diff --git a/scripts/controlnet_legacy_txt2img_example.py b/scripts/controlnet_legacy_txt2img_example.py deleted file mode 100644 index 8400cc0290..0000000000 --- a/scripts/controlnet_legacy_txt2img_example.py +++ /dev/null @@ -1,52 +0,0 @@ -import os -import torch -import cv2 -import numpy as np -from PIL import Image - -from diffusers.utils import load_image -from diffusers.models.controlnet import ControlNetModel -from invokeai.backend.generator import Txt2Img -from invokeai.backend.model_management import ModelManager - - -print("loading 'Girl with a Pearl Earring' image") -image = load_image( - "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" -) -image.show() - -print("preprocessing image with Canny edge detection") -image_np = np.array(image) -low_threshold = 100 -high_threshold = 200 -canny_np = cv2.Canny(image_np, low_threshold, high_threshold) -canny_image = Image.fromarray(canny_np) -canny_image.show() - -# using invokeai model management for base model -print("loading base model stable-diffusion-1.5") -model_config_path = os.getcwd() + "/../configs/models.yaml" -model_manager = ModelManager(model_config_path) -model = model_manager.get_model("stable-diffusion-1.5") - -print("loading control model lllyasviel/sd-controlnet-canny") -canny_controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to( - "cuda" -) - -print("testing Txt2Img() constructor with control_model arg") -txt2img_canny = Txt2Img(model, control_model=canny_controlnet) - -print("testing Txt2Img.generate() with control_image arg") -outputs = txt2img_canny.generate( - prompt="old man", - control_image=canny_image, - control_weight=1.0, - seed=0, - num_steps=30, - precision="float16", -) -generate_output = next(outputs) -out_image = generate_output.image -out_image.show() diff --git a/scripts/create_checkpoint_template.py b/scripts/create_checkpoint_template.py deleted file mode 100755 index 4b9bfe0ea2..0000000000 --- a/scripts/create_checkpoint_template.py +++ /dev/null @@ -1,33 +0,0 @@ -#!/usr/bin/env python -""" -Read a checkpoint/safetensors file and write out a template .json file containing -its metadata for use in fast model probing. -""" - -import argparse -import json - -from pathlib import Path - -from invokeai.backend.model_management.models.base import read_checkpoint_meta - -parser = argparse.ArgumentParser(description="Create a .json template from checkpoint/safetensors model") -parser.add_argument("--checkpoint", "--in", type=Path, help="Path to the input checkpoint/safetensors file") -parser.add_argument("--template", "--out", type=Path, help="Path to the output .json file") - -opt = parser.parse_args() -ckpt = read_checkpoint_meta(opt.checkpoint) -while "state_dict" in ckpt: - ckpt = ckpt["state_dict"] - -tmpl = {} - -for key, tensor in ckpt.items(): - tmpl[key] = list(tensor.shape) - -try: - with open(opt.template, "w") as f: - json.dump(tmpl, f) - print(f"Template written out as {opt.template}") -except Exception as e: - print(f"An exception occurred while writing template: {str(e)}") diff --git a/scripts/invokeai-model-install.py b/scripts/invokeai-model-install.py old mode 100644 new mode 100755 index b4b0dbc8ef..0cac857f8c --- a/scripts/invokeai-model-install.py +++ b/scripts/invokeai-model-install.py @@ -1,3 +1,5 @@ +#!/usr/bin/env python + from invokeai.frontend.install.model_install import main main() diff --git a/scripts/verify_checkpoint_template.py b/scripts/verify_checkpoint_template.py deleted file mode 100755 index 15194290f5..0000000000 --- a/scripts/verify_checkpoint_template.py +++ /dev/null @@ -1,37 +0,0 @@ -#!/usr/bin/env python -""" -Read a checkpoint/safetensors file and compare it to a template .json. -Returns True if their metadata match. -""" - -import sys -import argparse -import json - -from pathlib import Path - -from invokeai.backend.model_management.models.base import read_checkpoint_meta - -parser = argparse.ArgumentParser(description="Compare a checkpoint/safetensors file to a JSON metadata template.") -parser.add_argument("--checkpoint", "--in", type=Path, help="Path to the input checkpoint/safetensors file") -parser.add_argument("--template", "--out", type=Path, help="Path to the template .json file to match against") - -opt = parser.parse_args() -ckpt = read_checkpoint_meta(opt.checkpoint) -while "state_dict" in ckpt: - ckpt = ckpt["state_dict"] - -checkpoint_metadata = {} - -for key, tensor in ckpt.items(): - checkpoint_metadata[key] = list(tensor.shape) - -with open(opt.template, "r") as f: - template = json.load(f) - -if checkpoint_metadata == template: - print("True") - sys.exit(0) -else: - print("False") - sys.exit(-1)