mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Flips channels using array slicing instead of using OpenCV
This commit is contained in:
parent
4101127011
commit
87469a5fdd
@ -3,7 +3,6 @@ import torch
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import warnings
|
import warnings
|
||||||
import sys
|
import sys
|
||||||
import cv2
|
|
||||||
|
|
||||||
pretrained_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
pretrained_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
||||||
|
|
||||||
@ -41,12 +40,13 @@ class CodeFormerRestoration():
|
|||||||
cf.load_state_dict(checkpoint)
|
cf.load_state_dict(checkpoint)
|
||||||
cf.eval()
|
cf.eval()
|
||||||
|
|
||||||
# Codeformer expects BGR image data
|
image = image.convert('RGB')
|
||||||
bgrImage = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
# Codeformer expects a BGR np array; make array and flip channels
|
||||||
|
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
|
||||||
|
|
||||||
face_helper = FaceRestoreHelper(upscale_factor=1, use_parse=True, device=device)
|
face_helper = FaceRestoreHelper(upscale_factor=1, use_parse=True, device=device)
|
||||||
face_helper.clean_all()
|
face_helper.clean_all()
|
||||||
face_helper.read_image(bgrImage)
|
face_helper.read_image(bgr_image_array)
|
||||||
face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
|
face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
|
||||||
face_helper.align_warp_face()
|
face_helper.align_warp_face()
|
||||||
|
|
||||||
@ -73,8 +73,8 @@ class CodeFormerRestoration():
|
|||||||
|
|
||||||
restored_img = face_helper.paste_faces_to_input_image()
|
restored_img = face_helper.paste_faces_to_input_image()
|
||||||
|
|
||||||
# Convert back to RGB for PIL
|
# Flip the channels back to RGB
|
||||||
res = Image.fromarray(cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB))
|
res = Image.fromarray(restored_img[...,::-1])
|
||||||
|
|
||||||
if strength < 1.0:
|
if strength < 1.0:
|
||||||
# Resize the image to the new image if the sizes have changed
|
# Resize the image to the new image if the sizes have changed
|
||||||
|
@ -3,7 +3,6 @@ import warnings
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
|
||||||
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
@ -54,18 +53,20 @@ class GFPGAN():
|
|||||||
f'>> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}, \nor change GFPGAN directory with --gfpgan_dir.'
|
f'>> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}, \nor change GFPGAN directory with --gfpgan_dir.'
|
||||||
)
|
)
|
||||||
|
|
||||||
# GFPGAN expects BGR image data
|
image = image.convert('RGB')
|
||||||
bgrImage = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
|
||||||
|
# GFPGAN expects a BGR np array; make array and flip channels
|
||||||
|
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
|
||||||
|
|
||||||
_, _, restored_img = self.gfpgan.enhance(
|
_, _, restored_img = self.gfpgan.enhance(
|
||||||
bgrImage,
|
bgr_image_array,
|
||||||
has_aligned=False,
|
has_aligned=False,
|
||||||
only_center_face=False,
|
only_center_face=False,
|
||||||
paste_back=True,
|
paste_back=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Convert back to RGB for PIL
|
# Flip the channels back to RGB
|
||||||
res = Image.fromarray(cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB))
|
res = Image.fromarray(restored_img[...,::-1])
|
||||||
|
|
||||||
if strength < 1.0:
|
if strength < 1.0:
|
||||||
# Resize the image to the new image if the sizes have changed
|
# Resize the image to the new image if the sizes have changed
|
||||||
|
Loading…
x
Reference in New Issue
Block a user