SELF:
|
||||||
self.self_cross_attention_action = CrossAttentionControl.Context.Action.SAVE
|
self.self_cross_attention_action = Context.Action.SAVE
|
||||||
else:
|
else:
|
||||||
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.SAVE
|
self.tokens_cross_attention_action = Context.Action.SAVE
|
||||||
|
|
||||||
def request_apply_saved_attention_maps(self, cross_attention_type: 'CrossAttentionControl.CrossAttentionType'):
|
def request_apply_saved_attention_maps(self, cross_attention_type: 'CrossAttentionType'):
|
||||||
if cross_attention_type == CrossAttentionControl.CrossAttentionType.SELF:
|
if cross_attention_type == CrossAttentionType.SELF:
|
||||||
self.self_cross_attention_action = CrossAttentionControl.Context.Action.APPLY
|
self.self_cross_attention_action = Context.Action.APPLY
|
||||||
else:
|
else:
|
||||||
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.APPLY
|
self.tokens_cross_attention_action = Context.Action.APPLY
|
||||||
|
|
||||||
def is_tokens_cross_attention(self, module_identifier) -> bool:
|
def is_tokens_cross_attention(self, module_identifier) -> bool:
|
||||||
return module_identifier in self.tokens_cross_attention_module_identifiers
|
return module_identifier in self.tokens_cross_attention_module_identifiers
|
||||||
|
|
||||||
def get_should_save_maps(self, module_identifier: str) -> bool:
|
def get_should_save_maps(self, module_identifier: str) -> bool:
|
||||||
if module_identifier in self.self_cross_attention_module_identifiers:
|
if module_identifier in self.self_cross_attention_module_identifiers:
|
||||||
return self.self_cross_attention_action == CrossAttentionControl.Context.Action.SAVE
|
return self.self_cross_attention_action == Context.Action.SAVE
|
||||||
elif module_identifier in self.tokens_cross_attention_module_identifiers:
|
elif module_identifier in self.tokens_cross_attention_module_identifiers:
|
||||||
return self.tokens_cross_attention_action == CrossAttentionControl.Context.Action.SAVE
|
return self.tokens_cross_attention_action == Context.Action.SAVE
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
|
def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
|
||||||
if module_identifier in self.self_cross_attention_module_identifiers:
|
if module_identifier in self.self_cross_attention_module_identifiers:
|
||||||
return self.self_cross_attention_action == CrossAttentionControl.Context.Action.APPLY
|
return self.self_cross_attention_action == Context.Action.APPLY
|
||||||
elif module_identifier in self.tokens_cross_attention_module_identifiers:
|
elif module_identifier in self.tokens_cross_attention_module_identifiers:
|
||||||
return self.tokens_cross_attention_action == CrossAttentionControl.Context.Action.APPLY
|
return self.tokens_cross_attention_action == Context.Action.APPLY
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def get_active_cross_attention_control_types_for_step(self, percent_through:float=None)\
|
def get_active_cross_attention_control_types_for_step(self, percent_through:float=None)\
|
||||||
-> list['CrossAttentionControl.CrossAttentionType']:
|
-> list['CrossAttentionType']:
|
||||||
"""
|
"""
|
||||||
Should cross-attention control be applied on the given step?
|
Should cross-attention control be applied on the given step?
