Merge branch 'main' into seam-painting

This commit is contained in:
blessedcoolant 2023-08-17 21:21:44 +12:00 committed by GitHub
commit 8923201fdf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 154 additions and 24 deletions

View File

@ -25,10 +25,10 @@ This method is recommended for experienced users and developers
#### [Docker Installation](040_INSTALL_DOCKER.md) #### [Docker Installation](040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers This method is recommended for those familiar with running Docker containers
### Other Installation Guides ### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md) - [PyPatchMatch](060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md) - [XFormers](070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md) - [CUDA and ROCm Drivers](030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md) - [Installing New Models](050_INSTALLING_MODELS.md)
## :fontawesome-solid-computer: Hardware Requirements ## :fontawesome-solid-computer: Hardware Requirements

View File

@ -29,6 +29,7 @@ The abstract base class for this class is InvocationStatsServiceBase. An impleme
writes to the system log is stored in InvocationServices.performance_statistics. writes to the system log is stored in InvocationServices.performance_statistics.
""" """
import psutil
import time import time
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from contextlib import AbstractContextManager from contextlib import AbstractContextManager
@ -42,6 +43,11 @@ import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation from ..invocations.baseinvocation import BaseInvocation
from .graph import GraphExecutionState from .graph import GraphExecutionState
from .item_storage import ItemStorageABC from .item_storage import ItemStorageABC
from .model_manager_service import ModelManagerService
from invokeai.backend.model_management.model_cache import CacheStats
# size of GIG in bytes
GIG = 1073741824
class InvocationStatsServiceBase(ABC): class InvocationStatsServiceBase(ABC):
@ -89,6 +95,8 @@ class InvocationStatsServiceBase(ABC):
invocation_type: str, invocation_type: str,
time_used: float, time_used: float,
vram_used: float, vram_used: float,
ram_used: float,
ram_changed: float,
): ):
""" """
Add timing information on execution of a node. Usually Add timing information on execution of a node. Usually
@ -97,6 +105,8 @@ class InvocationStatsServiceBase(ABC):
:param invocation_type: String literal type of the node :param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec) :param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB) :param vram_used: Maximum VRAM used during exection (GB)
:param ram_used: Current RAM available (GB)
:param ram_changed: Change in RAM usage over course of the run (GB)
""" """
pass pass
@ -115,6 +125,9 @@ class NodeStats:
calls: int = 0 calls: int = 0
time_used: float = 0.0 # seconds time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass @dataclass
@ -133,31 +146,62 @@ class InvocationStatsService(InvocationStatsServiceBase):
self.graph_execution_manager = graph_execution_manager self.graph_execution_manager = graph_execution_manager
# {graph_id => NodeLog} # {graph_id => NodeLog}
self._stats: Dict[str, NodeLog] = {} self._stats: Dict[str, NodeLog] = {}
self._cache_stats: Dict[str, CacheStats] = {}
self.ram_used: float = 0.0
self.ram_changed: float = 0.0
class StatsContext: class StatsContext:
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"): """Context manager for collecting statistics."""
invocation: BaseInvocation = None
collector: "InvocationStatsServiceBase" = None
graph_id: str = None
start_time: int = 0
ram_used: int = 0
model_manager: ModelManagerService = None
def __init__(
self,
invocation: BaseInvocation,
graph_id: str,
model_manager: ModelManagerService,
collector: "InvocationStatsServiceBase",
):
"""Initialize statistics for this run."""
self.invocation = invocation self.invocation = invocation
self.collector = collector self.collector = collector
self.graph_id = graph_id self.graph_id = graph_id
self.start_time = 0 self.start_time = 0
self.ram_used = 0
self.model_manager = model_manager
def __enter__(self): def __enter__(self):
self.start_time = time.time() self.start_time = time.time()
if torch.cuda.is_available(): if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats() torch.cuda.reset_peak_memory_stats()
self.ram_used = psutil.Process().memory_info().rss
if self.model_manager:
self.model_manager.collect_cache_stats(self.collector._cache_stats[self.graph_id])
def __exit__(self, *args): def __exit__(self, *args):
"""Called on exit from the context."""
ram_used = psutil.Process().memory_info().rss
self.collector.update_mem_stats(
ram_used=ram_used / GIG,
ram_changed=(ram_used - self.ram_used) / GIG,
)
self.collector.update_invocation_stats( self.collector.update_invocation_stats(
self.graph_id, graph_id=self.graph_id,