|
||||||
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
|
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
|
||||||
:return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
|
:return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
|
||||||
"""
|
"""
|
||||||
if percent_through is None:
|
if percent_through is None:
|
||||||
return [CrossAttentionControl.CrossAttentionType.SELF, CrossAttentionControl.CrossAttentionType.TOKENS]
|
return [CrossAttentionType.SELF, CrossAttentionType.TOKENS]
|
||||||
|
|
||||||
opts = self.arguments.edit_options
|
opts = self.arguments.edit_options
|
||||||
to_control = []
|
to_control = []
|
||||||
if opts['s_start'] <= percent_through and percent_through < opts['s_end']:
|
if opts['s_start'] <= percent_through and percent_through < opts['s_end']:
|
||||||
to_control.append(CrossAttentionControl.CrossAttentionType.SELF)
|
to_control.append(CrossAttentionType.SELF)
|
||||||
if opts['t_start'] <= percent_through and percent_through < opts['t_end']:
|
if opts['t_start'] <= percent_through and percent_through < opts['t_end']:
|
||||||
to_control.append(CrossAttentionControl.CrossAttentionType.TOKENS)
|
to_control.append(CrossAttentionType.TOKENS)
|
||||||
return to_control
|
return to_control
|
||||||
|
|
||||||
def save_slice(self, identifier: str, slice: torch.Tensor, dim: Optional[int], offset: int,
|
def save_slice(self, identifier: str, slice: torch.Tensor, dim: Optional[int], offset: int,
|
||||||
@ -148,8 +148,8 @@ class CrossAttentionControl:
|
|||||||
return saved_attention['dim'], saved_attention['slice_size']
|
return saved_attention['dim'], saved_attention['slice_size']
|
||||||
|
|
||||||
def clear_requests(self, cleanup=True):
|
def clear_requests(self, cleanup=True):
|
||||||
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.NONE
|
self.tokens_cross_attention_action = Context.Action.NONE
|
||||||
self.self_cross_attention_action = CrossAttentionControl.Context.Action.NONE
|
self.self_cross_attention_action = Context.Action.NONE
|
||||||
if cleanup:
|
if cleanup:
|
||||||
self.saved_cross_attention_maps = {}
|
self.saved_cross_attention_maps = {}
|
||||||
|
|
||||||
@ -158,12 +158,12 @@ class CrossAttentionControl:
|
|||||||
for offset, slice in map_dict['slices'].items():
|
for offset, slice in map_dict['slices'].items():
|
||||||
map_dict[offset] = slice.to('cpu')
|
map_dict[offset] = slice.to('cpu')
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def remove_cross_attention_control(cls, model):
|
|
||||||
cls.remove_attention_function(model)
|
|
||||||
|
|
||||||
@classmethod
|
def remove_cross_attention_control(model):
|
||||||
def setup_cross_attention_control(cls, model, context: Context):
|
remove_attention_function(model)
|
||||||
|
|
||||||
|
|
||||||
|
def setup_cross_attention_control(model, context: Context):
|
||||||
"""
|
"""
|
||||||
Inject attention parameters and functions into the passed in model to enable cross attention editing.
|
Inject attention parameters and functions into the passed in model to enable cross attention editing.
|
||||||
|
|
||||||
@ -191,22 +191,21 @@ class CrossAttentionControl:
|
|||||||
context.register_cross_attention_modules(model)
|
context.register_cross_attention_modules(model)
|
||||||
context.cross_attention_mask = mask.to(device)
|
context.cross_attention_mask = mask.to(device)
|
||||||
context.cross_attention_index_map = indices.to(device)
|
context.cross_attention_index_map = indices.to(device)
|
||||||
cls.inject_attention_function(model, context)
|
inject_attention_function(model, context)
|
||||||
|
|
||||||
|
|
||||||
class CrossAttentionType(enum.Enum):
|
class CrossAttentionType(enum.Enum):
|
||||||
SELF = 1
|
SELF = 1
|
||||||
TOKENS = 2
|
TOKENS = 2
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def get_attention_modules(cls, model, which: CrossAttentionType):
|
def get_attention_modules(model, which: CrossAttentionType):
|
||||||
which_attn = "attn1" if which is cls.CrossAttentionType.SELF else "attn2"
|
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
|
||||||
return [(name,module) for name, module in model.named_modules() if
|
return [(name,module) for name, module in model.named_modules() if
|
||||||
type(module).__name__ == "CrossAttention" and which_attn in name]
|
type(module).__name__ == "CrossAttention" and which_attn in name]
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
def inject_attention_function(unet, context: Context):
|
||||||
def inject_attention_function(cls, unet, context: 'CrossAttentionControl.Context'):
|
|
||||||
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
|
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
|
||||||
|
|
||||||