self.invocation.type, invocation_type=self.invocation.type,
time.time() - self.start_time, time_used=time.time() - self.start_time,
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0, vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
) )
def collect_stats( def collect_stats(
self, self,
invocation: BaseInvocation, invocation: BaseInvocation,
graph_execution_state_id: str, graph_execution_state_id: str,
model_manager: ModelManagerService,
) -> StatsContext: ) -> StatsContext:
""" """
Return a context object that will capture the statistics. Return a context object that will capture the statistics.
@ -166,7 +210,8 @@ class InvocationStatsService(InvocationStatsServiceBase):
""" """
if not self._stats.get(graph_execution_state_id): # first time we're seeing this if not self._stats.get(graph_execution_state_id): # first time we're seeing this
self._stats[graph_execution_state_id] = NodeLog() self._stats[graph_execution_state_id] = NodeLog()
return self.StatsContext(invocation, graph_execution_state_id, self) self._cache_stats[graph_execution_state_id] = CacheStats()
return self.StatsContext(invocation, graph_execution_state_id, model_manager, self)
def reset_all_stats(self): def reset_all_stats(self):
"""Zero all statistics""" """Zero all statistics"""
@ -179,13 +224,36 @@ class InvocationStatsService(InvocationStatsServiceBase):
except KeyError: except KeyError:
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}") logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float): def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Update the collector with RAM memory usage info.
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
self.ram_used = ram_used
self.ram_changed = ram_changed
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
""" """
Add timing information on execution of a node. Usually Add timing information on execution of a node. Usually
used internally. used internally.
:param graph_id: ID of the graph that is currently executing :param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node :param invocation_type: String literal type of the node
:param time_used: Floating point seconds used by node's exection :param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
:param ram_used: Current RAM available (GB)
:param ram_changed: Change in RAM usage over course of the run (GB)
""" """
if not self._stats[graph_id].nodes.get(invocation_type): if not self._stats[graph_id].nodes.get(invocation_type):
self._stats[graph_id].nodes[invocation_type] = NodeStats() self._stats[graph_id].nodes[invocation_type] = NodeStats()
@ -197,7 +265,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
def log_stats(self): def log_stats(self):
""" """
Send the statistics to the system logger at the info level. Send the statistics to the system logger at the info level.
Stats will only be printed if when the execution of the graph Stats will only be printed when the execution of the graph
is complete. is complete.
""" """
completed = set() completed = set()
@ -208,16 +276,30 @@ class InvocationStatsService(InvocationStatsServiceBase):
total_time = 0 total_time = 0
logger.info(f"Graph stats: {graph_id}") logger.info(f"Graph stats: {graph_id}")
logger.info("Node Calls Seconds VRAM Used") logger.info(f"{'Node':>30} {'Calls':>7}{'Seconds':>9} {'VRAM Used':>10}")
for node_type, stats in self._stats[graph_id].nodes.items(): for node_type, stats in self._stats[graph_id].nodes.items():
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:7.3f}s {stats.max_vram:4.2f}G") logger.info(f"{node_type:>30} {stats.calls:>4} {stats.time_used:7.3f}s {stats.max_vram:4.3f}G")
total_time += stats.time_used total_time += stats.time_used
cache_stats = self._cache_stats[graph_id]
hwm = cache_stats.high_watermark / GIG
tot = cache_stats.cache_size / GIG
loaded = sum([v for v in cache_stats.loaded_model_sizes.values()]) / GIG
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s") logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
logger.info("RAM used by InvokeAI process: " + "%4.2fG" % self.ram_used + f" ({self.ram_changed:+5.3f}G)")
logger.info(f"RAM used to load models: {loaded:4.2f}G")
if torch.cuda.is_available(): if torch.cuda.is_available():
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9)) logger.info("VRAM in use: " + "%4.3fG" % (torch.cuda.memory_allocated() / GIG))
logger.info("RAM cache statistics:")
logger.info(f" Model cache hits: {cache_stats.hits}")
logger.info(f" Model cache misses: {cache_stats.misses}")
logger.info(f" Models cached: {cache_stats.in_cache}")
logger.info(f" Models cleared from cache: {cache_stats.cleared}")
logger.info(f" Cache high water mark: {hwm:4.2f}/{tot:4.2f}G")
completed.add(graph_id) completed.add(graph_id)
for graph_id in completed: for graph_id in completed:
del self._stats[graph_id] del self._stats[graph_id]
del self._cache_stats[graph_id]

View File

@ -22,6 +22,7 @@ from invokeai.backend.model_management import (
ModelNotFoundException, ModelNotFoundException,
) )
from invokeai.backend.model_management.model_search import FindModels from invokeai.backend.model_management.model_search import FindModels
from invokeai.backend.model_management.model_cache import CacheStats
import torch import torch
from invokeai.app.models.exceptions import CanceledException from invokeai.app.models.exceptions import CanceledException
@ -276,6 +277,13 @@ class ModelManagerServiceBase(ABC):
""" """
pass pass
@abstractmethod
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
pass
@abstractmethod @abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None: def commit(self, conf_file: Optional[Path] = None) -> None:
""" """
@ -500,6 +508,12 @@ class ModelManagerService(ModelManagerServiceBase):
self.logger.debug(f"convert model {model_name}") self.logger.debug(f"convert model {model_name}")
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory) return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
self.mgr.cache.stats = cache_stats
def commit(self, conf_file: Optional[Path] = None): def commit(self, conf_file: Optional[Path] = None):
""" """
Write current configuration out to the indicated file. Write current configuration out to the indicated file.

View File

@ -86,7 +86,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Invoke # Invoke
try: try:
with statistics.collect_stats(invocation, graph_execution_state.id): graph_id = graph_execution_state.id
model_manager = self.__invoker.services.model_manager
with statistics.collect_stats(invocation, graph_id, model_manager):
# use the internal invoke_internal(), which wraps the node's invoke() method in # use the internal invoke_internal(), which wraps the node's invoke() method in
# this accomodates nodes which require a value, but get it only from a # this accomodates nodes which require a value, but get it only from a
# connection # connection

View File

@ -21,12 +21,12 @@ import os
import sys import sys
import hashlib import hashlib
from contextlib import suppress from contextlib import suppress
from dataclasses import dataclass, field
from pathlib import Path from pathlib import Path
from typing import Dict, Union, types, Optional, Type, Any from typing import Dict, Union, types, Optional, Type, Any
import torch import torch
import logging
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from .models import BaseModelType, ModelType, SubModelType, ModelBase from .models import BaseModelType, ModelType, SubModelType, ModelBase
@ -41,6 +41,18 @@ DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
GIG = 1073741824 GIG = 1073741824
@dataclass
class CacheStats(object):
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
# {submodel_key => size}
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
class ModelLocker(object): class ModelLocker(object):
"Forward declaration" "Forward declaration"
pass pass
@ -115,6 +127,9 @@ class ModelCache(object):
self.sha_chunksize = sha_chunksize self.sha_chunksize = sha_chunksize
self.logger = logger self.logger = logger
# used for stats collection
self.stats = None
self._cached_models = dict() self._cached_models = dict()
self._cache_stack = list() self._cache_stack = list()
@ -181,13 +196,14 @@ class ModelCache(object):
model_type=model_type, model_type=model_type,
submodel_type=submodel, submodel_type=submodel,
) )
# TODO: lock for no copies on simultaneous calls? # TODO: lock for no copies on simultaneous calls?
cache_entry = self._cached_models.get(key, None) cache_entry = self._cached_models.get(key, None)
if cache_entry is None: if cache_entry is None:
self.logger.info( self.logger.info(
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}" f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
) )
if self.stats:
self.stats.misses += 1
# this will remove older cached models until # this will remove older cached models until
# there is sufficient room to load the requested model # there is sufficient room to load the requested model
@ -201,6 +217,17 @@ class ModelCache(object):
cache_entry = _CacheRecord(self, model, mem_used) cache_entry = _CacheRecord(self, model, mem_used)
self._cached_models[key] = cache_entry self._cached_models[key] = cache_entry
else:
if self.stats:
self.stats.hits += 1
if self.stats:
self.stats.cache_size = self.max_cache_size * GIG
self.stats.high_watermark = max(self.stats.high_watermark, self._cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[key] = max(
self.stats.loaded_model_sizes.get(key, 0), model_info.get_size(submodel)
)
with suppress(Exception): with suppress(Exception):
self._cache_stack.remove(key) self._cache_stack.remove(key)
@ -280,14 +307,14 @@ class ModelCache(object):
""" """
Given the HF repo id or path to a model on disk, returns a unique Given the HF repo id or path to a model on disk, returns a unique
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
:param model_path: Path to model file/directory on disk. :param model_path: Path to model file/directory on disk.
""" """
return self._local_model_hash(model_path) return self._local_model_hash(model_path)
def cache_size(self) -> float: def cache_size(self) -> float:
"Return the current size of the cache, in GB" """Return the current size of the cache, in GB."""
current_cache_size = sum([m.size for m in self._cached_models.values()]) return self._cache_size() / GIG
return current_cache_size / GIG
def _has_cuda(self) -> bool: def _has_cuda(self) -> bool:
return self.execution_device.type == "cuda" return self.execution_device.type == "cuda"
@ -310,12 +337,15 @@ class ModelCache(object):
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}" f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
) )
def _cache_size(self) -> int:
return sum([m.size for m in self._cached_models.values()])
def _make_cache_room(self, model_size): def _make_cache_room(self, model_size):
# calculate how much memory this model will require # calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1 # multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size bytes_needed = model_size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = sum([m.size for m in self._cached_models.values()]) current_size = self._cache_size()
if current_size + bytes_needed > maximum_size: if current_size + bytes_needed > maximum_size:
self.logger.debug( self.logger.debug(
@ -364,6 +394,8 @@ class ModelCache(object):
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)" f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
) )
current_size -= cache_entry.size current_size -= cache_entry.size
if self.stats:
self.stats.cleared += 1
del self._cache_stack[pos] del self._cache_stack[pos]
del self._cached_models[model_key] del self._cached_models[model_key]
del cache_entry del cache_entry

View File

@ -121,7 +121,7 @@ export const addRequestedMultipleImageDeletionListener = () => {
effect: async (action, { dispatch, getState }) => { effect: async (action, { dispatch, getState }) => {
const { imageDTOs, imagesUsage } = action.payload; const { imageDTOs, imagesUsage } = action.payload;
if (imageDTOs.length < 1 || imagesUsage.length < 1) { if (imageDTOs.length <= 1 || imagesUsage.length <= 1) {
// handle singles in separate listener // handle singles in separate listener
return; return;
} }