def attention_slice_wrangler(module, suggested_attention_slice:torch.Tensor, dim, offset, slice_size):
|
def attention_slice_wrangler(module, suggested_attention_slice:torch.Tensor, dim, offset, slice_size):
|
||||||
@ -251,8 +250,8 @@ class CrossAttentionControl:
|
|||||||
module.set_slicing_strategy_getter(lambda module, module_identifier=name: \
|
module.set_slicing_strategy_getter(lambda module, module_identifier=name: \
|
||||||
context.get_slicing_strategy(module_identifier))
|
context.get_slicing_strategy(module_identifier))
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def remove_attention_function(cls, unet):
|
def remove_attention_function(unet):
|
||||||
# clear wrangler callback
|
# clear wrangler callback
|
||||||
for name, module in unet.named_modules():
|
for name, module in unet.named_modules():
|
||||||
module_name = type(module).__name__
|
module_name = type(module).__name__
|
||||||
|
@ -4,7 +4,8 @@ from typing import Callable, Optional, Union
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ldm.models.diffusion.cross_attention_control import CrossAttentionControl
|
from ldm.models.diffusion.cross_attention_control import Arguments, \
|
||||||
|
remove_cross_attention_control, setup_cross_attention_control, Context
|
||||||
from ldm.modules.attention import get_mem_free_total
|
from ldm.modules.attention import get_mem_free_total
|
||||||
|
|
||||||
|
|
||||||
@ -20,7 +21,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
|
|
||||||
|
|
||||||
class ExtraConditioningInfo:
|
class ExtraConditioningInfo:
|
||||||
def __init__(self, cross_attention_control_args: Optional[CrossAttentionControl.Arguments]):
|
def __init__(self, cross_attention_control_args: Optional[Arguments]):
|
||||||
self.cross_attention_control_args = cross_attention_control_args
|
self.cross_attention_control_args = cross_attention_control_args
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -40,16 +41,16 @@ class InvokeAIDiffuserComponent:
|
|||||||
|
|
||||||
def setup_cross_attention_control(self, conditioning: ExtraConditioningInfo, step_count: int):
|
def setup_cross_attention_control(self, conditioning: ExtraConditioningInfo, step_count: int):
|
||||||
self.conditioning = conditioning
|
self.conditioning = conditioning
|
||||||
self.cross_attention_control_context = CrossAttentionControl.Context(
|
self.cross_attention_control_context = Context(
|
||||||
arguments=self.conditioning.cross_attention_control_args,
|
arguments=self.conditioning.cross_attention_control_args,
|
||||||
step_count=step_count
|
step_count=step_count
|
||||||
)
|
)
|
||||||
CrossAttentionControl.setup_cross_attention_control(self.model, self.cross_attention_control_context)
|
setup_cross_attention_control(self.model, self.cross_attention_control_context)
|
||||||
|
|
||||||
def remove_cross_attention_control(self):
|
def remove_cross_attention_control(self):
|
||||||
self.conditioning = None
|
self.conditioning = None
|
||||||
self.cross_attention_control_context = None
|
self.cross_attention_control_context = None
|
||||||
CrossAttentionControl.remove_cross_attention_control(self.model)
|
remove_cross_attention_control(self.model)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -71,7 +72,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
|
|
||||||
|
|
||||||
cross_attention_control_types_to_do = []
|
cross_attention_control_types_to_do = []
|
||||||
context: CrossAttentionControl.Context = self.cross_attention_control_context
|
context: Context = self.cross_attention_control_context
|
||||||
if self.cross_attention_control_context is not None:
|
if self.cross_attention_control_context is not None:
|
||||||
percent_through = self.estimate_percent_through(step_index, sigma)
|
percent_through = self.estimate_percent_through(step_index, sigma)
|
||||||
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(percent_through)
|
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(percent_through)
|
||||||
@ -133,7 +134,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
# representing batched uncond + cond, but then when it comes to applying the saved attention, the
|
# representing batched uncond + cond, but then when it comes to applying the saved attention, the
|
||||||
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
|
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
|
||||||
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
|
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
|
||||||
context:CrossAttentionControl.Context = self.cross_attention_control_context
|
context:Context = self.cross_attention_control_context
|
||||||
|
|
||||||
try:
|
try:
|
||||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
||||||
|
Loading…
Reference in New Issue
Block a user